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Abstract

Eliciting and representing experts’ remarkable percep-
tual capability of locating, identifying and categorizing
objects in images specific to their domains of expertise
will benefit image understanding in terms of transferring
human domain knowledge and perceptual expertise into
image-based computational procedures. In this paper, we
present a hierarchical probabilistic framework to summa-
rize the stereotypical and idiosyncratic eye movement pat-
terns shared within 11 board-certified dermatologists while
they are examining and diagnosing medical images. Each
inferred eye movement pattern characterizes the similar
temporal and spatial properties of its corresponding seg-
ments of the experts’ eye movement sequences. We fur-
ther discover a subset of distinctive eye movement pat-
terns which are commonly exhibited across multiple images.
Based on the combinations of the exhibitions of these eye
movement patterns, we are able to categorize the images
from the perspective of experts’ viewing strategies. In each
category, images share similar lesion distributions and con-
figurations. The performance of our approach shows that
modeling physicians’ diagnostic viewing behaviors informs
about medical images’ understanding to correct diagnosis.

1. Introduction

There has been significant progress in automatic algo-

rithms for image understanding [10, 16, 13, 20, 9, 6]. How-

ever, when the cues in images are not sufficient to generate

a good interpretation automatically, active learning methods

are necessary in terms of incorporating human perceptual

capability into this process [23, 14, 1, 15, 8].

On the other hand, image understanding in knowledge-

rich domains is more challenging, since complex perceptual

and conceptual processing are engaged to transform image

pixels into meaningful contents [12]. Active learning meth-

ods via manually marking and annotating become not only
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Figure 1: Paradigm of our approach. Automatic image un-

derstanding approaches attempt to interpret images solely

based on statistical or optimization analysis of image pixel

values [10, 16, 13, 20, 9, 6]. Recently researchers start in-

corporating human interactions into image understanding

through active learning methods [23, 14, 1, 15, 8]. For

domain-knowledge-required images, active learning meth-

ods are ineffective because of the variability and noisy na-

ture of the human behavioral data. We thus propose that

novel approach to extract tacit knowledge from experts en-

gaging in these observable behaviors will be a more effec-

tive way to incorporate human capabilities. The extracted

behavior patterns are not only more robust and consistent

but also shed light on latent cognitive processing.

labor intensive for experts but also ineffective because of

the variability and noise of experts’ performance [15, 7].

To address this problem, We propose to combine perceptual

expertise as effortless yet valuable cognitive resources into

image understanding. This requires the ability of extract-

ing and representing experts’ perceptual expertise in a form

that is ready to be applied in active learning schemes. In this

work, our contributions are: first, we summarize and repre-

sent expertise-related eye movement patterns shared among
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multiple experts in an objective and unbiased way; second,

based on a subset of distinctive patterns shared across im-

ages, we semantically categorize medical images at diag-

nostic level bypassing the segmentation and the processing

of individual lesions or regions.

Perceptual skill is considered to be the crucial cogni-

tive factor accounting for the advantage of highly trained

experts [12]. Experts generate distinctively different per-

ceptual representations when they view the same medi-

cal images as novices [19]. Rather than passively ”photo-

copying” the visual information directly from sensors into

minds, visual perception actively interprets the informa-

tion by altering perceptual representations of the images

based on experience and goals. Without guidance of per-

ceptual skill, medical images cannot be interpreted effec-

tively solely based on image visual features. This motivates

us to investigate how to formalize perceptual skill and rea-

son about image contents from experts’ points of view as

shown in Figure 1. In our work we focus on medical im-

ages 1 where domain knowledge and perceptual expertise

are in demand. We elicit and model physicians’ perceptual

skill from their diagnostic reasoning process while inspect-

ing medical images. Physicians examine and diagnose med-

ical images, and their eye movements are recorded. In order

to summarize the stereotypical and idiosyncratic eye move-

ment patterns shared among these physicians, we develop

a hierarchical dynamic model. It allows us to discover eye

movement patterns exhibited by physicians’ time-evolving

eye movement sequences, and each eye movement pattern

essentially characterizes a particular statistical regularity of

the temporal-spatial properties inferred from multiple eye

movement sequences. In particular, we specify a subset

of distinctive patterns corresponding to image visual-spatial

structures at pathological level. Based on the exhibitions of

these patterns by physicians viewing a particular image, we

are able to put the image into a category associated with a

particular lesion distribution.

