
Pattern-Driven Colorization of 3D Surfaces

George Leifman
Technion

gleifman@tx.technion.ac.il

Ayellet Tal
Technion

ayellet@ee.technion.ac.il

Abstract

Colorization refers to the process of adding color to
black & white images or videos. This paper extends the
term to handle surfaces in three dimensions. This is impor-
tant for applications in which the colors of an object need
to be restored and no relevant image exists for texturing it.
We focus on surfaces with patterns and propose a novel al-
gorithm for adding colors to these surfaces. The user needs
only to scribble a few color strokes on one instance of each
pattern, and the system proceeds to automatically colorize
the whole surface. For this scheme to work, we address not
only the problem of colorization, but also the problem of
pattern detection on surfaces.

1. Introduction
Colorization was introduced in 1970 to describe the

computer-assisted process for adding color to monochrome

footage [3]. The term is now used generically to describe

any technique for adding color to monochrome images,

videos and surfaces [10, 11, 21]. Levin et al. [11] pro-

posed a simple, yet effective, user-guided image coloriza-

tion method. The user scribbles the desired colors in the

interiors of various regions and the system spreads the col-

ors to the rest of the image. Other scribble-based algorithms

have subsequently been presented by [8, 28]. When the im-

age contains complex textures, the above methods require

massive user input. To decrease user intervention, [16] em-

ploy texture continuity and [29] add a classification step to

discriminate between the appearance of scribbled pixels.

This paper addresses the colorization of 3D surfaces.

The extension of colorization algorithms from images to

surfaces is not straightforward. A fundamental assumption

in images that the intensity (Y) is given and the algorithms

estimate only two of the color channels (UV). To deter-

mine whether two neighboring pixels should be colorized

using the same color, their intensities are compared. In

the case of surfaces, the “intensity channel” does not exist.

Therefore, a different technique is needed for determining

whether neighboring points should be colorized similarly.

Figure 1. Pattern-driven colorization. Given a 3D surface, the

user scribbles a handful of strokes within and around a single in-

stance of each pattern (left). Our algorithm colorizes the whole

surface accordingly (right).

Recently, [10] introduced a scribble-based colorization

algorithm for 3D surfaces. The user draws several strokes

and the system propagates the colors to the whole surface.

This algorithm does not handle repetitive patterns. There-

fore, colorization of objects with patterns requires color

strokes on each pattern instance, which is time consuming.

We focus on patterned surfaces, as illustrated in Figure 1.

Pattern detection is challenging since it aims at simultane-

ously solving two intricate problems: segmentation and cor-

respondence across the resultant segments. For surfaces,

an added difficulty is the lack of a simple parametrization:

Each vertex may have a different number of neighbors and

different immediate surroundings. Therefore, unlike im-

ages, patches cannot be simply compared.

Nevertheless, some methods were recently proposed for

symmetry and pattern detection on surfaces [18]. In trans-

formation voting schemes, the key idea is to find a set of

candidate correspondences and vote for a transformation

that accounts for them [17, 19]. Voting is limited to a fixed

set of transformations. Instead of operating at the level of

sample points, in [2] a graph-based approach is proposed,

which works at the level of feature curves. While achieving

substantial speedup, this approach is intended mostly for

man-made objects, such as architectural models. In [15],

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.38

241

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.38

241

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.38

241

(a) input strokes (b) filtered surface (c) automatic strokes (d) colorization

Figure 2. General approach. Given a 3D model, the user scribbles only on one instance of the pattern (a). A filtered surface is generated

in a pattern-preserving manner (b). Each vertex is then classified in accordance with the pattern, and new strokes are automatically

produced (c). Finally, the colorization is performed, utilizing this new set of strokes (d). This image is a zoom into Figure 1.

the focus is only on periodic reliefs.

We propose a novel method for colorization, which per-

forms also pattern classification. It is based on the idea that

the few strokes provided for colorization can be extremely

helpful for classification. Our algorithm solves three prob-

lems. First, we propose a new descriptor that manages to

characterize surface regions well (Section 3). Second, us-

ing this descriptor, a pattern classification algorithm is sug-

gested (Sections 4). Finally, once the patterns are classified,

even highly complex surfaces are automatically colorized

using the user’s strokes around and within a single instance

of each pattern (Section 5).

