This CVPR2013 paper is the Open Access version, provided by the Computer Vision Foundation.

The authoritative version of this paper is available in IEEE Xplore.

Compressed Hashing

Yue Lin* Rong Jin'

Deng Cai*

Shuicheng Yan* Xuelong Li®

*State Key Lab of CAD&CG, College of Computer Science, Zhejiang University, Hangzhou, China
"Dept. of Computer Science & Eng., Michigan State University, East Lansing, MI, U.S.A.
tDept. of Electrical and Computer Engineering, National University of Singapore, Singapore
8OPTical IMagery Analysis and Learning, Chinese Academy of Sciences, China

linyue29 @gmail.com, rongjin@cse.msu.edu, dengcai@cad.zju.edu.cn, eleyans@nus.edu.sg, xuelong_li@opt.ac.cn

Abstract

Recent studies have shown that hashing methods are
effective for high dimensional nearest neighbor search.
A common problem shared by many existing hashing
methods is that in order to achieve a satisfied perfor-
mance, a large number of hash tables (i.e., long code-
words) are required. To address this challenge, in this
paper we propose a novel approach called Compressed
Hashing by exploring the techniques of sparse coding
and compressed sensing. In particular, we introduce a
sparse coding scheme, based on the approximation the-
ory of integral operator, that generate sparse represen-
tation for high dimensional vectors. We then project
sparse codes into a low dimensional space by effectively
exploring the Restricted Isometry Property (RIP), a key
property in compressed sensing theory. Both of the the-
oretical analysis and the empirical studies on two large
data sets show that the proposed approach is more ef-
fective than the state-of-the-art hashing algorithms.

1. Introduction

Nearest Neighbor (NN) search is one of the most es-
sential problem in machine learning and has found ap-
plications in many computer vision tasks [19, 14]. Given
the intrinsic difficulty of exact nearest neighbor search,
many hashing algorithms are proposed for Approximate
Nearest Neighbor (ANN) search [5, 6, 21]. The key idea
of these approaches is to generate binary codewords for
high dimensional data points that preserve the similarity
between data points.

Many hashing algorithms found their theoretic root
in random projection, which is proved to be an effective
method for preserving pairwise distances. One problem
with most random projection theories is that, in order

446

to achieve a small error in distance preservation, a large
number of random projections are required. Even more
disturbingly, the number of required random projections
depends on the size of data set, making it less attractive
for large databases. For example, according to Jonson
Lindenstrauss Theorem [10], to preserve the pairwise
distances for a database of n data points, the number
of needed random projections is O(Inn/e?), where €
is the relative error in distance approximation. There-
fore, it is not a surprise the random projection based
hashing methods do not perform well for short codes.
To address this problem, several learning based hashing
methods are proposed. Most of these algorithms learn
the binary codes by exploiting the spectral properties of
the data affinity matrix. In spite of the success for rela-
tive small codes, these learning based approaches often
fail to make significant improvement as code length in-
creases [11].

In this paper, we propose a novel approach called
Compressed Hashing to address this challenge by ex-
ploring the techniques of sparse coding [8] and com-
pressed sensing [7]. The main idea is based on the Re-
stricted Isometry Property (RIP) [3], which states that
for any sparse vector, the random projection is able to
preserve the Euclidean distances between high dimen-
sional vectors with an overwhelming probability. It is
important to distinguish the RIP condition from Jonson
Lindenstrauss (JL) theorem. The probability in JL the-
orem is related to each vector, namely for any vector,
there is a chance for the property to be failed. As a re-
sult, to preserve the pairwise distance for all the data
points, the number of random projections has to be de-
pendent on the size of the database. In contrast, the prob-
ability in RIP condition is related to the random matrix,
namely nearly all random matrix generated by iid Gaus-
sian will be able to preserve Euclidean distance for all

data points. Because of this difference, the performance
guarantee delivered by RIP applies to all vectors, mak-
ing the number of random projections independent from
the size of the database.

