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Abstract

The analysis of 3-D shape meshes is a fundamental prob-
lem in computer vision, graphics, and medical imaging.
Frequently, the needs of the application require that our
analysis take a multi-resolution view of the shape’s local
and global topology, and that the solution is consistent
across multiple scales. Unfortunately, the preferred math-
ematical construct which offers this behavior in classical
image/signal processing, Wavelets, is no longer applicable
in this general setting (data with non-uniform topology). In
particular, the traditional definition does not allow writing
out an expansion for graphs that do not correspond to the
uniformly sampled lattice (e.g., images). In this paper, we
adapt recent results in harmonic analysis, to derive Non-
Euclidean Wavelets based algorithms for a range of shape
analysis problems in vision and medical imaging. We show
how descriptors derived from the dual domain representa-
tion offer native multi-resolution behavior for characteriz-
ing local/global topology around vertices. With only minor
modifications, the framework yields a method for extracting
interest/key points from shapes, a surprisingly simple algo-
rithm for 3-D shape segmentation (competitive with state of
the art), and a method for surface alignment (without land-
marks). We give an extensive set of comparison results on a
large shape segmentation benchmark and derive a unique-
ness theorem for the surface alignment problem.

1. Introduction

The representation of an image signal at different resolu-

tions as a means to obtain invariance to scale is among the

most fundamental concepts in computer vision. Its applica-

tions span interest point detection, denoising/filtering, and

compression, and is often studied in vision as Scale space

theory via its most common application (i.e., convolving a

2-D signal with a Gaussian kernel). A strong analog to this

concept from the Signal processing domain, with similar

Figure 1: (Top) Segmentations at different resolutions provide coarse-

to-fine partitioning of a flamingo shape mesh. (Bottom) Surface alignment

of two different brain surfaces, color coding refers to a wavelet kernel field:

similar colors in the two surfaces are potentially similar regions.

utility but a different formalization, is Wavelets. Interest-

ingly, even before the core ideas were formalized under this

name, wavelet type methods were already being adopted to

extract multi resolution image information by early pioneers

of computer vision, see Koenderink [12], Marr [15], Witkin

[22], and Rosenfeld [16]. Wavelets continue to be used to-

day in low-level image processing tasks such as image en-

hancement and texture discrimination, and drives the design

of feature extraction filters central to many computer vision

methods.

The considerable success notwithstanding, the reader

will notice that in the last decade of vision research, there

are only few instances of wavelets and scale-space theory

adopted in problems outside of the classical applications

identified above. In general, it is difficult to find scenar-

ios where wavelets/scale-space approaches were exploited

in non-traditional ways within solutions to ‘new’ problems

(i.e., distinct from filtering, denoising). In fact, even in ap-

plications where a multi-resolution perspective intuitively

makes sense such as 3-D shape analysis and surface regis-

tration, the existing suite of solutions have been developed
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almost independently of wavelets/scale-space, and make lit-

tle explicit use of multi-resolution theory. Part of the reason

may be that the standard definition of a wavelet expansion is

in Euclidean space: which means that for images, wavelets

are defined on a uniformly sampled lattice. When restricted

to this regime, the ‘natural’ applications that fall out are pre-

cisely those where these ideas are already deployed today.

The main goal of this work is to develop multi-resolution

methods for shape analysis with an eye on two specific

problems of interest: shape segmentation and surface align-

ment. The first problem of 3-D mesh segmentation deals

with parsing the shape into perceptually meaningful regions

and serves a key role in computer animation, texture map-

ping, morphing, and shape retrieval. Ideally, the algorithm

should ignore local noise and instead focus on topological

features that are globally meaningful. But the importance of

a feature (or artifact) is invariably modulated by both its lo-

cal and global context. By itself, this line of reasoning pro-

vides a strong motivation for a multi-resolution algorithm.

The second problem of 3-D surface alignment seeks the

alignment of a pair of highly convoluted surfaces (e.g., brain

cortical surface). A reasonable approach here will evaluate

the relevance of each topological feature in approximating

the underlying surface, and attempt to align these features

in some order of their importance. Again, this reasoning

suggests that a multi-resolution method will be a good fit.