Our contribution is hence threefold. First, we propose

a colorization algorithm that handles patterns. Second, we

introduce a new descriptor for surfaces, which is pattern-

aware. Finally, we describe a pattern classification algo-

rithm that uses a handful of strokes as input.

2. General Approach
Our aim is to colorize a 3D surface, which may include

patterns. We assume that the surface is given as a triangu-

lar mesh that consists of vertices and faces. To colorize a

model, the user draws a few scribbles with the desired col-

ors on the surface (Figure 2(a)). It suffices to draw a few

scribbles within and in the surroundings of a single instance

of each pattern. The algorithm then automatically propa-

gates the colors to the remaining vertices of the surface.

For each face the scribble passes through, the closest

vertex gets the color of the scribble. These colored ver-

tices are considered the user-defined constraints. Similarly

to [10, 11], the underlying assumption is that nearby ver-

tices, whose geometry is similar, should get the same color.

In addition, since our surface has patterns, we make an-

other assumption: Vertices that belong to the same pattern

should get the same color. This means that pattern coloriza-

tion can be viewed as a vertex classification problem. Using

the input strokes, we can learn the patterns.

Our approach consists of three steps (Figure 2), which

are performed for each pattern in turn. First, we filter the

surface in a pattern-preserving manner. In the filtered sur-

face, the pattern boundaries are kept intact, whereas the de-

tails in the pattern region are filtered out. This facilities

subsequent steps, where sharp pattern boundaries are im-

portant for achieving the desirable colorization. Our filter-

ing is discussed when we elaborate on the implementation

(Section 6).

In the second step, each vertex of the filtered surface is

classified, determining whether it belongs to the pattern or

not. We start by associating every vertex with a descriptor,

which characterizes its region in accordance with the pat-

tern. Both the shape of the region and its boundary are con-

sidered (Section 3). Then, semi-supervised learning is ap-

plied, which combines several techniques in a manner that

suits our specific problem (Section 4).

Finally, we use a subset of the classified vertices to au-

tomatically produce additional colorization strokes in ac-

cordance with the pattern (Section 5). These strokes are

the input to a pattern-independent colorization algorithm.

The colorization is formulated as an optimization problem,

which is based on geometric similarity between neighbor-

ing vertices, where the color strokes are considered the user-

defined constraints.

3. Pattern-Driven Region Descriptors

This section describes our vertex descriptor, which char-

acterizes the neighbourhood of the vertex, in accordance

with the pattern to be colorized. In particular, we first ex-

tract for each vertex its surrounding region, which is seg-

mented into foreground (pattern) and background. Then,

we consider two types of descriptors of the foreground re-

gion: region-based and boundary-based. The region-based

descriptor captures the geometry of the region, whereas the

boundary descriptor relies only on the shape of the region’s

boundary. Utilizing two different descriptors not only char-

acterizes the region better, but is also essential for the co-

training described in the next section.

Note that this procedure is applied to all vertices. If

a vertex does not belong to the pattern, the resulting seg-

mentation of its surrounding region is insignificant. This is

so, since the descriptors of this region will be very differ-

ent from those of foreground vertices and therefore, will be

classified as background in Section 4.

242242242

(a) pattern vertex (b) non-pattern vertex

Figure 3. Examples of pattern-driven regions. Given a vertex

(green), we first extract a sub-surface (yellow) around it and then

segment it into a foreground (brown) and a background.

3.1. Pattern-driven segmentation

Prior to computing the descriptor, each vertex is associ-

ated with a sub-surface around it, which is segmented into

a foreground and a background (Figure 3). The size of the

sub-surface is determined based on the user’s strokes. We

define a bounding box, whose size is twice the size of the

bounding box that tightly encloses all the vertices of the

user’s scribbles. We then extract the connected sub-surface

in this bounding box.

To segment the sub-surface into its foreground and back-

ground, we apply the colorization algorithm of [10]. This

algorithm handles pattern-less surfaces and therefore is suit-

able for our sub-surface, which typically contains a single

instance of the pattern.

