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Abstract

We present a novel method to separate specular reflec-
tion from a single image. Separating an image into diffuse
and specular components is an ill-posed problem due to
lack of observations. Existing methods rely on a specular-
free image to detect and estimate specularity, which how-
ever may confuse diffuse pixels with the same hue but a dif-
ferent saturation value as specular pixels. Our method is
based on a novel observation that for most natural images
the dark channel can provide an approximate specular-free
image. We also propose a maximum a posteriori formu-
lation which robustly recovers the specular reflection and
chromaticity despite of the hue-saturation ambiguity. We
demonstrate the effectiveness of the proposed algorithm on
real and synthetic examples. Experimental results show
that our method significantly outperforms the state-of-the-
art methods in separating specular reflection.

1. Introduction

The observed color of an image is formed from the spec-
tral energy distributions of the light reflected by the surface
reflectance, and the intensity of the color is determined by
the imaging geometry. This imaging process can also be ex-
plained in terms of the diffuse and specular reflections ac-
cording to their physical properties. Diffuse reflection can
be assumed to be associated only with the relative angle
between the light direction and the surface normal among
the imaging geometry regardless of the viewing direction,
while specular reflection is dependent on the viewing di-
rection. As shown in Figure 1(a), natural objects tend to
have the diffuse property as well as the specular property
on the reflection model. However, the behavior of the spec-
ular reflection often leads to problems in many computer
vision applications such as stereo matching, segmentation,
and recognition. Most of the applications simply consider
the observed image as a diffuse reflection model, regarding
the specular reflection as outliers.

One of the notable works in separating specular reflec-
tion from a single image is studied by Tan and Ikeuchi [18].
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Figure 1. Specular separation. (a) Input image. (b) Our result.
(c) Dark channel. (d) Result of [18]. Our result correctly distin-
guishes between diffuse and specular reflections, while the pre-
vious method inadequately recognizes the background region as
specular reflection. Note that dark channel is similar to the spec-
ular component recovered by the previous method in many cases
of natural images. Please refer to the electronic version for better
visualization of all results in this paper.

Their method shows a satisfactory result, however it fails in
the presence of the colors which have the same hue compo-
nent with different saturation one. This hue-saturation am-
biguity has been an issue in the recent studies of the single
image-based specular reflection separation. To address the
limit of the previous approaches, we introduce the statistics
that a diffuse pixel of natural images in general has very
low intensity in at least one color channel, motivated by
the dark channel prior [4]. As shown in Figure 1(c), the
dark channel of an image provides a pseudo specular re-
flection result, which is similar to the previous result shown
in Figure 1(d). In this paper, we also propose a maximum
a posteriori (MAP) approach that incorporates priors in the



reflection model, resulting in more stable separation of the
specular reflection shown in Figure 1(b).

2. Related Work

Separating object reflectance into diffuse and specular
components is one of the fundamental problems in the com-
puter vision and graphics areas, which is made difficult by
the subtle nature of the physics involved. Since the dichro-
matic reflection model [14] which represents the complex
reflecting properties of a surface as a linear combination of
the diffuse and specular components was introduced, this
model has been adopted in modern approaches for color
understanding. Based on the neutral interface reflection as-
sumption [6, 3], the dichromatic model can be further sim-
plified in a way that the spectral energy distribution of the
specular component is approximated being identical to the
one of incident light which is often regarded as pure white
or estimated by [19].

To distinguish between diffuse and specular reflections
from an observed image, most of approaches basically
take into account the color information with the underly-
ing dichromatic reflection model except for the hardware as-
sisted method [20] which utilized a polarization reflectance
model using Fresnel reflectance. Nayar et al. [12] improved
this polarization-based method by incorporating color infor-
mation that is the neighboring diffuse colors.

Some efforts have been made in separating the reflec-
tions with multiple images. Advantages of using the multi-
view constraint come from the different physical properties
of diffuse and specular reflections on the relation between
lighting and viewing directions with respect to a surface
normal. Sato and Ikeuchi [13] analyzed color signatures
estimated from many images taken under a moving light
source to compute specular reflection. Lin and Shum [9]
took a couple of images with different light positions in or-
der to obtain photometric images and estimate the intensi-
ties of the reflection components. The use of a pair of stereo
images was also introduced by Lin et al. [8], where specu-
lar pixels are detected by color histogram and stereo corre-
spondence is then employed to compute the corresponding
diffuse components in other views. These approaches show
satisfactory results in separating specular reflection, yet it is
not always applicable in general cases due to the require-
ment of multiple images.

