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Abstract

The automatic discovery of distinctive parts for an ob-
ject or scene class is challenging since it requires simulta-
neously to learn the part appearance and also to identify
the part occurrences in images. In this paper, we propose
a simple, efficient, and effective method to do so. We ad-
dress this problem by learning parts incrementally, starting
from a single part occurrence with an Exemplar SVM. In
this manner, additional part instances are discovered and
aligned reliably before being considered as training exam-
ples. We also propose entropy-rank curves as a means of
evaluating the distinctiveness of parts shareable between
categories and use them to select useful parts out of a set
of candidates.

We apply the new representation to the task of scene cat-
egorisation on the MIT Scene 67 benchmark. We show that
our method can learn parts which are significantly more in-
formative and for a fraction of the cost, compared to previ-
ous part-learning methods such as Singh et al. [28]. We also
show that a well constructed bag of words or Fisher vector
model can substantially outperform the previous state-of-
the-art classification performance on this data.

1. Introduction

The notion of part has been of central importance in

object recognition since the introduction of pictorial struc-

tures [11], constellation models [35], object fragments [2,

29], right up to recent state-of-the-art methods such as De-

formable Part Models (DPMs) [9]. Yet, the automatic dis-
covery of good parts is still a difficult problem. In DPM,

for example, part occurrences are initially assumed to be in

a fixed location relative to the ground truth object bounding

boxes, and then are refined as latent variables during learn-

ing [9]. This procedure can be satisfactory in datasets such

as PASCAL VOC [8] where bounding boxes usually induce

a good alignment of the corresponding objects. However,

when the alignment is not satisfactory, as for the case of

highly-deformable objects such as cats and dogs [20], this

approach does not work well and the performance of the

resulting detector is severely hampered.

In this paper, a simple, efficient, and effective method for

discovering parts automatically and with very little supervi-

sion is proposed. Its power is demonstrated in the context of

scene recognition where, unlike in object recognition, ob-

ject bounding boxes are not available, making part align-

ment very challenging. In particular, the method is tested

on the MIT Scene 67 dataset, the standard benchmark for

scene classification. Fig. 1 shows examples of the learned

parts detected on the test set.

To achieve these results two key issues must be ad-

dressed. The first is to find and align part instances in the

training data while a model of the part is not yet available.

This difficulty is bypassed by learning the model from a

single exemplar of a candidate part. This approach is mo-

tivated by [17], that showed that a single example is often

sufficient to train a reasonable, if a little restrictive, detec-

tor. This initial model is then refined by alternating mining

for additional part instances and retraining. While this pro-

cedure requires training a sequence of detectors, the LDA

technique of [13] is used to avoid mining for hard nega-

tive examples, eliminating the main bottleneck in detector

learning [9, 32], and enabling a very efficient part-learning

algorithm.

The second issue is to select distinctive parts among the

ones that are generated by the part mining process. The lat-

ter produces in fact a candidate part for each of a large set of

initial seeds. Among these, the most informative ones are

identified based on the novel notion of entropy-rank. This

criterion selects parts that are informative for a small pro-

portion of classes. Differently to other measures such as

average precision, the resulting parts can then be shared by

more than one object category. This is particularly impor-

tant because parts should be regarded as mid-level primi-

tives that do not necessarily have to respond to a single ob-

ject class.
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Figure 1. Example of occurrences of distinctive parts learned by our method from weakly supervised image data. These part occurrences

are detected on the test data. (a) bookstore, (b) buffet, (c) computerroom, (d) closet, (e) corridor, (f) prisoncell, (g) florist, (h) staircase.

The result of our procedure is the automatic discovery of

distinctive part detectors. We call them “blocks that shout”

due to their informative nature and due to the fact that, in

practice, they are implemented as HOG [7] block filters

(Fig. 2).

Related work. Parts have often been sought as intermedi-

ate representations that can complement or substitute lower

level alternatives like SIFT [16]. In models such as DPMs,

parts are devoid of a specific semantic content and are used

to represent deformations of a two dimensional template.