Briefly, this algorithm first associates each vertex with

the spin image descriptor [9], and then computes the diffu-

sion distance [13] between every pair of neighboring ver-

tices vi and vj . To impose the constraint that two neighbor-

ing vertices should get the same color if their geometry is

similar, the following cost function is minimized:

Ω(C) =
∑
vi∈S

(
C(vi)−

∑
vj∈N(vi)

kijC(vj)

)2

. (1)

In this equation, C(vi) is the color of vi of the sub-surface

S, N(vi) is the neighborhood of vi, and kij is a weight

function. kij is large when the descriptor of vi is similar to

that of vj and small otherwise, and
∑

vj∈N(vi)
kij = 1.

The cost function in Equation 1 is optimized, adding the

constraints that the vertex for which the region is computed,

gets the foreground color, and the boundary vertices (of the

surrounding sub-surface) get the background color. The

solution to this optimization problem assigns colors to all

the vertices in the sub-surface. Finally, we define the fore-

ground (pattern) region to consist of all the vertices whose

assigned colors differ from the background color.

3.2. Region-based vertex descriptor

We seek a descriptor that robustly characterizes the ge-

ometry not only of the vertex, but also of the region it re-

sides in. We modify the Point Feature Histogram (PFH) de-

scriptor of [24] to suit our problem. This descriptor, which

Figure 4. Region-based vertex descriptor. A Darboux frame def-

inition and the computation PFH angular variations.

characterizes local features at a given point vi, is based on

a combination of geometrical relations between the points’

neighbors.

In particular, for every pair of vi’s neighbors vji and vki,
a Darboux uvw frame (Figure 4) is defined as

u = ni, v = (vji − vki)× u, w = u× v, (2)

where ni is the surface normal at vertex vi. The following

angular variations are then computed:

α = v · nji,

φ = (u · (vji − vki))/‖vji − vki‖, (3)

θ = arctan(w · nji,u · nji).

Finally, a vertex vi is associated with a 3D histogram of

triples < α, φ, θ > for every pair of neighbors.

In our case, the neighbors of a vertex are those included

in the foreground region, rather than the immediate neigh-

bors, as common. Moreover, instead of using all the pairs of

vertices, we use only the pairs in which vi is a member. In

addition to acceleration [23], the descriptor becomes more

robust. This is so, since when considering all the pairs in

the region, the resulting descriptors become almost identi-

cal for the vertices in the same region. Finally, to support

invariance to reflection (in addition to rigid transformation),

we take the absolute values of all the angles in Equation 3.

In our implementation we use 63 = 216 bins.

To compare our descriptors, we use the χ2 function [25].

We experimented with other alternatives, including L1, L2,

Histogram Intersection Kernel [23], and the Earth Mover’s

Distance (EMD) [22]. We concluded that χ2 is the best

compromise between the quality of the results and the com-

putational efficiency. Using cross-bin distances may give

better results, but are much more expensive.

3.3. Boundary-based vertex descriptor

To describe the curve that bounds the foreground region,

we use 2D histograms of the curve’s curvature and the tor-

sion. Intuitively, a curve can be obtained from a straight line

by bending (curvature) and twisting (torsion).

To estimate the curvature and the torsion, we utilize the

independent coordinates [12]. Briefly, a cubic parametric

243243243

curve is fitted to the coordinates of each sample point on

the curve. For example, for the x coordinate we get:

x̂(s) = x0 + x′0s+
1

2
x′′0s

2 +
1

6
x′′′0 s3, (4)

where x0 is the position of the sample point, x′0, x
′′
0 , x

′′′
0 are

the 1st, 2nd, and 3rd derivatives respectively, and s is the

arc-length parametrization. The derivatives are found by

minimizing the following function for each sample point:

Ex(x
′
0, x

′′
0 , x

′′′
0) =

i=n∑
i=−n

(xi − (x′0s+
x′′0s

2

2
+

x′′′0 s3

6
))2,

(5)

where {xi}ni=−n are the neighboring sample points of x0.