2. Related Work

Image understanding is approached broadly from two

levels of description. From one level, a scene is viewed

as configuration of objects, so a better performance can be

achieved through recognizing objects and their spatial ar-

rangement [21]. The other perspective considers a scene

as a holistic representation with a unitary shape [18]. Be-

sides locating and identifying the objects of interest in an

image by bounding boxes or image segments with seman-

tic labels, recent image understanding studies also aim at

exploring the underlying scene structure by estimating a

qualitative 3D layout of the scene to recover the spatial

1Some dermatological images may be disturbing. Readers’ discretion

is required.

(a) (b)

(c) (d)

Figure 2: An illustrated dermatological image examined by

the subjects. (a) The original image. (b)-(d) Three sub-

jects’ eye movement sequences super-imposed onto the im-

age. Each circle center represents a fixation location and

the radius is proportional to the duration time on that par-

ticular fixation. A line connecting two fixations represents

a saccade. Fixations are numbered according to their order.

Image used with permission from Logical Images, Inc.

relationships among multiple objects in the original 3D

space [10, 16, 13, 20]. These geometric approaches ap-

proximate the 3D space by planar surfaces or volumes from

monocular images and some of them extend the idea to

combine global consistency constraints [9]. Dynamic 3D

scene reconstruction is another focus. Various computa-

tion approaches such as Markov random field and gener-

ative non-parametric graphical models are developed to ro-

bustly infer the 3D layout of the roads, the location of the

buildings as well as dynamic traffic in the scene [6, 4].

There is significant success with the above automatic

algorithms. However, human interaction becomes critical

when key information such as strong edges and lines can-

not be detected easily [15, 9]. To borrow human perceptual

power, active learning was proposed and benefited a broad

range of computer vision applications [23, 14, 1, 15, 8]. Es-

sentially, the advantage of active learning methods relies on

combining human capability of image understanding with

rich information from images using machine learning ap-

proaches. This is particularly important when images are

domain-specific. Some of these active learning studies at-

tempted to maximize the knowledge gain from users while

valuing their effort [23]. Others strived to simplify human

interaction by fully utilizing the automatic algorithms and

providing intuitive scribbles [15, 1].

Human viewing behaviors are valuable yet effortless re-

sources worth of exploiting through active learning schemes
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for image understanding. In particular, in specific domains

experts perceptual expertise is considered to be more con-

sistent and informative than their manual markings. Hu-

man vision is an active dynamic process in which the viewer

seeks out specific information to support ongoing cognitive

and behavioral activity [11]. Since visual acuity is limited

to the fovea region and resolution fades dramatically in the

periphery, we move our eyes to bring a portion of the vi-

sual field into high resolution at the center of gaze. Stud-

ies have shown that visual attention is influenced by two

main sources of input: bottom-up visual attention driven by

low-level saliency image features and top-down process in

which cognitive processes, guided by the viewing task and

scene context, influence visual attention [17, 24, 3]. Grow-

ing evidence suggests that top-down information dominates

the active image viewing process and the influence of low-

level salience guidance is minimal [2, 18].

These theoretical outcomes provide us with the possibil-

ity to facilitate image understanding by incorporating ex-

perts’ viewing strategies through active learning paradigm.

What’s more, we combine multiple experts’ strength by

summarizing their shared eye movement patterns and de-

code the patterns’ semantic meanings. These results can

also be applied as semantic labeling without manually hand-

marking with respect to image understanding.

3. Hierarchical Dynamic Model
A hierarchically-structured dynamic model was de-

veloped to capture the stereotypical and idiosyncratic

eye movement patterns shared among multiple expertise-

specific groups of subjects, as well as to provide the flexi-

bility of learning new patterns from observed eye movement

data in a non-parametric way.