Often, however, parts do have a semantic connotation. For

example, in Poselets [5] object parts correspond to recog-

nizable clusters in appearance and configuration, in Li et
al. [15] scene parts correspond to object categories, and in

Raptis et al. [25] action parts capture spatio-temporal com-

ponents of human activities.

The learning of parts is usually integrated into the learn-

ing of a complete object or scene model [3, 9]. Only a few

papers deal primarily with the problem of learning parts. A

possibility, used for example by Poselets [5], is to use some

spatial annotation of the training images for weakly super-

vised learning. Singh et al. [28] explores learning parts in

both an unsupervised and weakly supervised manner, where

the weakly supervised case (as here) only uses the class la-

bel of the image. Their weakly supervised procedure is ap-

plied to the MIT Scene 67 dataset, obtaining state-of-the-art

scene classification performance. As will be seen though,

our part-learning method is: (i) simpler, (ii) more efficient,

and (iii) able to learn parts that are significantly better at

scene classification.

The problem of scene classification has been approached

in other papers from a variety of different angles. For

example, Sadeghi and Tappen [26] address this problem

with a representation based on discriminative scene re-

gions. Parizi et al. [19] propose a reconfigurable version

of a spatial bag of visual words (BoW) model that asso-

ciates different BoW descriptors to different image seg-

ments, corresponding to different types of “stuff”. Wu and

Rehg [36] propose a novel holistic image descriptor for

scene classification. The standard DPM model is applied

to the task of scene categorization by Pandey and Lazeb-

nik [18], but the problem of part initialization and learning

is not addressed, and the quality of the parts that can be ob-

tained in this manner remains unclear. Li et al. [15] apply

their object bank, and Zhu et al. [37] explore the problem of

jointly modeling the interaction of objects and scene topics

in an upstream model, where topics are semantically mean-

ingful and observed. Quattoni and Torralba [24] study the

problem of modeling scenes layout by a number of proto-

types capturing characteristic arrangements of scene com-

ponents. Interestingly, one of the results of this paper is that

a well designed BoW or Fisher Vector [21] model trained
on a single feature can beat all these approaches.

2. Blocks that shout: learning distinctive parts

In characterizing images of particular scene classes, e.g.

a computer room, library, book store, auditorium, theatre,

etc., it is not hard to think of distinctive parts: chairs, lamps,

doors, windows, screens, etc., readily come to mind. In

practice, however, a distinctive part is useful only if it can

be detected automatically, preferably by an efficient and

simple algorithm. Moreover, distinctive parts may include

other structures that have a weaker or more abstract seman-

tic, such as the corners of a room or a corridor, particular

shapes (rounded, square), and so on. Designing a good vo-

cabulary of parts is therefore best left to learning.

Learning a distinctive part means identifying a localized

detectable entity that is informative for the task at hand (in

our example discriminating different scene types). This is

very challenging because (i) one does not know if a part

occurs in any given training image or not, and (ii) when the

part occurs, one does not know its location. While methods

such as multiple instance learning have often been proposed

to try to identify parts automatically, in practice they require

careful initialization to work well.

Our strategy for part-learning combines three ideas:

seeding, expansion, and selection. In seeding (Sect. 2.1) a

set of candidate part instances (seeds) is generated by sam-
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Figure 2. An example block learnt automatically for the laundro-

mat class. This block is a characteristic part for this class.

pling square windows (blocks) in the training data guided

by segmentation cues. All such blocks are treated initially

as potentially different parts. In expansion, (Sect. 2.2) each

block is used as a seed to build a model for a part while grad-

ually searching for more and more part occurrences in the

training data. This paced expansion addresses the issue of

detecting and localizing part exemplars. Finally, selection
(Sect. 2.3) finds the most distinctive parts in the pool of can-

didate parts generated by seeding and expansion by looking

at their predictive power in terms of entropy-rank. The pro-

cedure is weakly supervised in that positives are only sought

in the seeding and expansion stages within images of a sin-

gle class.

Once these distinctive parts are obtained, they can be

used for a variety of tasks. In our experiments they are en-

coded in a similar manner to BoW: an image descriptor is

computed from the maximum response of each part pooled

over spatial regions of the image (Sect. 3.2). Experiments

show that this representation is in fact complementary to

BoW (Sect. 4).