Given these derivatives, the curvature and the torsion

are computed according to their definition [5] (where v =
(x, y, z)):

κ(s) =
|v′ × v′′|
‖v′‖3 , τ(s) = − (v′ × v′′) · v′′′

‖v′ × v′′‖2 . (6)

Finally, a curve is represented by a 2D histogram of the

curvature and the torsion of its sample points. In our imple-

mentation, we use 256 bins. The range of the bins depends

on the surface. Let μ be the average curvature/torsion and σ
be the standard deviation, then the range is [μ−3σ, μ+3σ].

As a similarity measure between the above histograms,

we use the diffusion distance [13]. This distance models the

difference between two histograms as a temperature field

and considers the diffusion process on the field. The inte-

gration of a norm on the diffusion field over time is used

as a dissimilarity measure. Though it is a cross-bin dis-

tance, as will be evident in the next section, the number of

comparisons between boundary descriptors is much smaller

than the number of comparisons between region descrip-

tors. Therefore, we can afford using this cross-bin distance.

4. Pattern Classification
This section describes our classification technique,

whose aim is to determine which vertices of the surface be-

long to the pattern and which do not. Recall that to col-

orize a surface, the user draws a few scribbles on a pattern’s

instance and around it. For each face the scribble passes

through, the closest vertex gets the color of the scribble.

As a result, a few vertices are colored with the foreground

color, and these are the positive examples. A few other ver-

tices get the background color and these are the negative ex-
amples. Altogether, we have a very small number of train-
ing examples, which is a challenge for classification.

A common way to handle shortage in training examples

is to enrich the set of examples. While the set of positive

examples can be easily enriched by using the foreground

vertices found by our segmentation (Section 6), there is no

easy way to enrich the set of the negative examples auto-

matically. This is so, since we cannot simply extend the

neighborhood of a vertex, which might intersect pattern in-

stances. Therefore, we face a two-class classification prob-

lem, for which we have a large number of positive examples

and a small number of negative examples.

Moreover, the set of positive examples is likely to rep-

resent the true distribution, since the class of interest has a

compact support. Conversely, the negative examples might

be too sparse to represent their true distribution. These

might also be heterogeneous and reside far from each other

in the descriptor space. Thus, any attempt to cluster them is

not only difficult, but could also be potentially damaging.

Fortunately, we can avoid the classification of all the ver-

tices. Recall that our final goal is to classify only a represen-

tative subset of vertices with very high confidence, which

will suffice for colorization. We propose a new technique,

which combines several methods in a manner that suits our

purpose. In particular, to overcome the problem of having

a small set of negative examples, we use semi-supervised

learning (Section 4.1). However, even after enriching the

set of the negative examples, it is still too sparse to rep-

resent the true distribution. Therefore, we use supervised

feature extraction to improve the separability between the

positive and the negative examples (Section 4.2). Finally,

to get only a representative subset with high confidence, we

train an SVM classifier using the enriched set of the nega-

tive examples, and choose the vertices that are far from the

separation plane (Section 4.3).

4.1. Enriching the set of examples

We propose to bootstrap the set of negative examples,

using a unique combination of self-training [27] and co-
training [1]. Self-training repetitively trains a classifier,

uses it to classify unlabeled data, and then adds the most

confident data to the training set. Co-training splits the fea-

tures into two sets and trains two classifiers. Each classifier

then “teaches” the other classifier, using a small set of unla-

beled examples with the highest confidence.

In our case, self-training cannot be used as is, since

even the most confident results might be false positives, as

demonstrated in Figure 5(a). Co-training does not work suf-

ficiently well either, since it requires two descriptors, which

should each be adequate to train a “strong” classifier.

Instead, since we cannot trust the small non-

representative set of negative examples, we train a

one-class SVM classifier only on the positive examples,

using the region descriptor. Then, the second descriptor

(boundary) is utilized to add negative training examples,

benefiting from the advantages of co-training.