The natural mathematical construct, one which is natively

multi-resolutional, is Wavelets. Unfortunately, writing a

wavelet representation for the input datum for these prob-

lems is problematic, since traditionally wavelets are limited

to the Euclidean setting. Notice that the meshes we operate

on above are arbitrary, not uniformly sampled, and depend

entirely on the objects they represent. Readers familiar with

wavelets will instantly recognize that the bottleneck here is

to come up with analogs of dilation and translation on the

graph. Successfully defining all wavelet properties on the

graph will enable a truly multi-resolutional analysis, and

open the doors for extending wavelet theory to a range of

3-D shape analysis problems.

In this paper, we adapt an interesting set of recent re-

sults from harmonic analysis [8, 5] to derive efficient multi-

resolution algorithms for shape analysis problems in com-

puter vision. Briefly, instead of analyzing the structure in

the original shape mesh, we approach these problems us-

ing spectral graph theory (i.e., via eigenvalues of the graph

Laplacian). The spectral graph domain serves as an analog

of the frequency domain in the Fourier transform. When

combined with a few additional steps, the formalization al-

lows obtaining the Wavelet transform of the shape of inter-

est, and analyzing its characteristics at different bandwidths.

Wavelet based signatures fall out nicely from this frame-

work, which we call Wavelet Kernel Descriptor (WKD) and

Maximum Wavelet Kernel Density (MWKD) field. These

are the essential objects which allow obtaining perceptually

based 3-D mesh segmentation and landmark-less registra-

tion of brain surfaces. The contributions of this work are:

a) Wavelet-based algorithms for multi-resolution shape

analysis;

b) Mechanisms for obtaining perceptually meaningful seg-

mentation of 3-D shape meshes with experiments on a

large community benchmark;

c) An algorithm and uniqueness/optimality theorem for

mesh alignment and its application to brain surfaces.

2. Definition and Key Properties of Wavelets
Wavelets are similar to the Fourier representation in that

it uses a set of bases to decompose and construct a signal.
However, while the Fourier transform is localized in fre-
quency only, wavelets can be localized in both time and fre-
quency [14]. The classic construction of wavelets is defined
by a mother wavelet function ψ and a scaling function φ.
Here, the mother wavelet ψ on x is a function of two pa-
rameters, the scale s and translation a:

ψs,a(x) =
1

a
ψ(
x− a
s

). (1)

The mother wavelet ψs,a(x), serves as a local support in
the original domain [18] in the form of a localized oscillat-
ing function with finite duration. Various scales form bases
that can be used to approximate a signal using wavelet ex-
pansion, and it is occasionally convenient to think of ψ as
a band-pass filter. Using ψ, the wavelet transform of a sig-
nal f(x) is defined as the inner product of the wavelet and
signal and can be represented as

Wf (s, a) = 〈f, ψ〉 = 1

s

∫
f(x)ψ∗(

x− a
s

)dx, (2)

where Wf (s, a) is the wavelet coefficient at scale s and
at location a, and the function ψ∗ represents the complex
conjugate of ψ. Such a transform is invertible, that is

f(x) =
1

Cψ

∫∫
Wf (s, a)ψs,a(x)da ds (3)

where Cψ =
∫ |Ψ(jω)|2

|ω| dω < ∞ is called the admissi-
bility condition constant, Ψ is the Fourier transform of the

wavelet [18], and ω denotes the frequency domain.

The scale (or resolution) parameter s controls the dila-

tion of the basis and can be used to produce both short

and long basis functions. While short basis functions cor-

respond to high frequency components and are useful to

isolate signal discontinuities, longer basis functions corre-

spond to lower frequencies. In fact, wavelets transforms

have an infinite set of possible basis functions unlike the

single set of basis functions (sine and cosine) in the Fourier

transform. Note that the results above are not directly ap-

plicable to non-uniform graph topologies such as those en-

countered in shape meshes and surfaces. One of our goals in

later sections will be to utilize analogs of these properties.
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3. Non-Euclidean Wavelets

Recent work in harmonic analysis [8, 5, 9] provides

Wavelet bases on structured data which expresses in a wide

spectrum of frequencies. The solution in [8] relies on the

graph Fourier transform to derive a spectral graph wavelet

transform (SGWT). This formalization is shown to preserve

the localization properties at fine scales as well as other

wavelets specific properties [11]. But beyond constructing

the transform, we discuss how the operator-valued functions

of the Laplacian are very useful to derive a powerful multi-

resolution descriptor localized at different frequencies.