2.1. Seeding: proposing an initial set of parts

Initially, no part model is available and, without fur-

ther information, any sub-window in any training image

is equally likely to contain a distinctive part. In principle,

one could simply try to learn a part model by starting from

all possible image sub-windows and identify good parts a-
posteriori, during the selection stage (Sect. 2.3). Unfortu-

nately, most of these parts will in fact not be distinctive (e.g.

a uniform wall) so this approach is highly inefficient.

We use instead low-level image cues to identify a sub-

set of image locations that are more likely to be centered

around distinctive parts. Extending the notion of object-
ness [1], we say that such promising locations have high

partness. In order to predict partness, we use image over-

segmentations, extending the idea of [30] from objects to

parts.

In detail, each training image is first segmented into su-

perpixels by using the method of [10]. This is repeated

four times, by rescaling the image with scaling factors

2−
i
3 , i = 0, 1, 2, 3. Superpixels of intermediate sizes, de-

fined as the ones whose area is in the range 500 to 1,500

pixels, are retained. These threshold are chosen assuming

that the average area of an unscaled image is 0.5 Mpix-

els. Superpixels which contain very little image variation

(as measured by the average norm of the intensity gradient)

are also discarded.

Part models are constructed on top of HOG features [7].

At each of the four scales, HOG decomposes the image into

cells of 8 × 8 pixels. Each part is described by a block

of 8 × 8 HOG cells, and hence occupies an area of 64 ×
64 pixels. A part seed is initialized for each superpixel by

centering the 64 × 64 pixel block at the center of mass of

the superpixel. Compared to sampling blocks uniformly on

a grid, this procedure was found empirically to yield a much

higher proportion of seeds that successfully generate good

discriminative parts.

Figure 3 shows an example of the superpixels computed

from a training image, and the seed blocks obtained using

this procedure.

2.2. Expansion: learning part detectors

Learning a part detector requires a set of part exemplars,

and these need to be identified in the training data. A pos-

sible approach is to sample at random a set of part occur-

rences, but this is extremely unlikely to hit multiple occur-

rences of the same part. In practice, part initialization can

be obtained by means of some heuristic, such as clustering

patches, or taking parts at a fixed location assuming that im-

ages are at least partially aligned. However, the detector of

a part is, by definition, the most general and reliable tool for

the identification of that part occurrences.

There is a special case in which a part detector can

be learned without worrying about exemplar alignment: a

training set consisting exactly of one part instance. It may

seem unlikely that a good model could be learned from a

single part example, but Exemplar SVMs [17] suggest that

this may be in fact be the case. While the model learned

from a single occurrence cannot be expected to generalise

much, it is still sufficient to identify reliably at least a few

other occurrences of the part, inducing a gradual expansion

process in which more and more part occurrences are dis-

covered and more variability is learned.

In practice, at each round of learning the current part

model is used to rank blocks from images of the selected

class and the highest scoring blocks are considered as fur-

ther part occurrences. This procedure is repeated a set num-

ber of times (ten in the experiments), adding a small num-

ber of new part exemplars (ten) to the training set each time.

All the part models obtained in this manner, including the

intermediate ones, are retained and filtered by distinctive-

ness and uniqueness in Sect. 2.3. Figure 4 shows an exam-

ple seed part on the left, and the additional part occurrences

that are added to the training set during successive iterations

of expansion.

Note that this expansion process uses a discriminative
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(a) Original Image (b) Superpixels (c) Seed blocks

Figure 3. Selecting seed blocks. The super-pixels (b) suggest characteristic regions of the image, and blocks are formed for these. Blocks

with low spatial gradient are discarded.

model of the part. This is particularly important because in

image descriptors such as HOG most of the feature com-

ponents correspond to irrelevant or instance specific details.

Discriminative learning can extract the distinctive informa-

tion (e.g. shape), while generative modeling (e.g. k-means

clustering) has difficulty in doing so and constructing “se-

mantic” clusters.