This is illustrated in Figure 5. Though we are looking

for positive examples that lie on the goblet, we find also

244244244

(a) the most confident results (b) enriched negative set

Figure 5. Enriching the set of negative examples. Given the in-

put from Fig. 2(a), the most confident results of a one-class SVM

are shown in (a), where positive results are in brown and negative

results in yellow. It can be seen that points on different patterns

were erroneously found to be positive. In (b), the enriched set of

negative examples is shown, where these are correctly classified.

points which fall on the leaf. This happens because their re-

gion descriptors are similar. But, their boundary descriptors

differ. We utilize this to disqualify the vertices that were

incorrectly classified as positive. We add the top 10% of

these vertices as negative examples. This lets us enjoy the

advantages of self-training.

4.2. Improving the separability

Even after enriching the set of the negative examples,

this set is still too sparse to represent the true distribu-

tion. Yet, transforming the data to another descriptor space,

where the positive examples can be more easily separated

from the negative examples, can improve the classification.

We seek such a transformation.

We utilize supervised feature extraction in the region

descriptor space. We are given N observations in the d-

dimensional descriptor space, divided into a subset {xi}Nx

i=1

of positive examples and a subset {zi}Nz

i=1 of negative ex-

amples. We aim at finding a projection W onto some r-

dimensional subspace (r ≤ d), y = W�x, where y ∈ Rr

is a transformed data point and W is a d× r transformation

matrix. The transformation W should be one whose image

can be divided into the subsets {Yi}Nx

i=1 and {Yi}Nz

i=1, so as

to achieve the maximal separation between them.

We use Biased Discriminant Analysis (BDA) [30]. Let

mx be the mean vector of the positive examples. We denote

Sz and Sx as follows:

Sz =

Nz∑
i=1

(zi −mx)(zi −mx)
�,

Sx =

Nx∑
i=1

(xi −mx)(xi −mx)
�, (7)

where the mean vector mx is subtracted from the observa-

tions. The goal is to achieve maximal separation between

the positive and the negative examples, while avoiding the

clustering of the negative examples, which reside far from

each other in the descriptor space.

(a) all vertices (b) vertices having high confidence

Figure 6. High-confidence classification. (a) The result of an

SVM classifier has numerous misclassifications. (b) The classi-

fication of vertices having high confidence is correct and suffices

as input for the final colorization.

To obtain it, the optimal transformation matrix W is de-

fined as

Wopt = argmax
W

{
W�SzW

W�SxW

}
. (8)

The solution of Equation 8 is the solution to a generalized

eigen-analysis [30]. Transforming the region descriptors

using Wopt not only improves the separability, but also re-

duces the complexity of the classifier described next.

4.3. High-confidence classification

Thus far, we enriched the set of the training examples

and improved the separability. Training an SVM classifier

in the transformed space, using the enriched set of the neg-

ative examples, produces some wrong results (Figure 6(a)).

Since we only need enough correctly-classified vertices to

perform accurate colorization, we use only the SVM classi-

fications that are far from the separation plane. In practice,

the top 10% of the positive and the top 10% of the negative

vertices suffice, as illustrated in Figure 6(b). This result,

which is also shown in Figure 2(c), leads to the eye-pleasing

colorization in Figure 2(d).

Implementation: The distance measure used both for SVM

and for BDA is χ2. We utilize the generalized form of

the RBF kernels [4]: Kd−RBF (x,y) = e−ρd(x,y), where

d(x,y) is a symmetrized approximation of the χ2 function:

dχ2(x,y) =
∑
i

(xi − yi)
2

xi + yi
. (9)

Comparison to other classification methods: We com-

pared our classification to several off-the-shelf methods on

our running example in Figure 2. After tuning the parame-

ters of each method to achieve the best results, we got the

following misclassifications: 9% using our method, 15%

with SVM (RBF kernel), 19% with GMM (5 Gaussians),

and more than 30% with EM, when disregarding the high-

confidence classification. When applying high-confidence

classification, our method went down to 0% and SVM to

6%. Similar ratios are obtained for the other objects.

245245245

Figure 7. Pattern-driven colorization of a relief object. All the

stars are colorized by scribbling only four color strokes on one star

instance and its surroundings.