3.1. Deriving Multi Resolution Descriptors

In deriving Wavelet expansions of arbitrary graphs, the

first problem is to formalize scaling. For a function f(n)
defined on a vertex n of a graph, writing down f(sn) for

a scaling parameter s is not meaningful due to the irreg-

ularity of the domain. This problem can be avoided by

defining an operator T sg = g(sL) in the dual domain using

the graph Fourier transformation briefly introduced later.

Here, the spectrum of the graph Laplacian is analogous to

the frequency domain, where scales can be easily defined.

This directly provides the key module in obtaining a multi-

resolutional view of the signal localized at n. Indeed, for

graphs, this gives a mechanism to simultaneously analyze

various local topologically-based contexts around each ver-

tex, at various resolutions. And for a specific scale s, we can

now construct a kernel function g which act as band-pass fil-

ter in the frequency domain. When transformed back to the

original domain, we directly obtain a representation of the

signal for that resolution. Repeating this process for multi-

ple scale/resolutions, the set of coefficients obtained for S
scales gives a multi-resolutional descriptor for that vertex.

Given a mesh with N vertices, the graph Laplacian is

computed as L = D − A, where A and D are the graph

adjacency matrix and degree matrix. Then we obtain the or-

thonormal basis χl and eigenvalues λl, l ∈ {0, 1, · · · , N −
1} for the graph Laplacian. Using these bases, the forward

and inverse graph Fourier transformation are defined using

eigenvalues/eigenvectors of L simply as,

f̂(l) = 〈χl, f〉 =
N∑
n=1

χ∗l (n)f(n) (4)

f(n) =

N−1∑
l=0

f̂(l)χl(n) (5)

Using these transforms, we construct spectral graph
wavelets by applying band-pass filters at multiple scales and
localizing it with an impulse function. This is important:
since the transformed impulse function in the frequency do-
main is equivalent to a unit function, the wavelet ψ localized

by a delta function at vertex n can now be defined as,

ψs,n(m) = T sg δn =

N−1∑
l=0

g(sλl)χ
∗
l (n)χl(m) (6)

where m is a vertex index on the graph. With this in hand,
the wavelet coefficients of a given function f(n) is given by
the inner product of wavelets and the given function as well
as the wavelet transform operator,

Wf (s, n) = (T sg f)(n) =

N−1∑
l=0

g(sλl)f̂(l)χl(n) (7)

The coefficients obtained from the transformation yield a
set of wavelet coefficients at each vertex n for each scale
s. We further define Wavelet Kernel Descriptor (WKD) on
vertex n as the self-effect of the wavelet localized on itself,
and normalized at each resolution in the following manner.

WKDs(n) =
ψs,n(n)−minm ψs,m(m)

maxm ψs,m(m)−minm ψs,m(m)
(8)

This descriptor is highly suitable for structured data where

the underlying graph is weighted but no signal is defined on

the vertices – for instance, a structured shape mesh where

the edge weights are a function of the distance between a

pair of mesh vertices. Intuitively, WKD represents the pro-

cess of hitting the vertex with a ‘hammer’ (an impulse func-

tion) and computing the impact on the vertex as a function

of its topology viewed at multiple resolutions. It may seem

that obtaining eivenvectors of a large graph can be burden-

some, but the contributions of the eigenvalues exponentially

decay, and so computing them all is not necessary.

Final Remarks. Representation schemes for charac-

terizing the shape-based contexts around key points has a

rich history in computer vision. Most of this analysis is

not natively multi-resolution and restricted to the Euclidean

setting. The discussion above shows how the ideas can

be expanded to the non-Euclidean space in a fully multi-

resolution manner. Using these descriptors, we can derive

new strategies for segmentation and alignment problems.

4. Interest Point detection on Shapes
WKD is a smooth function over the surface and encodes

the behavior of the signal at various bandwidths via the res-

olution/scale parameter. Perceptually, those regions of a

surface that ‘stand out’ are interpreted as key (or interest)

points. So it seems natural to evaluate WKD peaks, and de-

fine the extremas of the WKD as the interest points. But it

is not obvious that at which resolution the extremas of the

function will yield interest points. Instead, we evaluate all

resolutions concurrently and define an interest point field,

MWKD(n) = max
s

(WKDs(n)) (9)

and then search for spatial extremas on the resultant
MWKD field (which has the multi-resolution information
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in-built). We define the Wavelet Range (WR) as a set of
vertices that are inside the influence of a wavelet centered
at a certain vertex (i.e., absolute value is over a threshold η),