LDA acceleration. The downside of this mining process is

that the part detector must be learned multiple times. Us-

ing a standard procedure that involves hard negative mining

for each trained detector [9, 32] would then be very costly.

We use instead the LDA technique of [13], which can be

seen as learning once a soft but universal model of negative
patches (a similar method is described in [12]). In practice,

the parameter vector w of a part classifier is learned simply

as w = Σ−1(x̄ − μ0) where x̄ is the mean of the HOG

features of the positive part samples, μ0 is the mean of the

HOG blocks in the dataset, and Σ the corresponding covari-

ance matrix. HOG blocks are searched at all locations at the

same four scales of Sect. 2.1.

2.3. Selection: identifying distinctive parts

Our notion of a discriminative block is that it should oc-

cur in many of the images of the class from which it is

learnt, but not in many images from other classes. How-

ever, it is not reasonable to assume that parts (represented

by blocks) are so discriminative that they only occur in the

class from which they are learnt. For example, the door of a

washing machine will occur in the laundromat class, but can

also occur in the kitchen or garage class. Similarly, a gothic

arch can appear in both the church and cloister class. How-

ever, one would not expect these parts to appear in many

other of the indoor classes. In contrast, a featureless wall

could occur in almost any of the classes.

In selecting the block classifiers we design a novel mea-

sure to capture this notion. The block classifiers were learnt

on training images for a particular class, and they are tested

as detectors on validation images of all classes. Blocks

(a) Seed (b) Round 1 (c) Round 2 (d) Round 3 (e) Round 4 (f) Round 5

Figure 4. Mining of part instances. The seed (initial) block is on

the left. On the right the additional example blocks added to the

positive training set for retraining the part detector are shown in the

order that they are added. Note that mining uses blocks selected

from a certain scene category, but no other supervision is used.

learned from a class are not required to be detected only

from images of that class; instead, the milder constraint that

the distribution of classes in which the block is detected

should have low entropy is imposed. In this manner, dis-

tinctive but shareable mid-level parts can be selected. For

the laundromat example above, we would expect the wash-

ing machine door to be detected in only a handful of the

classes, so the entropy would be low. In contrast the block

for a wall would be detected across many classes, so its dis-

tribution would be nearer uniform across classes, and hence

the entropy higher.

To operationalize this requirement, each block is evalu-

ated in a sliding-window manner on each validation image.

Then, five block occurrences are extracted from each image

by max-pooling in five image regions, corresponding to the

spatial subdivisions used in the encoding of Sect. 3. Each
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(a) Discriminative detector (b) Non-Discriminative detector

Figure 5. Entropy-Rank (ER Curves). Entropy values reach a

uniform value as more and more images are ranked, with images

from different classes coming in. Classifier (a) has low entropy

at top ranks, which shows that it is picking the blocks from a few

classes. On the other hand, Classifier (b) has more uniform en-

tropy, which shows that it is picking the blocks from many classes,

making the classifier less discriminative. For each class, classifiers

with low AUC are selected.

block occurrence (zi, yi) detected in this manner receives a

detection score z and a class label y equal to the label of

the image. The blocks are sorted on their score z, and the

top r ranking blocks selected. Then the entropy H(Y |r) is

computed:

H(Y |r) = −
N∑

y=1

p(y|r) log2 p(y|r), (1)

where N is the number of image classes and p(y|r) is the

fraction of the top r blocks (zi, yi) that have label yi = y.

We introduce Entropy-Rank Curves (ER curves) to mea-

sure the entropy of a block classifier at different ranks. An

ER curve is similar to a Precision-Recall Curve (PR curve),

with rank on the x-axis and entropy values on the y-axis.

Figure 5 shows the ER curves of a discriminative and a

non-discriminative block detector, respectively. Note, en-

tropy for all part classifiers converges to a constant value

(which depends on the class prior) as the rank increases.

Analogously to Average Precision, we then take the Area

Under Curve (AUC) for the ER graph as an overall mea-

sure of performance of a detector. The top scoring detectors

based on this measure are then retained.