5. Final Colorization & Results

The vertices, which were classified with the highest con-

fidence, are used as input to the colorization algorithm, de-

scribed in Equation (1). The positive vertices get the “fore-

ground color” and the negative vertices get the “background

color.” Thanks to our pattern-aware filtering, even a single

vertex in a pattern suffices to extract the pattern correctly.

We applied our algorithm to a variety of surfaces. Some

of the surfaces have reliefs (Figures 1, 7, 8, 11), whereas

others are general objects (Figures 9, 10, 12).

In Figure 7, all the stars are colorized easily, using only

four color strokes on a single star instance and its surround-

ings. For comparison, to get similar results using the algo-

rithm of [10], one would need more than 300 strokes.

Figure 8 demonstrates the colorization of multiple pat-

terns. This is done iteratively, colorizing one pattern at a

time. The user first marks one of the deers (Figure 8(a)) and

our algorithm completes the colorization of all the instances

of the deer (Figure 8(b)). Then, the user proceeds to scrib-

ble on one of the trees (Figure 8(c)). Our algorithm ignores

the pattern found in the previous iteration and colorizes the

other trees compatibly (Figure 8(d)). Figure 1 demonstrates

an example with six different patterns.

Figure 9 demonstrates the result of our algorithm when

applied to a very large Thai statue, consisting of a million

vertices. Even though the pattern instances of the three ele-

phants are noisy and non-identical, our algorithm achieves

good results. We allow the user to mark scribbles on more

than one instance of a pattern, and take all these scribbles

into consideration in our classification algorithm.

Finally, Figure 10 demonstrates our result on a man-

made CAD object. Contrary to scanned objects, man-made

objects usually consist of many disconnected components.

In this case, there is no background in each component, but

rather only foreground. These objects are typically noise-

free and the instances are identical. Therefore, here, our

one-class SVM classification in the region descriptor space

suffices to obtain the correct result.

Comparison with state-of-the-art results. There is no

previous work on pattern-driven colorization. Therefore,

we compare our results to those of related, though differ-

(a) (b)

(c) (d)

Figure 8. Colorization with multiple patterns. Given a surface

with two distinct patterns, the user first marks one of them (the

deer) (a). All the instances of the deer are colorized by our algo-

rithm (b). Then, the user scribbles on an instance of a tree (c) and

all other trees are colorized automatically (d).

Figure 9. Colorizing a large noisy object. Since the pattern in-

stances are not identical, the user marks on a few instances of the

same pattern and the learning is based on all these scribbles.

Figure 10. Colorization of a man-made object. Since the object

consists of identical disconnected components, our one-class SVM

classification suffices to obtain the correct result.

ent, problems. Figure 11 demonstrates that our algorithm

competes favorably with the self-similarity detection of [7].

Our algorithm detects all the suction cups and their accu-

rate boundaries, whereas the boundaries produced by [7]

are fuzzy and some suction cups are not detected.

Figure 12 compares our results with those of the

symmetry-aware segmentation of [14]. Our algorithm col-

orizes nicely both the different parts and the reliefs on them.

246246246

(a) input (b) our result (c) self-similarity [7]

Figure 11. Comparison to [7]. Our algorithm detects all the suction cups and colorizes them accurately, whereas the boundaries produced

by [7] are less precise and not all the suction cups are detected. Note that the suction cups vary in size.

(a) input (b) our result (c) symmetry-aware segmentation [14]

Figure 12. Comparison to [14]. Our pattern-driven algorithm nicely colorizes both the different parts and the reliefs on them.

6. Implementation: Pattern-Aware Filtering
As mentioned before, even a single vertex inside a pat-

tern suffices to colorize the whole pattern. This is thanks

to our filtering, performed as an initial step, which smooths

the surface, while keeping the pattern boundaries intact.

Our filtering algorithm proceeds in two steps (Figure 13).

First, we segment the sub-surface into its foreground (a sin-

gle pattern instance) and its background. This is performed

by the basic colorization technique described in Section 3.1,

using the user’s scribbles as input for Equation 1.