3.1. Hierarchical prior

The hierarchical beta-Bernoulli processes proposed by

Thibaux et al. [22] is a suitable tool to describe the situation

where multiple groups of subjects are defined by countable

infinite shared features following the Levy measure. We

utilize this combinatorial stochastic process in the follow-

ing specification based on our problem scenario, so that we

can treat the number of shared eye movement patterns as

a random number which is learned from the observed eye

movement data.

Let B0 denote a fixed continuous random base measure

on a space Θ which represents a library of all the poten-

tial eye movements patterns. For multiple groups to share

patterns, let B denote a discrete realization of a beta pro-

cess given the prior BP (c0, B0). Let {Gj}Nj=1 be a dis-

crete random measure on Θ drawn from B following the

beta process which represents a random measure on the eye

movement patterns shared among multiple subjects within

the group j. Let {Pij}Nj

i=1 denote a Bernoulli measure given

the beta process Gj . Pij is a binary vector of Bernoulli ran-

dom variables representing whether a particular eye move-

ment pattern exhibited in the eye movement data of subject

i within group j. This hierarchical construction can be for-

mulated as follow:

B|B0 ∼ BP (c0, B0) Gj |B ∼ BP (cj , B) (1)

Pij |Gj ∼ BeP (Gj) Pij =
∑

k

pijkδθjk (2)

where Gj =
∑

k gjkδθjk . This term shows that Gj is as-

sociated with both a set of countable number of eye move-

ment patterns {θjk} drawn from the eye movement pattern

library Θ and their corresponding probability masses {gjk}
given group j. The combination of these two variables char-

acterizes how the common eye movement patterns shared

among subjects within expertise-specific group j. Thus Pij

is a Bernoulli process realization from the random measure

Gj where pijk as a binary random variable denotes whether

subject i within group j exhibits eye movement pattern k
given probability mass gjk. Based on the above formula-

tion, for k = 1...Kj patterns we readily define {(θjk, gjk)}
as a set of common eye movement patterns shared among

group j and {(θjk, pijk)} as subject i’s personal subset of

eye movement patterns given group j.

The transition distribution πij = {π
z
(ij)
t

} of the Hid-

den Markov Model (HMM) at the bottom level governs

the transitions between the ith subject’s personal subset of

eye movement patterns θjk of group j. It is determined

by the element-wise multiplication between the eye move-

ment subset {pijk} of subject i in group j and the gamma-

distributed random variables {eijk}:

eijk|γj ∼ Gamma(γj , 1) πij ∝ Eij

⊗
Pij (3)

where Eij = [eij1, ...eijKj
]. So the effective dimensional-

ity of πij is determined by Pij .

3.2. Dynamical likelihoods

We apply one autoregressive HMM as the likelihood to

describe the dynamics of each subject’s eye movement se-

quence. This model is proposed to be a simpler but often

effective way to describe dynamical systems [5]. Let y
(ij)
t

denote the observation unit of the eye movement sequence

at time step t of the ith subject in the jth group. We asso-

ciate each time-step’s observation with one fixation and its

successive saccade as one observation unit. Let x
(ij)
t denote

the corresponding latent dynamic mode. We have

x
(ij)
t ∼ π

x
(ij)
t−1

(4)

y
(ij)
t = A

x
(ij)
t

ỹ
(ij)
t + et(x

(ij)
t ) (5)
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Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Pattern 7 Pattern 8 Pattern 9

Experiment Our Model

Subject 1

Subject 2

Subject 3

Subject 4

Subject 10

Subject 11

Original Image

Eye Movement Sequences Transition Matrices Signature Patterns

Figure 3: Six out of eleven eye movement sequences super-imposed onto one dermatological image are illustrated here. Our

model respectively decomposes the eleven eye movement sequences into nine eye movement patterns (color-coded) with the

transition probability matrices, so that each sequence can be represented by a certain number out of nine patterns and their

corresponding transition matrix. On the right, it is the shared eye movement pattern matrix of which each row corresponds

to a subject’s eye movement sequence and each column indicates one shared eye movement pattern among multiple subjects.