WRs(n) = {m ∈M | |ψs,n(m)| ≥ η} (10)

Observe that WR gives a range on the input graph which

serves as a window, which generally is non-trivial to de-

fine in a non-Euclidean space. Varying the scale s controls

the width of WR by changing the dilation of the wavelet

localized at a vertex n. By defining MWKD field on the

domain/manifold M and range WR, we now obtain a 1-D

density field. This is the input we search over to identify in-

terest points on the mesh. The extrema finding algorithm is

simple. It starts from a random seed center and finds the in-

dex of the maximum MWKD within the range of a wavelet

effect defined on that point, and sets it as a new WR cen-

ter. It iteratively searches for the maximas within the WR

until it converges to a certain critical point. Starting from

a moderately large r random seed points, it finds an arbi-

trary number of extremas – these extremas are the interest

points. The number of interest points correspond directly

to the clusters our segmentation method will use later. The

choice of scale s and η enables the algorithm to find dif-

ferent number of interest points, thus can be adjusted (if

desired) according to the size of the manifold M and the

spatial density of interest points desired. Regions where the

WKD remains low across varying resolutions are unlikely

to give key points.

Results: Representative examples of WKD and MWKD

field are shown for a dog mesh in Fig. 2. The results high-

light two aspects: a) the interest points correspond to re-

gions found interesting at varying resolutions, and b) for a

fixed resolution, the consistency of interest points detected

under varying levels of noise and pose variation. In Fig. 2

first row, we see heat regions of interest points at scales 2,

10, and 34 (out of 50 in all). We see that for each distinct

resolution, key points correspond to different regions of the

mesh — lower parts of the leg, ears, and tip of the tail. In the

second row, we introduce noise in mesh for the various de-

formations. Keeping the resolution fixed, even in the noisy

setting, the key points detected are consistent across the

three meshes highlighting the robustness and consistency of

the method. Note that due to lack of standard benchmarks,

we do not quantitatively evaluate the key point detection

separately. Instead, it serves as a first step in our shape seg-

mentation, evaluations of which will be presented shortly.

5. 3-D Shape Mesh Segmentation
It is well known that 3-D shape segmentation based only

on information extracted from local topology may not yield

results that are consistent with perceptual shape parsing and

also suffer from high variablity in the presence of noise

(since the underlying features may change abruptly as a

Figure 2: Top row: WKD field in different resolutions. Middle row:

Dog shape mesh with deformation and noise Bottom row: MWKD field

on the dog mesh. The MWKD field seems consistent across shape/form

variation and noise.

function of noise). A powerful solution to these limitations

has come from the design of algorithms based on diffu-

sion. Methods such as Global Point Signature (GPS), Heat

Kernels and Heat Mean Signature (HMS) [17, 21, 6] have

been shown to be effective for the segmentation problem.

Interestingly, a wavelet based algorithm inherits all diffu-

sion specific properties (e.g., [5] articulates how wavelets

directly tie to diffusion via a random walk based argument),

and further provides native multi-resolution behavior via the

key-points. Below, we describe a surprisingly simple and

easy to implement method with the above properties, that

yields results that are competitive to the state of the art.

The multi-resolution topology information is already en-

coded within the interest points which serve as the given
segment ‘centers’. Therefore, what remains is to choose the

coordinate representation of the points, an appropriate dis-

tance and a suitable off-the-shelf clustering method. First,

we construct the coordinate of each vertex v̂(n) as,

v̂s(n) = (g(sλ1)χ1(n), · · · , g(sλk)χk(n))T , k ≤ l

where g(·) is the bandwidth kernel introduced in Section

3, and χj gives the j-th eigenvector of the Laplacian. To

keep the clustering scheme as rudimentary as possible, we

use Euclidean distance and apply a simple Nearest Neigh-

bor clustering (with given centers).

Our actual cluster assignment procedure can be summa-

rized in two steps: 1) Compute distance between the points

to each of the key points (i.e., cluster centers), and 2) As-

sign each point to its closest key point. Of course, one can

adopt more sophisticated schemes, but our purpose here is

to underscore how even a scheme like this performs well if
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Figure 3: Giraffe shape mesh segmentation with different parameters.

A finer scale s detects segments at smaller scales: (left to right) s = 5,

s = 38, and s = 48 find 8, 10, and 14 segments respectively.

it has access to an informative representation. In our imple-

mentation, we used Mexican hat wavelet for kernel g, and k
was chosen to be the number of IPs. Other types of wavelets

can also be applied in the same manner and provide similar

results, as long as they behave as a band-pass filter in the

frequency domain.