Then, we find the optimal smoothing of the surface, as

described hereafter. We apply the uniform Laplace smooth-

ing, which approximates the Laplacian of the discretized

surface [20]. For vertex v, it is defined as:

L(v) =

(
1

|N(v)|
∑

vi∈N(v)

vi

)
− v, (10)

where N(v) is the neighborhood of v. Each vertex moves

halfway along its L(v) vector: v′ = v + 1
2L(v).

The question is how many smoothing iterations should

be applied. The more iterations, the greater the smoothing.

We wish to filter out all the redundant features, yet preserve

the boundaries of the pattern. We thus introduce a pattern-
separation quality measure, as follows.

We randomly sample a set of vertices V from the fore-

ground region. For each sample vj ∈ V , we apply the col-

(a) input (b) filtered surface

Figure 13. Pattern-aware filtering. The boundary of the pattern

is preserved, while the details inside the pattern are filtered out.

orization algorithm of [10], where vj gets the foreground

color and all the vertices on the sub-surface’s boundary get

the background. Let RFij be the foreground region ob-

tained by applying smoothing i times and then colorization.

We say that a smoothed surface has a good separation
quality if the colorization of the pattern, using a single ver-

tex in it, is similar to the colorization utilizing all the user’s

strokes. Let RF be the foreground region, resulting from

applying Equation (1) using the user’s strokes. If RFij and

RF agree, then the separation quality is the best. To real-

ize this quality measure, we define the pattern separation

quality as

Qi =
1

|V |
∑
j≤|V |

Area(RF

⋂
RFij)

Area(RF

⋃
RFij)

. (11)

We choose the number of smoothing iterations as the one

that maximizes Equation 11. In our implementation, |V | =
10 and we consider 20 levels of smoothing.

247247247

7. Conclusion
This paper introduced a colorization algorithm for sur-

faces with patterns. After the user scribbles a few color

strokes on one instance of every pattern, the system suc-

cessfully colorizes the whole surface.

In particular, our algorithm addresses several sub-

problems. The first is surface descriptors for characterizing

objects with patterns. We propose two such descriptors—

a region-based descriptor and a boundary-based descriptor,

both take pattern information into account. Second, we dis-

cuss pattern classification of surfaces. We suggest an al-

gorithm that combines the co-training and the self-training

approaches. Finally, we show that our classification pro-

duces results that allow us to colorize surfaces of varying

types and complexities.

We plan to test the suitability of our technique for recol-

oring surfaces, similarly to image recoloring [6, 26].

Limitations: We assume that the pattern instances are sep-

arated by some background area between them. For relief

surfaces, we also assume that the curvature of the base is

smaller than that of the relief.

Acknowledgements: This research was supported in part

by the Israel Science Foundation (ISF) 1420/12 and the Ol-

lendorff Foundation.

References
[1] A. Blum and T. Mitchell. Combining labeled and unlabeled

data with co-training. In Computational learning theory,

pages 92–100, 1998. 4

[2] M. Bokeloh, A. Berner, M. Wand, H. P. Seidel, and

A. Schilling. Symmetry detection using line features. Com-
puter Graphics Forum, 28(2):697–706, 2009. 1

[3] G. Burns. Colorization. Museum of Broadcast Communica-
tions: Encyclopedia of Television. 1

[4] O. Chapelle, P. Haffner, and V. Vapnik. SVMs for histogram-

based image classification. IEEE Transactions on Neural
Networks, 10(5):1055–1064, 1999. 5

[5] M. Do Carmo. Differential Geometry of Curves and Sur-
faces, chapter 1, pages 16–23. Prentice-Hall, 1976. 4

[6] D. Freedman and P. Kisilev. Object-to-object color transfer:

optimal flows and SMSP transformations. In CVPR, pages

287–294, 2010. 8

[7] R. Gal and D. Cohen-Or. Salient geometric features for par-

tial shape matching and similarity. ACM Transactions on
Graphics, 25(1):150, 2006. 6, 7

[8] Y. Huang, Y. Tung, J. Chen, S. Wang, and J. Wu. An adaptive

edge detection based colorization algorithm and its applica-

tions. In ACM Multimedia, pages 351–354, 2005. 1

[9] A. Johnson and M. Hebert. Using spin images for efficient

object recognition in cluttered 3D scenes. PAMI, 21(5):433–

449, 1999. 3

[10] G. Leifman and A. Tal. Mesh Colorization. Computer
Graphics Forum, 31(2):421–430, 2012. 1, 2, 3, 6, 7

[11] A. Levin, D. Lischinski, and Y. Weiss. Colorization using

optimization. ACM Transactions on Graphics, 23(3):689–

694, 2004. 1, 2

[12] T. Lewiner, J. Gomes, H. Lopes, and M. Craizer. Curva-

ture and torsion estimators based on parametric curve fitting.