Note that the RIP only applies to the sparse vectors.
In order to meet the sparse requirement in RIP, we use
a sparse coding scheme similar to [14] that generates
compact sparse codes for high dimensional vectors. The
sparse codes are generated based on the approximation
theory of integral operator and well preserve the rela-
tionship between vectors. Given the sparse codes, we
then explore the theory of compressed sensing [7] to
project the sparse codes into a low dimensional space,
and generate the hash codes based on the low dimen-
sional projection.

2. Related Work

Most hashing methods can be classified into two cat-
egories: the random projection based methods and the
learning based methods.

The most notable approach for random projection
based methods is Locality Sensitive Hashing [5, 1],
which offers a sub-linear time search by trying to hash
similar data points into the same entry of a hash table(s).
One drawback of many LSH approaches is that in order
to preserve the locality of the data points, they have to
generate long codewords, leading to large storage space
and high computational cost. Both entropy-based LSH
approach [16] and Multi-Probe LSH [15] are proposed
to reduce the storage limitation at the sacrifice of in-
creasing the query time. Moreover, several studies ex-
tend LSH from the Euclidean space to the Reproducing
Kernel Hilbert Space (RKHS) [12, 17].

A common problem of random projection based
hashing algorithms is that in order to achieve a satisfied
performance, they require a large number of hash tables
and long codewords. To address this limitation, many
learning based algorithms are proposed. Example algo-
rithms in this category include Spectral Hashing [21],
Unsupervised Sequential Projection Learning for Hash-
ing [19], Spherical Hashing [9], Kernel-based Super-
vised Hashing [13], Anchor Graph Hashing [14] and so
on. However, the learning based hashing algorithms of-
ten work well for short codewords but fail to make sig-
nificant improvement as code length increases [11].

3. Compressed Hashing

In this section, we will first describe the sparse coding
scheme, which is based on the kernel density estimation,
followed by the approach of projecting sparse vectors

447

into low dimensional space using compressed sensing
theory.

3.1. Sparse Coding using RBF Kernel

Our goal is to create the sparse representations that
preserve the relationship between the data points. Let
D = {x1,...,xn} be a large database, where x; € R?
is a vector with d > 1 dimension. Assume x, and z; are
two data points in D. we consider the following measure

oY)

g Xa,Xb

E R Xayxz Xb7XL)
’i:1

Here x(x,x’) is a RBF kernel given by

[x — '3

")

Since g(x,,xp) defined in Eq.(1) can also be writ-
ten as g(Xq,Xyp) u' (x,)u(xp), where u(x) =
ﬁ(m(x,xl), ..., k(x,xn)) T, we can use u(x) as the
representation of x. The main problem of using the rep-
resentation u(x) is its high dimensionality as the size
of u(x) is N, where N is the size of the database D.
We address this problem by exploring the concentration
inequality of integral operator [4].

Let H be the Reproducing Kernel Hilbert Space
(RKHS) endowed with the kernel x(-, -), and let | f| =
/{f, f)# be the norm defined in . We define an inte-
gral operator L : H — H as

E K X“'
z:l

K(x,x) = exp (-

(2)

It is easy to see that

</€(Xa7 ')7 L(K(Xb’))>H

Based on the concentration inequality for integral op-
erator, we can approximate L by a low rank operator,
leading to a compact representation for data points in D.
More specifically, let X1, ...,X,, be m anchor points
generated from D. One can simply use random sam-
pling or k-means ! to generate the anchor points [14]
and we will discuss this in our experiments.

Using the anchors, we approximate L by L

m
1
= — E RXL,'
m
1=1

I'The anchor points can be set to the cluster centers returned by the
k-means algorithm with cluster number m. There is no need to wait
the k-means converges and we can stop it after p iterations, where p is
a parameter (5 is usually enough).

g(Xaa Xb) =

3)

As a result, we obtain a compact representation t(x) =
ﬁ(m(il, yeoos K(Xm,-)) . The following theorem
shows that with a high probability, for any x, and x,
luT (x,)u(xp) — U’ (x4)U(xp)| is small if m is suffi-
ciently large.