Results: Our algorithm was applied to and evaluated

on various existing 3D shape mesh datasets: non-rigid

world [1], benchmark [3], deformation transfer for triangle

meshes data [20], LIRIS/EPFL general purpose data [13],

and SHREC [2]. We first present a qualitative/quantitative

walk-through of various results and the algorithm’s behav-

ior before summarizing benchmark comparisons.

A) Coarse to Fine behavior. First, in Fig. 3, we show the

performance of the algorithm as a function of the resolution

parameter s keeping the shape mesh fixed (by varying s for

WR, we indirectly adjust the number of keypoints). In this

example result, by adjusting this parameter, we can incre-

mentally obtain a more detailed segmentation of the head,

feet, and leg regions. The result in the third column looks to

be the most meaningful segmentation, but the first two seg-

mentations nonetheless correspond to perceptually mean-

ingful components of the shape, albeit at a coarser scale.

B) Robustness to deformations. Fig. 4 provides a repre-

sentative example showing that keeping the resolution fixed,

the segmentations obtained by the algorithm are highly ro-

bust to rather significant shape deformations and articula-

tion of the mesh. For all six shapes, the segmentations are

useful in that they correspond to the same body regions.

C) Qualitative Results. To illustrate the perceptual rele-

vance of the segments obtained by our algorithm on a vari-

ety of shapes, we provide a few representative examples in

Fig. 5 (an extensive set of additional results is provided in

the supplement). In the twelve examples shown here, if we

consider each distinct object ‘part’ (hands, head, tail) as a

segment, our method seems to provide good segmentations

on a diverse set of real and man-made objects. An interest-

ing case is the chess board shape mesh. Here, we observed

that a coarse segmentation gives regions corresponding to

the board and chess pieces. As we move to finer segmen-

tations, the model captures topological regions for percep-

tually meaningful sub-parts of each chess piece. For these

Figure 4: Segmentation results of a centaur shape mesh undergoing de-

formations. Notice that the segments obtained by our algorithm are mostly

consistent across the sequence.

experiments, s was set to a value in the range of 1 to 30.

D) Comparisons on Shape Segmentation benchmark. We

performed evaluations on a 3D mesh benchmark from [3] on

10 different classes (includes fourleg, human, glasses, air-

plane, ant, octopus, hand, plier, armadillo, and fish meshes).

A few of the classes in the dataset were discarded because

the sub-components were nearly flat/rectillinear where all

methods work well. Ground truth is provided in this dataset.

We performed comparisons with a set of state of the art

shape segmentation methods used in this benchmark analy-

sis [3]. These are denoted as Shape Random Walks (SRW),

Shape Random cuts (SRC), Shape Normalized cut (SNC),

Shape K-means (SKM), and Shape Diameter (SD). When

needed by an algorithm, the number of segments was man-

ually specified. The first ten surfaces from each category

were used to evaluate the result. We fixed parameters for

our method for each category. Our results evaluate two dif-

Table 1: Error evaluation of using 3-D mesh benchmark.

Category Ours SRC SNC SRW SKM SD

CD 0.285 0.222 0.335 0.276 0.355 0.277

RI 0.173 0.219 0.210 0.170 0.212 0.182

ferent measures, cut discrepancy (CD) and random index

(RI), both used in [3]. The first measures variation between

the segmented and ground truth boundaries whereas the sec-

ond measures the likelihood that a pair of faces are either

in the same segment in different segmentations, see [3] for

details. Table 2 presents the summaries of these compar-

isons. We see that while our error summaries are not the

best overall, the quality of segmentations given by our algo-

rithm is highly competitive (among the best three) with the

top shape segmentation methods available today. This be-

havior underscore the utility of a wavelet based model since

the segmentation is driven by the multi-resolution encoding

rather than a powerful clustering scheme.

E) User study. A majority of shape mesh datasets used

here (except the benchmark above) did not provide ground

truth segmentations. To quantitatively evaluate the per-

formance of our model relative to other methods on these

meshes, we setup a user study using a population of 15
subjects (11 Male, 4 Female, mean age 27.8). Each rater
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Figure 5: Segmentation results on meshes from various datasets

Table 2: User study summary on shapes from eight classes.