Besides the multiple images-based approaches, there
have been a number of literatures separating the reflections
from a single image. These approaches can be catego-
rized in three ways. First, Klinker et al. [5] and Bajscy et
al. [2] identified specular and diffuse reflections on the ba-
sis of color segmentation. As the second category, Tan et
al. [16] successfully separated highlight reflections by us-
ing repeated textures. The third category is the analysis on
different color spaces. Mallick et al. [11] proposed an SUV
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color space which is composed of S and UV channels repre-
senting specular and diffuse components respectively. They
extended the use of this color space to highlight removal
by eroding S channel in [10]. Tan et al. [18, 17] demon-
strated the effective algorithm in the chromaticity intensity
space, which exploits a pseudo specular-free image to detect
the diffuse pixels and iteratively propagates the maximum
chromaticity of the diffuse component to adjacent neigh-
borhoods. This approach was improved by Yang et al. [22]
who developed a fast bilateral filtering [21] approach for the
purpose of refining maximum chromaticity with neighbor-
ing pixels in real-time.

In this paper, we present an approach that incorporates
an effective pseudo specular-free image and priors for the
separation of the specular reflection out of a single image.
We show that the dark channel as an alternative pseudo
specular-free image has merits against the previous one. In
addition, our approach introduces priors on the specular re-
flection as well as the diffuse chromaticity in the dichro-
matic reflection model, whereas most of the previous meth-
ods only measure the fidelity to the reflection model. This
naturally leads our formulation to a MAP problem.

3. Reflection Model

Dichromatic reflection model [14] has been widely used
for understanding reflection properties of a scene taken by
a color image. We model an image as a linear combination
of diffuse and specular reflections according to the dichro-
matic model. Denoting the diffuse and specular reflections
by I;(x) and I;(x) respectively, the observed image I(x) is
simply expressed as:

I(x)

La(x) + Is (%) (D

In our model, we represent the chromaticity of a color with
the intensity normalized color vector:

I(x)
Ece{r,g,b} IC(X) ’

where I.(x) is one of the color channels. Let A(x) and
T'(x) represent the chromaticities of the diffuse and spec-
ular components respectively. Then Equation (1) can be
equivalently written as:

I(x) = 2)

I(x) = ma(x)A(x) + ms(x)T(x), 3)
where my and my are the diffuse and specular reflection
coefficients respectively, which depend on imaging geom-
etry. We note that the diffuse chromaticity implies the in-
herent color of the surface while the specular chromaticity
implies that of the illumination. Here, the specular chro-
maticity can be assumed to be uniform for a given image
such that I';.(x) = T'y(x) = I'y(x) = 1/3. Without loss
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Figure 2. Geometric interpretation of our pseudo specular-free im-
age and dark channel in the dichromatic reflection model. (a) Syn-
thetic input image. (b) Pseudo specular-free image. (c) Dark chan-
nel. (d) Color distributions of (a) in the RGB space and (b) on the
RG-plane.

of generality, this can be achieved by normalizing the illu-
mination chromaticity estimated from [19] as preprocessing
step.

Our goal is to estimate the specular reflection coefficient
ms(x) from the observed single image I(x) so that the
specular component I,(x) can be recovered, multiplied by
the uniform specular chromaticity T, i.e., I;(x) = m4(x)T.
In our formulation, we represent the dichromatic reflection
model in the RG chromaticity space:

I(x) = a(x)A(x) + (1 - a(x))T, 4)

where @ = mg/(mg + ms). Note that the specular re-
flection coefficient can be easily recovered from my =
(1—a)(mg+ms), where mg+ms = Zce{ng’b} (mgAc+
mgl.) = ZCE{T,g,b} I.. Therefore, we have the likelihood
of the specular reflection separation as:

Ep(a,A) = Y (160) ~ (a()AG) + (1~ a()T)) .

®)
This data fidelity term is ill-posed with respect to «. The ob-
served image only provides a partial constraint for the spec-
ular reflection coefficient as there are many counterparts of
the diffuse reflection term resulting in the same observed
image. This under-constrained problem can be resolved by
specifying the diffuse chromaticity A.

4. Dark Channel and Pseudo Specular-Free
Image

To begin with, we shortly discuss typical algorithms and
their limitations in determining the diffuse chromaticity A.