Theorem 1. Let L be the integral operator constructed
based on m anchor points, as shown in Eq.(3). With a
probability 1 — 0, for any X, and xp, we have

)| < 21n(2/5) , [21n(2/3)

lu" (xa)u(xy) — U (xq)0(xp

The Theorem 1 can be directly derived from the
Lemma 2 in [18]. As indicated by Theorem 1, with ap-
propriate m, it is sufficient to represent each data point
x by

o - T
(K(X1,%X)y ..y 6(Xm, X))

Subsequently, we normalize u(x) by [a(x)|; so that
the sum of entries in the vector representation is equal to
1, which leads to the representation of x

1

S Al X)

This normalization step makes all the vectors z more
comparable. More importantly, based on the observa-
tion that all vectors lying in a ¢; ball, to preserve pair-
wise distance, it is sufficient to keep the largest entries
in vectors. More specifically, let h; : R™ — R be a
vector function, where the output of h4(z) is the vector
z with everything set to zero except for its first s entries
with the largest absolute values. Then, according to [7],
for any vectors z € R™ in a ¢; ball, i.e., |z1];1 < 1 and
|z2]1 < 1, there exists a constant C', independent from
71, zg and m, such that for any integer s > 0, we have

z(x) = (Fa(ﬁl,x),...,/@(im7x))—r

|(z1 — 2z2) — hs (z1 — 22)], < 4)

C
NS |21 — 22|

Note that we only need to keep a part of informa-
tion for each point, which leads to the sparse representa-
tion. It is this reduced requirement that makes it possible
to generate a small number of projections to accurately
preserve the distances between the vectors.

Based on Eq.(4), we are determined to keep the in-
formation of a small number of nearest anchors for each
point and we get the final sparse representation of x

1
Z?;l ¢(§i7 X)

z(x) (X1, %), .., VR, X)) (5)

448

x; € S(x)

otherwise

K(X;, X)

0 1=1,2,...

15(3\(1; X) = { y 1M

S(x) stands for the s nearest anchors of x among an-
chor points. It is important to note that the above sparse
coding scheme is also used by Anchor Graph Hashing
(AGH) [14]. AGH uses this coding strategy to speed
up the spectral analysis of the data while our motivation
is to generate sparse codes to meet the sparse require-
ment in RIP. In the next subsection, we show how the
approximate nearest neighbor search can be effectively
performed using these sparse vectors by exploring the
RIP condition.

3.2. Approximate Sparse Representation by
Random Projection

Given the sparse representation of the data points, our
next goal is to create binary codes that approximate the
distances between the sparse vectors. For any data point
x and its sparse representation z(x) € R™ generated by
the proposed sparse coding scheme, we create a K-bits
code b(x) = (b1(x),...,bx(x))" by a linear hashing
method: it first projects z to a low dimensional space by
K linear operators {¢; € R™,i € [K|}, ie., yi(z) =
¢, z,i € [K]; it then creates a binary codeword b(x)
for z(x) by thresholding each dimension by its median,
ie.,

(1 sen(yi(s(x) — 52)) i € [K]
where 7; is the median value in the vector d);'—z(xi), and
sgn(a) = 1if a > 0 and —1 otherwise. We choose
{¢:}X | randomly by drawing {¢;;,i € [K],j € [m]}
independently from a Gaussian distribution A/(0,1/K).
The detailed theoretical analysis is showed as follows.

We first present the Restricted Isometry Property of
random matrices as below.

bi(x) (6)

Theorem 2. (Restricted Isometry Property)(inferred
from Lemma 3.1 in [2]) Assume K < m and let ® be
a random matrix of size m x K whose entries are i.i.d.
Gaussian with mean zero and variance 1/K. If s/m is
small enough and K = cslog(m/s), where c is a con-
stant independent of s, there exists a positive constant
0s < 1 such that with an overwhelming probability, we
have the following inequality hold for any z € R™ with
at most s non-zero entries

(1= 0)l2l3 < 219723 < (1+6,)]al3

Below, we present the property of the random projec-
tion for sparse vectors, which follows directly from the
Theorem 2 and the inequality in Eq.(4). We now state
our main result.