In this case, three patterns are recognized as Signature Patterns based on their self-transition probabilities, temporal-spatial

properties and diagnostic semantics.

where e
(ij)
t (k) ∼ N(0,Σk) which is an additive white

noise, Ak = [A1,k, ..., Ar,k] as the set of lag matrices, and

ỹ
(ij)
t = [y

(ij)
t−1, ..., y

(ij)
t−r]. In our case, we specify r = 1.We

thus define θk = (Ak,Σk) as one eye movement pattern.

We use Markov chain Monte Carlo method to do the

posterior inference. Based on the sampling algorithm pro-

posed in [22], we developed a Gibbs sampling solution to

sample the marginalized hierarchical beta processes part

of the model. Although our model is capable of profiling

eye movement patterns shared among multiple expertise-

specific groups, we focus on expert group’s performance

and its potential contribution to image understanding.

4. Eye Tracking Experiment

Eleven board-certified dermatologists (attending physi-

cians) with normal or corrected to normal vision partici-

pated for monetary compensation. A SMI (Senso-Motoric

Instruments) eye tracking apparatus was applied to display

the stimuli at a resolution of 1680x1050 pixels for the col-

lection of eye movement data and recording of verbal de-

scriptions. The eye tracker was running at 50 Hz sampling

rate and has reported accuracy of 0.5o visual angle. The

subjects viewed the medical images binocularly at a dis-

tance of about 60 cm. The experiment was conducted in an

eye tracking laboratory with ambient light.

A set of 50 dermatological images, each representing a

different diagnosis, was selected for the study. These im-

ages were presented to subjects on the monitor. Medical

professionals were instructed to examine and describe each

image to the students while working towards diagnosis, as

if teaching. The experiment lasted approximately 1 hour.

The subjects were instructed not only to view the medical

images and make a diagnosis, but also to describe what they

see as well as their thought processes leading them to the di-

agnosis. Both eye movements and verbal descriptions were

recorded for the viewing durations controlled by each sub-

ject. The experiment started with a 13-point calibration and

the calibration was validated after every 10 images.

5. Image Analysis through Signature Patterns

We generate 387 eye movement patterns based on eleven

subjects examining and diagnosing fifty dermatological im-

ages. These results allow us to analyze images from a novel

perspective of experts’ perceptual strategies.

5.1. Eye movement pattern estimation

In Figure 3, we illustrate one set of observed eye move-

ment sequences and estimating processes from our model

of the eleven dermatologists diagnosing a case of a skin

manifestation of endocarditis. In the medical image, there
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are multiple skin lesions spreading over the thumb nail and

tip, the two parts of index finger and the middle finger. A

primary abnormality is on the thumb tip. The eye move-

ment sequences in Figure 2 indicate that dermatologists ex-

amine the image in a highly patterned manner by fixating

on the primary abnormality heavily and switching their vi-

sual attention actively between and within the primary and

secondary abnormalities. Our model decomposes each eye

movement sequence into several subsets of its segments.

Each subset is characterized by one estimated latent state

and a Gaussian emission distribution which summarizes the

similar temporal-spatial properties shared among multiple

sequences, as described in Equation 5. The way that the

patterns are shared among the subjects is also indicated by

their matrix in Figure 3. For example the first subject’s

eye movements evolve over time with the first eight out of

nine patterns, and the eleventh subject has seven patterns

except pattern 5 and pattern 9. Transition probability ma-

trices indicated these patterns are persistent with high self-

transition probabilities. Although such analysis estimates

varied image-specific patterns, we discover several basic yet

distinctive types of patterns shared across multiple images

called Signature Patterns.

5.2. Signature pattern recognition

We define a type of signature patterns by three criteria:

first, its self-transition probability, which is indicated by the

transition matrix, is no less than 0.65; second, it manifests

clear diagnostic regions; third, the temporal-spatial prop-

erties of signature pattern exemplars within each type are

similar but distinctive from other types, which is depicted in

Figure 4. In the illustrated case in Figure 3, there are three

instantiations of the signature patterns recognized. Pattern

2 and Pattern 5 is characterized by fixations switching back

and forth between the primary and the different secondary

abnormalities with long saccade amplitudes and relatively

short fixation durations. These patterns suggest that sub-

jects compare and associate the two types of abnormalities.