The final step is to remove redundant part detectors. In

fact, there is no guarantee that the part mining procedure

will not return the same or similar parts multiple times. The

redundancy between a pair of detectors w′ and w′′ is mea-

sured by their cosine similarity 〈w′/‖w′‖, w′′/‖w′′‖〉. For

each class, n detectors are selected sequentially by increas-

ing ER scores, skipping detectors that have cosine similarity

larger than 0.5 with any of the detectors already selected.

3. Image representations and learning

The part detectors developed in Sect. 2 are used to con-

struct “bag of parts” image-level descriptors. These can be

used in combination with BoW or Fisher Vector descriptors

(by stacking the corresponding vectors after normalization).

The details of these representations are given in Sect. 3.1–

Sect. 3.2 respectively, and learning and classification is de-

scribed in Sect. 3.3.

3.1. Bag of parts

In order to compute an image-level descriptor from the

parts learned in Sect. 2, all the corresponding classifiers are

evaluated densely at every image location at multiple scales.

Part scores are then summarized in an image feature vector

by using max-pooling, by retaining the maximum response

score of a part in a region. The pooling is done in a spatial-

pyramid fashion [14] (1 × 1, 2 × 2 grids), and encodings

of each spatial region are stacked together to form the final

image representation of the image (the “bag of parts”). Note

that the method of selecting the parts (Sect. 2.3) and here the

encoding into an image feature vector both use max-pooling

over the spatial-pyramid.

3.2. Bag of visual words and Fisher vectors

We investigate a number of feature encodings, as de-

scribed in [6]: (i) hard assignment (i.e. vector quantiza-

tion) BoW; (ii) kernel-codebook encoding BoW [22, 31];

(iii) Locality-constrained Linear Coding (LLC) BoW [34];

and (iv) Improved Fisher Vectors (IFV) [21]. Each encoding

uses the parameters given in [6] unless otherwise specified.

Dense visual words. Dense RootSIFT descriptors [4, 16]

are extracted from the image with a spatial stride of three to

five pixels and at six scales, defined by rescaling with fac-

tors 2−
i
2 , i = 0, 1, . . . , 5. Low-contrast SIFT descriptors

(identified as the ones for which the average intensity gradi-

ent magnitude is below a threshold) are mapped to null vec-

tors. The RootSIFT descriptors are then mapped to visual

words. For the IFV encoding, the visual word dictionary

is obtained by training a Gaussian Mixture Model (diago-

nal covariance) with 256 centers; for the other encodings,

the dictionary is learned by using k-means and setting k to

2,000.

Spatial encoding. Weak geometric information is retained

in the descriptors by using spatial histogramming [14]. For

the IFV encoding, the image is divided into 1×1, and 2×2
grids, obtaining a total of 5 spatial pooling regions; for the

other encodings, the image is divided into 1× 1, and 2× 2,

and 4 × 4 grids, obtaining a total of 21 spatial pooling re-

gions. The descriptors for each region are individually nor-

malized, and then stacked together to give the final image

descriptor. For the IFV encoding, the image descriptor is
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204,800-dimensional, and for other encodings, the image

descriptor is 42,000-dimensional.

3.3. Learning and classification

Learning uses the PEGASOS SVM [27] algorithm, a lin-

ear SVM solver. In order to use non-linear additive kernels

instead of the linear one, the χ2 explicit feature map of [33]

is used (the bag of parts and bag of words histograms are l1

normalized). Using the feature map increases the dimension

of the input feature vector by 3 times. For the IFV encod-

ing, we use square-root (Hellinger) kernel. The parameter

C of the SVM (regularization-loss trade-off) is determined

by 4-fold cross validation. For multi-class image classifica-

tion problems, 1-vs-rest classifiers are learned. In this case,

it was found beneficial to calibrate the different 1-vs-rest

scores by fitting a sigmoid [23] to them based on a valida-

tion set.

4. Experiments and results
The part-learning algorithm is evaluated on the task of

scene classification on the MIT 67 indoor scene dataset of

Quattoni and Torralba [24]. Note that, differently from

object recognition datasets such as PASCAL VOC [8], in

scene classification no geometric cue such as object bound-

ing boxes is given to help initializing parts.

