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Abstract

We propose a novel unsupervised method for discovering
recurring patterns from a single view. A key contribution of
our approach is the formulation and validation of a joint as-
signment optimization problem where multiple visual words
and object instances of a potential recurring pattern are
considered simultaneously. The optimization is achieved by
a greedy randomized adaptive search procedure (GRASP)
with moves specifically designed for fast convergence. We
have quantified systematically the performance of our ap-
proach under stressed conditions of the input (missing fea-
tures, geometric distortions). We demonstrate that our pro-
posed algorithm outperforms state of the art methods for
recurring pattern discovery on a diverse set of 400+ real
world and synthesized test images.

1. Introduction
Similar yet non-identical objects, such as animals in a

herd, cars on the street, faces in a crowd or goods on a

supermarket shelf, are ubiquitous. There has been a surge

of interest in unsupervised visual perception of such near-

identical objects [1, 2, 3, 4, 5, 6, 7, 8], echoing an observa-

tion that much of our understanding of the world is based on
the perception and recognition of shared or repeated struc-
tures [9]. To capture the recurrence nature within such

patterns, we use the term recurring pattern to refer to the

ensemble of multiple instances of a common visual object
or object for short, which may or may not correspond to a

complete physical object. As shown in Figure 1, each ob-

ject of a recurring pattern is a geometric composition (green

arcs) of visual words (distinct red iconic shapes), where par-

tial matching among the objects is permitted. The recogni-

tion of recurring patterns has applications in effective image

segmentation [4], compression and super-resolution [2], re-

trieval [5] and organization of unlabeled data [7]. More fun-

damentally, a recurring pattern is a domain independent rep-

resentation for semantically meaningful mid-level grouping

(a) a 6-instance recurring pattern

(b) an 8-instance recurring pattern

Figure 1. Unsupervised discovery of recurring patterns in real im-

ages by our proposed algorithm, where partial matching and low

visual word recall rates (75% for (a), 71% for (b)) are allowed.

and scene interpretation [10, 11].

Two classic approaches for recurring pattern detection

are: (A) pairwise visual-word-matching which matches

pairs of visual words across all objects [7]; and (B) pair-
wise object-matching which matches feature point corre-

spondences between a pair of objects [12, 5, 4]. Both of

these methods are limited in that (1) Pairwise matching,

though relatively simple, does not fully utilize all avail-

able information for optimal matching. (2) Visual word-

pair matching also suffers from missing feature points (low

visual word recall rate), as shown by our quantitative eval-

uations (Section 4). (3) Whether it is better to match

object-pairs or visual word-pairs is unknown in advance,

and due to the lack of a global decision mechanism, cur-

rent pairwise-matching systems do not afford flexible and

adaptive switching between the two.

We are thus motivated to propose an alternative joint-

optimization framework for recurring pattern discovery by

matching along both visual word and object dimensions si-
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multaneously (Fig.2). Given the combinatoric nature of the

problem, we further propose to use a Greedy Randomized
Adaptive Search Procedure (GRASP)[13] for optimization.

Our major contributions are: (1) a novel object-visual word

joint optimization framework; (2) an effective adaptation of

GRASP for this joint optimization problem using stochas-

tic ‘moves’ specifically designed for fast convergence; (3)

a formal and explicit treatment of recurring patterns with

potential missing/spurious feature points in real images;

2. Related Work

Recurring pattern discovery has been referred to in the

literature as common visual pattern discovery [14, 5], co-

recognition/segmentation of objects [15, 16, 4], and high-

order structural semantics learning [7]. [15, 17, 18] achieve

unsupervised detection/segmentation of two objects in two

separate images. Yuan and Wu [14] use spatial random

partitioning to detect object pair(s) from one or a pair

of images; Cho et al. formulate the same problem as

correspondence association solved by MCMC exploration

[16] and graph matching [3], respectively. [5] adopts

graph matching to detect multiple recurring patterns be-

tween two images. To detect more than 2 recurring in-

stances, Cho et al. generalize feature correspondence asso-

ciation under a many-to-many constraint and perform mul-

tiple object matching using agglomerative clustering [19]

and MCMC association [4]. Both approaches are pairwise-
object matching based methods. Gau et al. [7] use the ap-

proach of pairwise visual word-matching, while assuming

that visual words can be detected on all recurring instances

(i.e. a 100% feature recall rate is required).