Theorem 3. Assume K < m and let ® € R™*X pe
a random matrix whose entries are i.i.d. Gaussian with
mean zero and variance 1/ K. Choose s < m and K =
cslog(m/s), where c is a constant independent of s. Let
hs : R™ — R™ be a vector function, where the output
of hs(2z) is the vector z with everything set to zero except
for its first s entries with the largest absolute values. Let
L = |®Thy(z, — 22)|2, there exists a positive constant
0s < 1 such that with an overwhelming probability, for
any two vectors |z1|1, |z2]1 < 1, we have

K(1—6,) C
L > 2 0 |y — - =z —
= m (|Zl Z2|2 \/34’—1 ‘zl Z2|1)
K(1+d,) C
L < \—— (|21 — z2]2 + S+1\Zl—22|1)

Theorem 3 provides both lower and upper bounds for
the ¢ norm of the difference between two sparse vec-
tors, which justify the random projection approach for
approximating the difference between sparse vectors in
a /1 ball. Algorithm 1 shows the steps of the proposed
algorithm.

3.3. Computational Complexity Analysis

Given N data points with the dimensionality d, the
computational complexity of Compressed Hashing in
the training stage is as follows:

1. O(pNmd): k-means with p iterations to generate m

groups (Step 1 in Alg. 1).

. O(Nm(d+ s)): Generate sparse representation for data
points (Step 2 in Alg. 1).

. O(NmK): Compute the embedding of the data (Step 3
in Alg. 1).

. O(NK): Compute the hashing codes with respect to the
median values (Step 4 in Alg. 1).

As we can see, the overall computational complex-
ity of Compressed Hashing training is dominated by the
k-means clustering step, which is O(pNmd). In the
testing stage, given a query point, Compressed Hash-
ing needs O(m(d + s)) to compress the query point into
a sparse representation and needs O(mK) to obtain the
binary codes.

4. Experiments

In this section, we evaluate our Compressed Hashing
(CH) algorithm on the high dimensional nearest neigh-
bor search problem. Two large scale real-world data
sets SIFT1M and GIST1M are used in our experiments.

449

Algorithm 1 Compressed Hashing

Input:
D = {x1,...,xn}: the database;
K: the number of bits for hashing codes;
m: the number of anchor points;
h > 0: the kernel width used by RBF;
s: the number of nearest anchors in sparse coding;

1: Apply k-means to compute m cluster centers from the data

points in D, and use them as the anchor points V € R™*<,

. Generate sparse representation Z € R"™*™ for data points
in D, based on the anchor points in V', using Eq.(5).

- Generate linear projections ® € R™** by drawing ®,
from A/(0, 1/ K) independently. Compute the embedding
of databy Y’ = Z®.
Compute the hashing code Y by thresholding Yif . with
respect to the median ¥y.
Output:
The model:

The anchor points: {X;}1%,%; € R%;

The random projection matrix: & € R™**; Binary
hashing codes for the training samples: Y € {0, 1}V **

4:

Both data sets contain one million image features. SIFT
feature is represented by a 128-dim vector and GIST fea-
ture is represented by a 960-dim vector. The data sets are
publicly available?.

For each data set, we randomly select 10k data points
as the queries and use the remaining to form the gallery
database. We use the same criterion as in [19], that
a returned point is considered to be a true neighbor if
it lies in the top 2 percentile points closest (measured
by the Euclidian distance in the original space) to the
query. For each query, all the data points in the database
are ranked according to their Hamming distances to the
query. We evaluate the retrieval results by the Mean Av-
erage Precision (MAP) and the precision-recall curve. In
addition, we also report the training time and the testing
time (the average time used for each query) for all the
methods.

4.1. Compared Algorithms and Settings

We evaluate our proposed Compressed Hashing
method by comparing with seven state-of-the-art meth-
ods for high dimensional nearest neighbor search: Lo-
cality Sensitive Hashing (LSH) [5], Kernelized Local-
ity Sensitive Hashing (KLSH) [12], Shift-Invariant Ker-
nel Hashing (SIKH) [17], Principal Component Analy-
sis Hashing (PCAH) [20], Spectral Hashing (SpH) [21],
Unsupervised Sequential Projection Learning for Hash-
ing (USPLH) [19], Anchor Graph Hashing (AGH) [14].