The MIT data comprises 67 indoor scene categories

loosely divided into stores (e.g. bakery, toy store), home

(e.g. bedroom, kitchen), public spaces (e.g. library, sub-

way), leisure (e.g. restaurant, concert hall) and work (e.g.

hospital, TV studio). The scenes are chosen to cover those

that are best characterized by their global layout (e.g. corri-

dor) and also those that are best characterized by the ob-

jects they contain (e.g. bookshop). Evaluation uses the

protocol of [24], using the the same training and test split

as [24] where each category has about 80 training images

and 20 test images. In addition the training set is subdi-

vided into about 64 train and 16 validation images. Perfor-

mance is reported in terms of average classification accu-

racy as in [24] (i.e. the average of the diagonal of the con-

fusion matrix) and, additionally, in terms of mean Average

Precision (mAP).

Bag of words and Fisher vectors. The four variants of

BoW and IFV (Sect. 3) are compared in Table 1) for vari-

ations in the sampling density of the RootSIFT features.

Note that using RootSIFT instead of SIFT can increase the

classification performance by up to 2% in some cases. The

best performance is 60.77% by using the IFV encoding with

a sampling step of five pixels, though the method is not very

sensitive to the step size.

The part-learning method proposed by [28] had previ-

ously achieved the state-of-the-art performance on the MIT

Scene 67 dataset. Their best performing achieves an accu-

Encoding Step size: 3 Step size: 4 Step size: 5

VQ [42,000] 52.14 (51.08) 50.38 (50.50) 49.76 (50.42)

KCB [42,000] 50.59 (49.65) 49.21 (49.19) 50.41 (49.92)

LLC [42,000] 51.52 (51.87) 53.03 (51.73) 51.70 (52.09)

IFV [204,800] 60.33 (60.90) 60.67 (61.39) 60.77 (61.05)

Table 1. BoW scene classification results. Performance of vari-

ous BoW classifiers on the MIT Scene 67 dataset, reporting clas-

sification accuracy and mean average precision (in parentheses)

for each case. The dimension of the image representation is given

in square brackets. The best results significantly outperform the

current state-of-the-art accuracy.

Method Number of parts selected per class

10 20 30 40 50

BoP 42.34 44.81 44.96 46.00 46.10

LLC + BoP 56.66 55.98 55.93 56.01 55.94

IFV + BoP 62.80 62.75 62.65 62.02 63.10

Table 2. Variation with number of part classifiers. The variation

of classification accuracy with number of part classifiers selected

per class.

racy of 49.4% combining, in additions to the learned parts,

BoW, GIST, and DPM representations. Thus it is notable

that, by following the best practices indicated by [6], a solid

baseline encoding is actually able to outperform (by 11%)

the combined method of [28] as well as all other previous

methods on the MIT Scene 67 dataset by using only a single
feature channel based on RootSIFT features.

Bag of parts. Blocks are learned as described in Sect. 2.

The 31-dimensional cell HOG variant of [9] is used in all

the experiments. For the seeding described in Sect. 2.1,

the segmentation algorithm [10] is run with parameters

k = 0.5, σ = 200, and min = 20. The average num-

ber of part candidates obtained for each class is 3,800. For

each of these seed blocks, a classifier is learned by follow-

ing the expansion procedure of Sect. 2.2. We sample about

620,000 HOG blocks randomly from the training set, and

compute the mean (μ0) and covariance (Σ) of this set. Since

Σ comes out to be low-rank and non-invertible, a regular-

izer (λ = 0.01) is added to the diagonal elements of the

covariance matrix.