Pattern 7 is characterized by a series of long-duration fixa-

tions only on the primary abnormality with extremely short

saccades. This pattern suggest that subjects fixate on pri-

mary abnormality to make diagnosis.

Based on the eye movement patterns generated from our

model over fifty images, we are able to specify three types

of signature patterns. The first type is named as Concen-
trating Pattern which is characterized by a series of long-

duration fixations and short-amplitude saccades usually fix-

ating on primary abnormalities; the second is Switching Pat-
tern characterized by a series of relatively short-duration

fixations and long-amplitude saccades usually switching

back and forth between two abnormalities; and the third is

Clutter Pattern characterized by a series of shorter fixations

and relatively long saccades usually scanning within local-
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Figure 4: Distinctive temporal-spatial properties of 217 eye

movement units from 12 exemplars forms the three types of

signature patterns. Each blue dot represents one eye move-

ment unit from a signature pattern exemplar. The exemplars

are indicated by dash-line emission distributions estimated

from our model. Both eye movement units and their cor-

responding exemplars are projected from a four-dimension

space (including x-y coordinate, fixation duration and sac-

cade amplitude) onto this space. The signature patterns are

characterized by a three-component Gaussian mixture. The

one on the upper left represents Concentrating Pattern, the

one on the right captures Switching Pattern, and the one on

the lower middle represents Clutter Pattern. For each type,

we project the units back into x-y coordinate space centered

on the origin and visualize them on the right side.

ized abnormal regions. To quantify the temporal-spatial

properties of the three types of signature patterns, we illus-

trate some of their exemplars in Figure 4. The estimation

of the signature patterns based on their exemplar features

can be solved using different classification techniques. We

first adopt quadratic discrimination analysis (QDA) by as-

suming a simple parametric model for the densities of the

temporal-spatial properties of the eye movement units and

a training set includes 217 eye movement units of 12 exem-

plar patterns from 10 images. Their temporal-spatial prop-

erties are shown in Figure 4. We test the validity of the

classifier through comparing the image categorization per-

formance based on QDA with K nearest neighbors (K-NN)

and experts’ performance.

5.3. Perceptual category specification

Three additional experienced board-certified dermatolo-

gists as our consultants suggests four broad perceptual cat-

egories in terms of lesion distribution and configuration.

We further determine the associations between the combi-

nations of the exhibitions of these three types of signature

218921892191



Figure 5: ROC curves summarizing categorization performance for the four perceptual categories. Left: Area under average

ROC curves for different numbers of exemplar patterns. Right: We compare our model using two different classification

techniques with canonical Hidden Markov Models.

patterns and the four specified categories:

• If the set of eye movement patterns exhibited on an im-

age solely includes Concentrating Patterns, the image

is categorized as Solitary which means that the image

contains a solitary lesion as primary abnormality.

• If the set of eye movement patterns exhibited on an

image solely includes Switching Patterns, the image is

categorized as Symmetry which means that the lesions

in the image are symmetrically distributed.

• If the set of eye movement patterns exhibited on an im-

age includes both Concentrating Patterns and Switch-
ing Patterns, the image is categorized as Multiple Mor-
phologies which means that the lesions in the im-

age belong to different morphologies and usually one

lesion are primary abnormalities and others are sec-

ondary ones.

• If the set of eye movement patterns exhibited on an im-

age includes Clutter Patterns, the image is categorized

as High-Density Lesions which means that the image

contains multiple lesions distributed in either scattered

or clustered manner.

According to the signature patterns recognized on the im-

ages, we can put them into the four categories as shown in

Figure 6a, 6b, 6c, and 6d.