Computers & Graphics, 29(5):641–655, 2005. 3

[13] H. Ling and K. Okada. Diffusion distance for histogram

comparison. In CVPR, volume 1, pages 246–253, 2006. 3, 4

[14] Y. Lipman, X. Chen, I. Daubechies, and T. Funkhouser.

Symmetry factored embedding and distance. ACM Trans-
actions on Graphics, 2010. 6, 7

[15] S. Liu, R. R. Martin, F. C. Langbein, and P. L. Rosin. Seg-

menting periodic reliefs on triangle meshes. In IMA int. conf.
on Mathematics of surfaces, pages 290–306, 2007. 1

[16] Q. Luan, F. Wen, D. Cohen-Or, L. Liang, Y.-Q. Xu, and H.-Y.

Shum. Natural image colorization. In Eurographics Sympo-
sium on Rendering, pages 309–320, 2007. 1

[17] N. Mitra, L. Guibas, and M. Pauly. Partial and approximate

symmetry detection for 3d geometry. ACM Transactions on
Graphics, 25(3):560–568, 2006. 1

[18] N. Mitra, M. Pauly, M. Wand, and D. Ceylan. Symmetry

in 3D geometry: Extraction and applications. In EURO-
GRAPHICS State-of-the-art Report, 2012. 1

[19] M. Pauly, N. Mitra, J. Wallner, H. Pottmann, and L. Guibas.

Discovering structural regularity in 3D geometry. ACM
Transactions on Graphics, 27(3):#43, 1–11, 2008. 1

[20] U. Pinkall and K. Polthier. Computing discrete minimal sur-

faces and their conjugates. Experimental Mathematics, 2:15–

36, 1993. 7

[21] Y. Qu, T.-T. Wong, and P.-A. Heng. Manga colorization.

ACM Transactions on Graphics, 25(3):1214–1220, 2006. 1

[22] Y. Rubner, C. Tomasi, and L. Guibas. The earth mover’s dis-

tance as a metric for image retrieval. International Journal
of Computer Vision, 40(2):99–121, 2000. 3

[23] R. Rusu, N. Blodow, and M. Beetz. Fast point feature his-

tograms (FPFH) for 3D registration. In ICRA, 2009. 3

[24] R. Rusu, N. Blodow, Z. Marton, and M. Beetz. Aligning

point cloud views using persistent feature histograms. In

IROS, pages 3384–3391, 2008. 3

[25] B. Schiele and J. Crowley. Object recognition using multi-

dimensional receptive field histograms and its robustness to

view point changes. In ECCV, pages 610–619, 1996. 3

[26] B. Shida and J. van de Weijer. Object recoloring based on

intrinsic image estimation. In ICCV, pages 327–334, 2011.

8

[27] D. Yarowsky. Unsupervised word sense disambiguation ri-

valing supervised methods. In Computational Linguistics,

pages 189–196, 1995. 4

[28] L. Yatziv and G. Sapiro. Fast image and video colorization

using chrominance blending. IEEE Transactions on Image
Processing, 15:1120–1129, 2006. 1

[29] L. Yuanzhen, E. Adelson, and A. Agarwala. Scribbleboost:

Adding classification to edge-aware interpolation of local

image and video adjustments. Computer Graphics Forum,

27(4):1255–1264, 2008. 1

[30] X. Zhou and T. Hunag. Small sample learning during mul-

timedia retrieval using BiasMap. In CVPR, volume 1, pages

I–11 – I–17, 2001. 5

248248248