Zhttp://corpus-texmex.irisa.fr

—e—LSH
—<—KLSH
SIKH

o
&)

—p— PCAH
—+— SpH
USPLH
—v—AGH
—A—CH

N
~

o
w

Mean Average Precision
o
o

o©
=

16 32 48 64

Code Length
(a) SIFTIM

80 96

—e—LSH

0.3[| —«—kLsH
5 SIKH
> —p— PCAH
‘o 0.257]
o
o
o 0.2r
o))
o
2
z 0.15
c
®
= 0.1

0.05

16 32 48 64 80 96
Code Length
(b) GISTIM

Figure 1. The Mean Average Precision of all the algorithms on SIFT1M and GISTIM data sets.

Table 1. Training and testing time of all algorithms on SIFT1M and GIST1M data sets.

Method SIFTIM GISTIM

Training Time (s) Test Time (s) Training Time (s) Test Time (s)

K=32] K=64 K =32 K =64 K=32] K=64 K =32 K = 64
LSH 0.3 0.6 1.1 x10°° 1.9 x10°° 1.4 2.1 2.7 x107° 3.0x10°°
KLSH 10.5 10.7 14.6 x 107% | 16.2 x 107° 29.5 30.7 27.2%x107% | 38.0x107°
SIKH 1.1 2.3 3.4x 107 3.9x 107 1.8 3.4 13.9x107% | 27.5x 107°
PCAH 6.5 7.4 1.1 x 1076 2.0x 107 49.2 52.3 2.7%x 1076 3.0x 107
SpH 25.8 88.2 28.0 x 107° | 101.9 x 107° 65.3 130.8 | 40.2x107° | 116.3 x 107
USPLH 234.1 484.8 3.1x10°° 3.7x107° 13572 | 2732.0 5.3x107°° 9.2 x 107
AGH 144.7 1842 | 55.7x107¢ | 72.0x 1076 242.5 2794 | 83.7x107% | 95.6 x 107°
CH 93.4 98.2 53.5x10°° | 54.4x10°° 194.3 2105 [64.1x10° | 71.5x10°°

We implement LSH, PCAH by ourselves, and use the
codes provided by the authors for the algorithms KLSH,
SIKH, SpH, USPLH and AGH. To run KLSH, we use
the Gaussian kernel and sample 300 training points to
form the empirical kernel map. The bandwidth of Gaus-
sian kernel is set to 0.3. AGH with two-layer is used in
our comparison for its superior performance over AGH
with one-layer [14]. Both our CH method and the AGH
need an anchor-based sparse coding step and we use the
exactly same strategy. There are three parameters: the
number of anchor points (), the number of iterations
(p) in k-means and the number of nearest anchors in
sparse coding (s). We empirically set m = 200,p = 5
and s = 50 for both algorithms. For both methods, the
Gaussian kernel width parameter A is empirically? set to
be 0.3 on SIFT1M and 0.5 on GISTIM.

4.2. Experimental Results

Figure 1 shows the MAP curves of all the algorithms
on the SIFTIM and GIST1M data sets. We can see that
the random projection based algorithms (LSH, SIKH
and KLSH) have a low MAP when the code length is
short. As the code length increases, the performances

3We estimate h by randomly choose 3000 samples and let h equal
to the average of the pairwise distances.

450

of both the two methods consistently increases. On the
other hand, the learning based algorithms, such as SpH
and PCAH, have a high MAP when the code length is
short. However, they fail to make significant improve-
ments as the code length increases. Particularly, the
performance of PCAH decreases as the code length in-
creases. This is consistent with previous work [19] and
is probably because that most of the data variance is
contained in the top few principal directions so that the
later bits are calculated using the low-variance projec-
tions, leading to the poorly discriminative codes [19].
By combining the techniques of sparse coding and com-

Precision
Precision

05 1 05 1

Recall Recall
(a) SIFT1IM (b) GISTIM

Figure 2. The precision-recall curves of all algorithms on
SIFTIM and GIST1M data sets for the codes of 64 bits.

pressed sensing, we successfully preserve the informa-
tion in the low dimensional space. As a result, the pro-
posed CH method achieves satisfied performances on
both data sets and almost outperforms its competitors
for all code lengths. Figure 2 presents the precision-
recall curves of all the algorithms on two data sets with
the code of 64 bits.