Category Ant Chair Horse Hand Armadillo Human Fish Airplane

Ours 3.07 3.33 2.8 2.93 2.47 3 3.2 3.2
SKM 1.33 2.93 2.6 1.2 1.8 2.67 2.2 1.5

RW 1.87 2.13 2.4 2.8 2.8 2.73 2 2.5

RC 3.73 1.6 2.2 3.07 2.93 1.6 2.6 2.8

was asked to assess segmentation of four different meth-

ods (ours versus SRW, SRC, SNC, SKM, SD) on a set of 8
shape meshes (chosen so that diverse shape types are well

represented). Users were blind to the method’s names and

ranked the results from best (4) to worst (1). Then, the mean

score for each class was computed, shown in Table 2. Our

proposed method was best ranked in six out of eight cat-

egories, which suggests that the results were perceptually

meaningful.

6. Wavelets based Alignment of 3-D Surfaces

Finally, we evaluate the effectiveness of multi-resolution

wavelet based methods for deriving novel algorithms for

alignment of a pair of 3-D surfaces. This is an important

problem in brain imaging, where scientists are interested in

identifying disease specific effects on measures such as cor-

tical thickness (which can be thought of a function defined

on the surface). The most popular method available today

are based on expansions in terms of a global Fourier basis.

For example, weighted Spherical Harmonics can be used to

represent the convoluted brain surface and the function de-

fined on it, see [19, 7, 4]. Since applying SPHARM involves

first transforming/projecting the data on to a sphere, it in-

variably introduces some distortion. Nonetheless, once the

projection on the sphere is obtained, alignment/registration

is a simpler problem. Our goal here is to evaluate whether

the framework developed in this paper can yield algorithms

that avoid the sphere mapping step altogether, and perform

direct alignment of the given surfaces accurately.

We will define the wavelet basis on a surface manifold
M (i.e., an arbitrary mesh graph). Each vertex v is repre-
sented in Cartesian coordinate as v = (v1, v2, v3). These
coordinates vi across all the vertices inM are modeled as,

vi(n) = hi(n) + εi(n), (11)

where εi is a zero mean random noises, and n is the vertex
index. Traditionally, the unknown smooth function hi(·) is
estimated via harmonic representation using Fourier basis
in the Euclidean space. But if we know that our domain
of analysis is a discrete manifold M, which is a subset of
the Euclidean space, we can obtain more efficient methods.
Coordinates hi are conventionally estimated by minimizing
the integral of weighted L2-norm of difference as

ĥi(n) = arg min
h∈M

∫
M
|vi(m)− h(m)|2 dμ(m) (12)

Interestingly, the minimization of (12) can be obtained
via the graph Fourier transform as

ĥi(n) =

N−1∑
l=0

〈vi, χl〉χl(n), (13)

whereN is the total number of vertices inM. Recall that a

disadvantage of the Fourier transform is that it is only local-

ized in frequency: sudden changes in a function cannot be

fully reconstructed using Fourier bases which leads to ring-

ing artifacts. But wavelets are localized in both space and

frequency, and wavelets with local support gives a solution

to problems caused by the infinite support of Fourier bases.

Next, we derive a result which translates this advantage to

(12) for registration.
Define a subspace Hk spanned by up to the k-th degree

graph Fourier bases, Hk = {∑k
l=0 βlχl(m) | xβl ∈ R}

The discrete convolution of a function f with the wavelet
on a manifold is defined as

ψs � f(n) =

N−1∑
l=0

g(sλl)f̂(l)χl(n) (14)

Observe that convolution is the same as the spectral graph

wavelet transformation described before. The following re-

sult proves that the solution to (12) can be obtained using

these wavelet bases.

Theorem 1.
N−1∑
l=0

g(sλl)〈vi, χl〉χl

= arg min
h∈Hk

∫
M

∫
M
ψs,n(m) |vi(m)− h(n)|2 dndm,
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Ours Randwalk Random Cut Normalized Cut Shape diameter K-mean

Figure 6: Comparison of the results with other method from shape segmentation benchmark.

where n and m are indices on manifoldM.

Proof. Let h(n) =
∑N−1
l=0 βlχl(n) where βl is the l-th de-

gree coefficient (unknown). The inner integral I can be
rewritten as

I =

∫
M
ψs,n(m)

∣∣∣∣∣vi(m)−
N−1∑
l=0

βlχl(n)

∣∣∣∣∣
2

dn.