() (b) (© (a) (b) (© (d)
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Figure 3. Comparison of pseudo specular-free images. (a) Input
image. (b) Diffuse reflection of (a). (c) Our result. (d) Result
of [18]. Our result is more closed to (b). In particular, the left
parts of the hemispheres in (b) and (c) are identical.

Previous works [18, 22] utilize the pseudo specular-free im-
age to detect the diffuse pixels and estimate the diffuse chro-
maticity, which is generated by shifting the maximum chro-
maticity of each pixel. However, these approaches are prob-
lematic especially when there exist pure diffuse reflections
having the same hue but different saturation value since they
are all detected as specular reflections.

To address this issue and improve the general perfor-
mance, we introduce a simple but effective pseudo specular-
free image followed by an efficient optimization framework.
Motivated by [4], we exploits the dark channel to derive a
new pseudo specular-free image. Based on our observation
that a diffuse pixel is likely to have very low intensity in
at least one color channel for most of natural images, we
consider the dark channel as the rough estimate of the spec-
ular reflection for the input image. Thus, we obtain our
pseudo specular-free image IP*¢“°(x) by subtracting the
dark channel 79%"%(x) from all color channels:

Igseudo(x) _ IC(X) _ Idm'k7 (6)
Ik (x) = min I.(x). 7
(0 = min I(x) ™

Here, the dark channel is taken from the lowest intensity
value among RGB channels at each pixel. As illustrated
in Figure 2(d), this process is equivalent to project each
pixel of the input image to one of the RG-, RB-, and, GB-
planes along the illumination direction. In particular, the
pseudo specular-free pixel (yellow dot) is obtained by pro-
jecting the pixel (green dot) of the input image to RG-plane
along the illumination direction I'. We note that this pseudo
specular-free pixel has the incorrect diffuse coefficient m/;
and chromaticity A’ compared to the correct diffuse reflec-
tion component (red dot). We take the pseudo specular-free
image and dark channel as the initial estimates of the diffuse
and specular reflections respectively and then find the cor-
rect one by the optimization which will be explained later
in detail.

This scheme has a couple of benefits against the previous
approach [18]. As shown in Figure 3, our pseudo specular-
free image provides the direct estimate for the diffuse reflec-
tion. For instance, the left parts of the hemispheres in Fig-
ure 3 (b) and (c) are shown to be exactly identical to each



Figure 4. Examples of dark channel. Top row shows real images
and bottom one indicates the corresponding dark channels. The
dark channels of the left half images are almost equivalent to the
true specular reflection, while it fails for the right half ones due to
saturation bias.

other. This is because the dark channel becomes close to
the correct specular reflection as the diffuse reflection of an
object has very low value in the saturation component as
shown in Figure 4(a). It is notable that the specular sepa-
ration results of the state-of-the-art algorithms [18, 22] are
found to be similar to the dark channel of the input image
in the most of our experiments (Figure 1(c) and (d)).

Following the algorithm of He et al. [4], the soft mat-
ting [7] can be examined to refine the dark channel as shown
in Figure 5. The red arrow shown in Figure 5(a) indicates
the strong specular reflection. We can see that the initial es-
timate of the specular reflection detected by the dark chan-
nel is undesirably propagated to neighborhoods as shown
in Figure 5(c). This result reveals that refining the dark
channel with the matting Laplacian [7] is not suitable for
the specular separation and a different strategy is hence re-
quired.

5. Priors

In the following section, we present priors on the spec-
ular reflection as well as the diffuse chromaticity in the
dichromatic in order to disambiguate meaningless solutions
in Equation (5).

5.1. Smooth Variation of Specular Reflection

As shown in Figure 6(b), the gradient of the specular
reflection tends to be smooth. This smoothness term has
shown to produce stable estimates on the highlight removal
in [15]. We define this smoothness prior as the isotropic
TV-I, regulariser in terms of «:

Es(a) = V(1 - a(x))l2, (®)

where V is the gradient operator. Note that « is directly
related to the specular coefficient m as discussed in Sec-
tion 3.

1463

©

(a) (b)

Figure 5. (a) Input image. (b) Dark channel of (a). (c) Refinement
of (b) using [4].