Once the parts have been learned as described in

Sect. 2.2 and selected as in Sect. 2.3, the bag of parts repre-

sentation is extracted from each training image as described

in Sect. 3. Figure 7 shows examples of the seed blocks,

the learnt HOG templates, and detections on the validation

set images. Finally, 67 one-vs-rest SVMs are learned from

the training images, and the resulting scene classifiers are

evaluated on the test data. As one can expect, the classi-

fication accuracy increases as more parts are added to the

representation (Table 2), but the peak is at around 50 parts

per category. The probable reason is a lack of training mate-

rial (after all the parts and classifiers are learned on the same
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Method Acc. (%) Mean AP (%)

ROI + Gist [24] 26.05 -

MM-scene [37] 28.00 -

CENTRIST [36] 36.90 -

Object Bank [15] 37.60 -

DPM [18] 30.40 -

RBoW [19] 37.93 -

LPR [26] 44.84 -

Patches [28] 38.10 -

BoP [3,350] (Ours) (1x1) 40.31 37.31

BoP [16,750] (Ours) (1x1+2x2) 46.10 43.55

LLC [42,000] (Ours) 53.03 51.73

IFV [204,800] (Ours) 60.77 61.05

Table 3. Average classification performance of single feature

methods (previous publications and this paper). The dimension

of the image representation is given in square brackets. 1x1, 2x2

refers to the spatial subdivisions used.

Method Acc. (%) Mean AP (%)

DPM+Gist-color+SP [18] 43.10 -

Patches+GIST+SP+DPM [28] 49.40 -

LLC + BoP (Ours) 56.66 55.13

IFV + BoP (Ours) 63.10 63.18

Table 4. Average classification performance of combination of fea-

tures methods (previous publications and this paper).

data) that causes overfitting. To overcome this, we left-right

flip the images in the positive training set, and add them as

additional positives.

Overall, the proposed part-learning method compares

very favorably with the method of [28], which previously

defined the state-of-the-art when using part detection on the

MIT Scene 67 dataset. Our accuracy is 46.10% when 50

parts per category are used. By comparison, the accuracy

of [28] is 38.10%, and they use 210 parts per category. So

the parts found by our algorithm are much more informa-

tive, improving the accuracy by 8% using only a quarter of

the number of detectors.

Also, our part-learning method is significantly more effi-

cient than the discriminative clustering approach of [28] for

three reasons. (i) [28] initialize their clustering algorithm

by standard (generative) K-means, which, as they note, per-

forms badly on the part clustering task; our exemplar SVM

approach avoids that problem. (ii) These clusters are formed

on top of a random selection of initial patches; we found

that aligning seed patches to superpixels substantially in-

creases the likelihood of capturing interesting image struc-

tures (compared to random sampling). (iii) They use itera-
tive hard-mining to learn their SVM models. This approach

was tested in our context and found to be 60 times slower

than LDA training that avoids this step.

Combined representation. In the final experiment, the

BoP (using 50 parts per class) and BoW/IFV representa-

��������

�������	����

������	���

��������

�������

Figure 6. Categories with the highest classification rate (Combined

method). Each row shows the top five results for the category

tions are combined as described in Sect. 3, and 67 one-

vs-rest classifiers are learned. Table 4 reports the overall

performance of the combined descriptors and compares it

favorably to BoW and IFV, and hence to all previously pub-

lished results. Figure 6 shows qualitative results obtained

by the combined bag of parts and IFV method.

5. Summary

We have presented a novel method to learn distinctive

parts of objects or scenes automatically, from image-level

category labels. The key problem of simultaneously learn-

ing a part model and detecting its occurrences in the train-

ing data was solved by paced learning of Exemplar SVMs,

growing a model from just one occurrence of the part. The

distinctiveness of parts was measured by the new concept of

entropy-rank, capturing the idea that parts are at the same

time predictive of certain object categories but shareable

between different categories. The learned parts have been

shown to perform very well on the task of scene classi-

fication, where they improved a very solid bag of words

or Fisher Vector baseline that in itself establishes the new

state-of-the-art on the MIT Scene 67 benchmark.

The outcome of this work are blocks that correspond to

semantically meaningful parts/objects. This mid-level rep-

resentation is useful for other tasks, for example to initialize

the region models of [19] or the part models of [18], and

yields more understandable and diagnosable models than

the original bag of visual words method.

Acknowledgements. We are grateful for the financial sup-

port from the UKIERI, a research grant from Xerox Re-

search, and ERC grant VisRec no. 228180.

927927927929929



(a) (b) (c) (d)

Figure 7. (a), (c) Seed blocks and the learnt HOG templates, and (b), (d) detections on the validation set images.
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