6. Results and Discussion
To measure the performance of our image categorization

approach, we conduct an experiment following the same

procedure by recruiting another ten dermatologists and us-

ing a different set of forty dermatological images as stim-

uli. These images are randomly selected. Our three consult-

ing dermatologists achieve consensus to categorize the forty

images into the four perceptual categories. We use 232 esti-

mated eye movement patterns on these images and the ones

from the previous experiment as a testing set. In Figure 5,

we examine categorization performance given training sets

containing between 4 and 24 exemplars. We assume each

eye movement sequence exhibits the same set of patterns

in order to implement the canonical HMMs. We see that

our model lead to significant improvements in categoriza-

tion performance, particularly when few training exemplars

are available. The highest accuracy is achieved on detec-

tion of the Multiple Morphologies category. This may be

caused by the requirement of detections of the two different

Signature Patterns to determine the varied distributions and

significance of the lesions. The difference between Multi-
ple Morphologies images and Symmetry images is that the

eye movement patterns exhibited on the latter do not con-

tain Concentrating Pattern. This is because the symmet-

rical visual-spatial structures imply that lesions are equiva-

lent important without single primary one for the subjects to

concentrate their focus on as shown in Figure 6b. Since the

specifications of signature patterns are heuristic, we may be

able to improve the categorization performance by identify-

ing extra meaningful and distinctive eye movement patterns,

and these extra patterns may also lead to image categoriza-

tion at a finer detailed level.

Since the dermatological images are collected for future

diagnosis, and training purposes, the dermatologists took

them in a particular way. They tend to center primary ab-

normalities and preserve as much related contextual infor-

mation as possible, such as patients’ demographic infor-

mation, body parts, lesion size and so on. Nonetheless,

these high-resolution images have complex backgrounds,

and large appearance variations for luminance and camera

angles. These factors cause some false alarms. In particu-

lar, scales of some lesions in the images tend to influence

our model’s performance. For instance, the solitary lesions

have large scales in some images, this leads to cluttered eye

movement patterns rather than concentrating ones as shown

in Figure 6d. Since both the number of fixations and their

durations are indicative of the depth of information process-

ing associated with the particular image regions, the exhibi-

tion of Concentrating Pattern usually corresponds to a lo-

calized primary abnormality as shown in Figure 6a and 6c,

which is the most important cue for correct diagnosis. The

saccade amplitudes of Switching Pattern and Clutter Pat-
tern inform dermatologists’ visual comparison or associ-
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ation during examining images based on both the image

visual-spatial structures (symmetry, e.g.) as in Figure 6b and

distributions of multiple abnormalities (primary abnormal-

ity versus secondary abnormality, e.g.) as in Figure 6d.

We obtain certain aspects of experts’ domain-specific

knowledge by summarizing their perceptual skills from

their eye movements while diagnosing images. The

domain-specific knowledge unveils the meaning and signifi-

cance of the visual cues as well as the relations among func-

tionally integral visual cues without segmentation or pro-

cessing of individual objects or regions. This will benefit

the traditional pixel-based statistical methods for image un-

derstanding by evaluating perceptual significance and rela-

tions of the image features which spatially correspond to

the eye movement patterns. This combination of expert

knowledge and image features allows us to generalize our

approach to images on which there is no experts’ eye move-

ments recorded.

The different viewing times of dermatologists yield

length-varying eye movement sequences. Since each se-

quence is modeled with one HMM separately, the emis-

sion distributions of which group multiple fixation-saccadic

units into one pattern exhibited repeatedly. Thus longer se-

quence means that its corresponding longer HMM draws

more pattern samples from the prior distribution, so besides

containing more repeated common patterns, it likely has

some unique patterns.

7. Conclusions
This paper presents a hierarchical probabilistic dynamic

framework to summarize eye movement patterns shared

among dermatologists while they are examining medical

images. This novel approach allows us to elicit perceptual

skill as additional human capabilities to achieve image un-

derstanding at the pathological level.
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(a) Images categorized as Solitary and the Concentrating Pattern recognized on them.

(b) Images categorized as Symmetry and the Switching Pattern recognized on them.

(c) Images categorized as Multiple Morphologies and both the Switching Pattern and Concentrating Pattern recognized on them.

(d) Images categorized as High-density Lesions and the Clutter Pattern recognized on them.

Figure 6: For each of the four categories five images are illustrated. We also demonstrate one instantiation of the signature

patterns recognized from the set of subjects’ eye movement patterns which is estimated by our model. Images used with

permission from Logical Images, Inc.
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