5.2. Locally Constant and Edge-Preserving Proper-
ties of Diffuse Chromaticity

We also introduce a prior to favor the physical proper-
ties of the diffuse chromaticity. By definition, the shad-
ing effect of the diffuse reflection disappears in the cor-
responding chromaticity due to the normalization (Equa-
tion (2)), leading interior homogeneity within each diffuse
chromaticity region but sharp changes across them. There-
fore, as shown in Figure 6(c), the correct diffuse chro-
maticity has a tendency to be constant over a local region
and edge-preserving across the different chromaticities. We
add an additional term to make the number of the diffuse
chromaticities controlled, pursuing that the number of the
specular- and shading-free diffuse chromaticities is limited
in the general objects. For instance, the toy in Figure 6(c)
approximately consists of 5 diffuse chromaticities. Conse-
quently, the prior on the diffuse chromaticity is formulated
as:

Ec(A,0) = 3 IVA@: + BIA©lo,  ©)

where A (x) returns the chromaticity indicated by A(x)
and A\ = {1,..., N} denotes the index for a set of chro-
maticities. S is the weight to balance the two terms. The
first term is the typical TV-/; regulariser to encourage the
locally constant and edge-preserving properties while the
second one is [p-norm to constrain the number of the dif-
fuse chromaticities.

6. Optimization

As a general MAP optimization, our objective function
is defined as a linear combination of the likelihood term and
two prior terms:

E(Ox, A, >\) = ED(aa A) + BSES(Q) +60EC(Aa )‘)a (10)

where (35 and [, are the regularization weights. While this
objective function constrains the specular reflection and dif-
fuse chromaticity in a robust manner, the discrete metric
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Figure 6. Priors in the dichromatic model. (a) Input image. (b)
Specular reflection of (a). This indicates that the specular reflec-
tion tends to vary smoothly. The intensity of the result is scaled by
a factor of 2 for a better visualization. (c) Diffuse chromaticity of
(a). The diffuse chromaticity in general shows the locally constant
and edge-preserving properties.

with lp-norm in the energy term Ex(A, A) makes the op-
timization computationally intractable. To minimize Equa-
tion (10) against the difficulty, we rewrite the smoothness
term of the diffuse chromaticity and relax the objective
function based on the quadratic relaxation [1], introducing
the auxiliary variable A corresponding to A:

(AN X) ZHVA/\ M1+ BallAx)llo,  (11)
E(o, A\ X) = ED(A, @) + BsEs(a)+
BeEc(A, N, A) + %(A -3 (12

Here, 6 controls the similarity between A and A. As 6 —
0, this relaxed objective function is equivalent to Equa-
tion (10). Our overall algorithm is summarized in Algo-
rithm 1. In the following section, we demonstrate an alter-
nating minimization procedure to solve Equation (12).

6.1. Computing )

For fixed o, A, and ), the objective function with respect
to \ can be written as:
. < 1 v
win {8513 + 35000 - 5P}, )
X
where 85 = B.6. It is a difficult problem due to the dis-

crete nature of /p-norm. To avoid the difficulty, we approx-
imately minimize this energy by incorporating a progres-
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Algorithm 1 Specular separation from a single image

Compute dark channel 79°7% from the input image I.
Compute pseudo specular-free image IPsevdo and its chro-
maticity IPseudo,
Compute k-means clustering on Jreends,
Initialize A° with the cluster indices and A° with the cluster
means and o by solving Equation (5).
repeat

1: Solve \+!in Equation (13) for fixed of, A?, and \!.

2: Solve A!™! in Equation (14) for fixed of, A, and A‘.

3: Solve a'+1, A+ in Equation (15) for fixed A’ and A’
until E(a! 1, AT N XL — B(af, AL ) < K

sive k-means clustering as shown in Figure 7(b). The solu-
tion \ is simply taken as cluster indices. We first calculate
a large number of clusters from the chromaticity image of
our pseudo specular-free image, and then merge them pro-
gressively by measuring the distance of the chromaticities
between each cluster. In this manner, we can obtain the so-
lution of A efficiently.

6.2. Computing A

For fixed o, A, and 5\, the objective function with respect
to A can be expressed as:
} . (14)

Solving this energy still remains complex because A indi-
cates a indexing variable. We again compute an approxi-
mated solution for this energy term. Once Equation (13)
is solved, the cluster indices A(x) can be found along
with the corresponding cluster means A5. We perform an
edge-preserving filtering (Figure 7(c)) for the computed dif-
fuse chromaticity A5, and then assign new labels for each
pixel A(x) by searching for the closest diffuse chromaticity
among Aj.