This can be further written as

I =

N−1∑
l=0

N−1∑
l̄=0

χl(m)χl̄(m)βlβl̄−2ψs∗vi(m)

N−1∑
l=0

βlχ(m)+ψs∗v2i (m).

The outer integral is a quadratic function of βl given by

∫
M
I dm =

N−1∑
l=0

β2
l −2

N−1∑
l=0

g(sλl)〈vi, χl〉βl+
N−1∑
l=0

g(sλl)〈v2i , χl〉.

The minimum of the above expression is achieved when
the partial derivatives of I repect to βl are all set to zero:

∫
M

∂I

∂βl
dm = 2βl − 2g(sλl)〈vi, χl〉 = 0

Therefore, βl = g(sλl)〈vi, χl〉 and
∑N−1
l=0 g(sλl)〈vi, χl〉χl is

the unique minimizer.

The theorem shows that the objective function is mini-

mized when the coefficient βl is the wavelet coefficient of

vi. Further, we can force one manifold to have the same

topological structure as another by resampling the wavelet

coefficients from the second manifold and reconstructing

it. Finally, vertex-wise matching can be obtained simply

by solving for the minimum of the difference of a set of

wavelet coefficients, which is exactly WD defined in Sec-

tion 3. Once corresponding landmarks are found by this

scheme, a simplified version of an inexact diffeomorphic

registration routine from [10] can be used. Note that find-

ing putative matches is the major bottleneck in most of

diffeomorphic registration methods, and Thm.1 suggests a

workaround. We next show our results for vertex matching

and surface alignment which ensures that the two surfaces

have identical mesh topology.

Results: In order to evaluate the ideas above, we ob-

tained a set of brain surface data that were affinely normal-

ized. We applied registration as follows. The first surface

is the template surface and the second surface is a floating

brain surface. When applied to a population of subjects, one

may choose one individual’s brain surface as the template

(or atlas) and deform all other surfaces to it.

Fig. 7 presents a representative registration result. Here,

each surface consists of 6146 and 6555 vertices respec-

tively and corresponds to a distinct cortical shape. Find-

ing the vertices on the subject surface with minimum 
2
norm of vertex-wise wavelet coefficient difference from a

vertex on the template surface, we can identify the corre-

spondence from one vertex to another. To visualize this

surface registration, the 5th eigenfunction of the template

surface is mapped to the subject surface using the corre-

spondence information, and Fig. 7 (a) shows the correspon-

dence result. If the vertex correspondence were not properly

done, the eigenfunction of the template would be mapped

to a different positions on the other surface. Note that

each surface has different mesh topologies, therefore pre-

registration surfaces have different eigenfunctions — Fig. 7

(b) shows visually that the 5th eigenfunctions are originally

different on each surface. After finding correspondences,

we transform the floating surface to have the same topology

as the template. The wavelet coefficients on each vertex in

a subject/floating surface are sampled (using the correspon-

dences) and the surface is reconstructed using the wavelet

bases of the template surface. The result of this transform is

shown in Fig. 7 (c). The 20th eigenfunction of the template

and transform surface are shown together (similar colors in
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(a) (b) (c)

Figure 7: a) The 5th eigenfunction of the template surface is mapped by the wavelet registration. b) Mesh representation of two different brain surfaces

and their 5th eigenfunctions. Each has different mesh topology with different eigenfunctions. c) Transformed surfaces into the template surface and its 20th

eigenfunction. The surfaces are aligned in the same topology.

similarly placed regions).

Group Analysis. Finally, we applied the alignment

method for statistical group analysis on 16 autism subjects

and 11 healthy controls. The cortical surfaces had a corti-

cal thickness signal defined on the surface, and the ques-

tion is whether this measure statistically varies between

the two groups (such analysis can only be performed post-

registration). Each surface had 10241 vertices but different

mesh topology, so cannot be compared directly. Setting one

surface in the dataset as a template surface and the others

as floating surfaces, our algorithm was used find the align-

ment. Applying a two-sample t-test on the two groups on

the cortical thickness signal, we identified 319 vertices sta-

tistically significant p-values (uncorrected p < 0.05), which

is 3.1% of the total vertices. This provides a proof-of-

principle evaluation that the registration preserved the un-

derlying signal differences, and is meaningful.