Table 1 shows both the training time and test time for
different algorithms on two data sets. Considering the
training time, USPLH is the most expensive to train. The
random projection based algorithms are relatively effi-
cient, especially the LSH. The proposed CH algorithm
uses similar but less training time than AGH due to its
fast process in converting the sparse vectors to binary
codes. Both of them spend most of the training time on
k-means step. In terms of the test time, LSH and PCAH
are the most efficient methods. Both of them simply
need a matrix multiplication and a thresholding to obtain
the binary codes. SpH consumes much longer time than
other methods since it needs to compute the analytical
eigenfunctions involving the calculation of trigonomet-
ric functions. The proposed CH method takes similar
test time with AGH. The most expensive part in CH is
to obtain the sparse representation for the query point.

5. Conclusion

In this paper, we have developed a hashing algorithm
for high dimensional nearest neighbor search by com-
bining the techniques of sparse coding and compressed
sensing. The key idea is to first generate compact sparse
codes based on the theory of density function estima-
tion for high dimensional vectors that preserve the rela-
tionship between the data points, and then project sparse
vectors into low dimensional space to preserve pairwise
distances by exploring the RIP condition. Empirical
studies on the large data sets show that the proposed al-
gorithm scales well to data size and significantly outper-
forms the state-of-the-art hashing methods in retrieval
accuracy. In the future, we plan to further explore an-
chors selection methods that are both effective and com-
putationally efficient for large data sets.

Acknowledgments

This work was supported by the National Ba-
sic Research Program of China(973 Program) under
Grant 2011CB302206, Army Research Office (ARO
Award WO911NF-11-1-0383) and National Nature Sci-
ence Foundation of China (Grant Nos: 61125106,
61222207,91120302).

451

References

(1]

(2]

(3]

[4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

A. Andoni and P. Indyk. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimen-
sions. Commun. ACM, 51(1):117-122, 2008.

E. Candes. The restricted isometry property and its
implications for compressed sensing. Comptes Rendus
Mathematique, 346:589-592, 2008.

E. Candes and T. Tao. Decoding by linear programming.
IEEE Transactions on Information Theory, 51:4203 —
4215, 2005.

E. J. Candes, L. Demanet, and L. Ying. Fast compu-
tation of fourier integral operators. SIAM J. Scientific
Computing, 29(6):2464-2493, 2007.

M. Charikar. Similarity estimation techniques from
rounding algorithms. In STOC, pages 380-388, 2002.
M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable dis-
tributions. In SCG, pages 253-262, 2004.

D. Donoho. Compressed sensing. I[EEE Transactions on
Information Theory, 52:1289-1306, 2006.

D. L. Donoho and M. Elad. Optimally sparse representa-
tion in general (non-orthogonal) dictionaries via £1 min-
imization. In PNAS, pages 2197-2202, 2003.

J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon.
Spherical hashing. In CVPR, pages 2957-2964, 2012.
W. Johnson and J. Lindenstrauss. Extensions of Lip-
schitz mappings into a Hilbert space. Contemporary
mathematics, 26:189-206, 1984.

A. Joly and O. Buisson. Random maximum margin
hashing. In CVPR, pages 873-880, 2011.

B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing for scalable image search. In /CCV, 2009.

W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang.
Supervised hashing with kernels. In CVPR, pages 2074—
2081, 2012.

W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing
with graphs. In ICML, 2011.

Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li.
Multi-probe Ish: Efficient indexing for high-dimensional
similarity search. In VLDB, pages 950-961, 2007.

R. Panigrahy. Entropy based nearest neighbor search in
high dimensions. In SODA, pages 1186-1195, 2006.
M. Raginsky and S. Lazebnik. Locality-sensitive binary
codes from shift-invariant kernels. In NIPS, 2009.

S. Smale and D.-X. Zhou. Geometry on probability
spaces. Constr Approx, 30:311-323, 2009.

J. Wang, S. Kumar, and S.-F. Chang. Sequential projec-
tion learning for hashing with compact codes. In ICML,
2010.

X. Wang, L. Zhang, F. Jing, and W. Ma. Annosearch:
Image auto-annotation by search. CVPR, 2, 2006.

Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing.
In NIPS, pages 1753—-1760, 2008.