It can be noticed that # in Equation (12) is adapted to
small value for the tight relaxation in iterations, configured
as a large initial value which enables employing the separate
clustering algorithm.

mm {ﬂfz (IVAN(x)|[1 + 219( (x) - S\(X))2

6.3. Computing o, A

For fixed \ and A, the object function with respect to «
and A can be represented as:

{Z (i) - (A + (1 - al)T)) +

Bs Z HV(l - Oé(

X

||2+BCZIIVAA Hl}.<15)



Figure 7. Optimization on the diffuse chromaticity. (a) Estimated
diffuse reflection. (b) Clustering indices. (c) Edge-preserving fil-
tering.

This energy function can be further decomposed into the
subproblems minimizing the energy functional in the form
of TV-I; with respect to «; and the other functional hav-
ing the form of TV-/; with respect to A. Because each split
functional is convex, it can be efficiently minimized by solv-
ing the associated Lagrangians.

7. Experimental Results

To evaluate our algorithm, we tested our algorithm on a
synthetic case for which ground truths of diffuse and spec-
ular reflections are given along with its chromaticities. Ac-
cordingly, quantitative validation is only made on the syn-
thetic case. In addition, we conducted experiments on sev-
eral natural images captured by a Canon EOS 7D camera
with linear response function, where diffuse and specular
reflections are estimated using previously developed meth-
ods [18, 22] for the comparison. 3, and [, in Equation (10)
are all set to 0.1 empirically. ) in Equation (11) is set to
0.3, however our algorithm is not sensitive to its choice. For
the progressive k-means clustering in Equation (13), the ini-
tial number of clusters is set to k = 100. The initial clusters
are set to the best solution among ten restarts.

7.1. Synthetic Analysis

Figure 8 shows results for a synthetic image, which is
generated by a hemisphere rendered with the two colors.
The color in the left half is red, RGB = (150, 0, 0), while
the saturation value of this color is increased to 50% in the
right half color, thus this image exhibits a color distribu-
tion which lies on the same plane in RGB color space. As
shown in the bottom row, [18] inadequately propagates the
maximum chromaticities of diffuse pixels to specular pix-
els across the texture boundary, regarding the difference in
the saturation value as specular reflection. Due to the each
prior in the proposed method, our result robustly separates
the diffuse chromaticity (c) and specular reflection (d) much
more than [18].

7.2. Real Images

We compare our method with the images provided
by [18, 22] in Figure 9. These images have no hue-

(@) (b) (©
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(a) (b) (© (d

Figure 8. Synthetic result. (a) Image generated by a hemisphere
with same hue but different saturation colors. (b) Diffuse reflec-
tion. (c) Diffuse chromaticity. (d) Specular reflection. Top row:
ground truth. Middle row: our result. Bottom row: result of [18].

saturation ambiguity, therefore it qualatitvely shows a simi-
lar performance.

Figure 10 shows the visual comparison for the real im-
ages, where our algorithm significantly improves the per-
formance of the specular reflection separation. The failure
of the previous methods shown in (d) and (e) comes from
the incorrect detection of diffuse pixels. It is shown that
the dark channels of these examples give the specular re-
flections which is similar with the result of the previous ap-
proache [18]. Our optimization framework further refines
the dark channel in order to achieve more plausible diffuse
and specular reflections as shown in (b) and (c) respectively,
favoring the proposed priors.

We note that in the bottom row of Figure 10, the bound-
aries of the balloons are unexpectedly recognized as spec-
ular pixels. This mainly arises from the inaccurate cluster-
ing result of the diffuse chromaticity. For this reason, our
algorithm can fail when facing mixed pixels around color
boundaries and highly textured surfaces.

8. Conclusions

In this paper, we have presented a MAP optimization
framework to separate specular reflection from a single im-
age. Our method employes the dark channel as an initial
estimate of specular reflection. The dark channel is found
to be considerably identical to the specular reflection re-
sult of the previous approach. The optimization framework
also includes priors to favor the smooth variation of spec-
ular component as well as the locally constant and edge-
preserving properties of diffuse chromaticity. Our method is
evaluated on both synthetic and real images to convince the
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Figure 9. Qualitative comparison. (a) Input image. (b) and (c) Diffuse and specular reflections of our result. (d) Result of [18]. (e) Result

of [22].

performance. The proposed method achieves more robust
results in the presence of two distinct diffuse colors having
the same hue but different saturation value, and qualitatively
outperforms the state-of-the-art methods for most of natural
images.

As discussed in the real examples, color boundaries are
unfortunately found as specular pixels in some results. In
the future work, we plan to reduce this artifact by improving
the robustness of the clustering algorithm for the noise and
highly textured surfaces.
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