7. Conclusions

This paper demonstrates how non-Euclidean wavelet

theory provides multi-resolutional capabilities for a range of

3-D shape analysis problems in Computer Vision. We give

algorithms for interest point detection, perceptually mean-

ingful shape mesh segmentation, and surface alignmen. The

segmentation results are comtetitive with other state-of-art

methods, and registration result shows promising fields of

applications as well. The implementation will be available

at http://pages.cs.wisc.edu/∼wonhwa/.

Acknowledgments

This research was supported by funding from NIH

R01AG040396, NIH R01AG021155, NSF RI 1116584,

the Wisconsin Partnership Proposal, UW ADRC, and UW

ICTR (1UL1RR025011). The authors are grateful to Deepti

Pachauri for many discussions related to this paper.

References
[1] A. Bronstein, M. Bronstein, and R. Kimmel. Efficient computation of

isometry-invariant distances between surfaces. SIAM J. on Scientific
Computing, 28:1812–1836, 2006.

[2] A. M. Bronstein, M. M. Bronstein, U. Castellani, B. Falcidieno, et al.

SHREC 2010: Robust large-scale shape retrieval benchmark. 3DOR,

2010.

[3] X. Chen, A. Golovinskiy, and T. Funkhouser. A benchmark for 3D

mesh segmentation. SIGGRAPH, 28(3), 2009.

[4] M. Chung, K. Dalton, L. Shen, A. Evans, and R. Davidson. Weighted

fourier series representation and its application to quantifying the

amount of gray matter. IEEE TMI, 26(4):566–581, 2007.

[5] R. Coifman and M. Maggioni. Diffusion wavelets. Applied and Com-
putational Harmonic Analysis, 21(1):53–94, 2006.

[6] Y. Fang, M. Sun, M. Kim, and K. Ramani. Heat-mapping: A ro-

bust approach toward perceptually consistent mesh segmentation. In

CVPR, pages 2145 –2152, 2011.

[7] X. Gu, Y. Wang, T. Chan, P. Thompson, and S. Yau. Genus zero sur-

face conformal mapping and its application to brain surface mapping.

IEEE TMI, 23(8):949–958, 2004.

[8] D. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on

graphs via spectral graph theory. Applied and Computational Har-
monic Analysis, 30(2):129 – 150, 2011.

[9] T. Hou and H. Qin. Admissible diffusion wavelets and their appli-

cations in space-frequency processing. IEEE Trans. on Visualization
and Computer Graphics, 19(1):3–15, 2013.

[10] S. Joshi and M. Miller. Landmark matching via large deformation

diffeomorphisms. IEEE TIP, 9(8):1357–1370, 2000.

[11] W. H. Kim, D. Pachauri, C. Hatt, M. K. Chung, S. Johnson, and

V. Singh. Wavelet based multi-scale shape features on arbitrary sur-

faces for cortical thickness discrimination. In NIPS, pages 1250–

1258, 2012.

[12] J. Koenderink. The structure of images. Biological Cybernetics,

50(5):363–370, 1984.

[13] G. Lavou, E. Drelie Gelasca, F. Dupont, A. Baskurt, and T. Ebrahimi.

Perceptually driven 3D distance metrics with application to water-

marking. SPIE, 6312, 2006.

[14] S. Mallat. A theory for multiresolution signal decomposition: the

wavelet representation. PAMI, 11(7):674 –693, 1989.

[15] D. Marr. Vision. Freeman & Co., San Francisco, 1982.

[16] A. Rosenfeld and M. Thurston. Edge and curve detection for visual

scene analysis. IEEE Trans. on Computers, 100(5):562–569, 1971.

[17] R. M. Rustamov. Laplace-Beltrami eigenfunctions for deformation

invariant shape representation. In SGP, pages 225–233, 2007.

[18] S.Haykin and B. V. Veen. Signals and Systems. Wiley, 2005.

[19] L. Shen, J. Ford, F. Makedon, and A. Saykin. A surface-based ap-

proach for classification of 3D neuroanatomic structures. Intelligent
Data Analysis, 8(6):519–542, 2004.

[20] R. Sumner and J. Popovi. Deformation transfer for triangle meshes.

ACM Trans. Graph., 23(3):399–405, 2004.

[21] J. Sun, M. Ovsjanikov, and L. Guibas. A concise and provably in-

formative multi-scale signature based on heat diffusion. Computer
Graphics Forum, 28(5):1383–1392, 2009.

[22] A. Witkin. Scale-space filtering: A new approach to multi-scale de-

scription. In ICASSP, volume 9, pages 150–153, 1984.

214421442146