Our method differs from previous work in two significant

ways: (1) it solves a simultaneous visual word-object as-

signment problem; and (2) it explicitly and effectively deals

with missing/spurious feature points in recurring patterns

(feature recall rate from an image can be lower than 100%).

Another line of related work is unsupervised category

discovery, e.g. [1, 20, 21]. Categories are found by clus-

tering, typically, 40-1000 input images, and each image

usually contains one (sometimes manually cropped) object.

None of these methods can handle a single image input

without predefined categories.

3. Our approach

We start with a formalization of the concept of a recur-

ring pattern and its components (Fig. 2), followed by a step-

by-step overview of our proposed computational framework

(Fig. 3). The key technical steps are the selection and group-

ing of representative feature points into key visual words

and the exploration of the structural consistency among

their topology/geometry by using GRASP optimization to

discover recurring patterns.

3.1. Formalization of Recurring Patterns

We define a recurring pattern to have at least two visual

objects. Likewise each object of a recurring pattern is re-

quired to have at least two distinct visual words. Thus, the

smallest recurring pattern is conceptually a 4-tuple struc-

ture satisfying certain affinity constraints (Figure 2 (a)). The

visual word distinctiveness requirement forces each object

of a recurring pattern to have a compact representation (no

nested recurrence of visual words within each object), thus

qualifying it to serve as a structural-primitive for recurring

pattern discovery. More importantly, this definition ensures

the uniqueness of each recurring pattern while maximizing

number of object instances. Mathematically, we construct

a recurring pattern Ω as a 2D feature-assignment matrix

where each row corresponds to a visual word and each col-

umn corresponds to a visual object (Figure 2 (b)), that is,

ΩM,N (m,n) = fi, where fi corresponds to a feature point,

m = 1 . . .M, n = 1 . . . N , and M and N are the number

of visual words and objects, respectively. ΩM,N (m,n) = 0
is used to indicate a corresponding feature point is missing.

(a)The 4-tuple structure of the smallest recurring pattern

(b)A recurring pattern in assignment matrix form

Figure 2. (a) two potential objects of a smallest recurring pattern,

n1, n2, each of which contains two visual words m1,m2; (b) The

2D feature assignment matrix, where each row corresponds to a

visual word and each column to a visual object.

3.2. Visual Word Extraction

Given a set of feature points F = {fi|i = 1, . . . ,K}
(e.g., SIFT), a visual word W is a subset of F such that

all feature points in W share strong appearance similarity.

Let vi be the normalized descriptor of fi, such that ‖vi‖2 =
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Figure 3. An overview of the proposed method: (a) input image; (b) extracted and clustered feature points with top 20 clusters color coded;

(c) GRASP optimization framework; (d) automatically discovered recurring pattern after a joint optimization process.

1, we define a normalized affinity metric between features

fi, fj as

A(i, j) =
vTi vj − avg{vTp vq|p, q = 1, 2, . . . ,K}

std{vTp vq|p, q = 1, 2, . . . ,K} . (1)

and evaluate the intra-visual-word similarity of W by

sW =
1

|W|
∑

i,j∈W

A(i, j). (2)

Starting with an initial assignment of W = {i, j} where

A(i, j) is maximum among all feature pairs in F, we use

a forward selection scheme where new feature points fi
are sequentially included into W that maximizes Eqn. 2.

Once Eqn. 2 can no longer be increased, the growing of

the current W stops and the extraction process then contin-

ues on F − W to find the next visual word. Our visual
word forward-selection method differs significantly from

K-means, in that we only extract inlier subsets of F to

form a vocabulary of key visual-words for recurring pat-

terns, while ignoring a considerable amount of background

noise or outliers.

For efficiency, the affinity matrix A can be made sparse

by setting A(i, j) = 0 for A(i, j) < τ . In our experi-

ments, we set τ = 2 to remove feature pairs with distance

that exceeds ‘two-sigma’. Given the sparsity of A, typically

30 ∼ 200 valid visual words can be extracted from a single

image depending on the image content and resolution.

Ideally, different feature points from the same visual-

word W should be present in the corresponding relative lo-

cations of all N objects of a recurring pattern, i.e. N =
|W|. Due to image noise and distortion, we may only ob-

tain N∗ < N inlier feature points for word W while getting

|W | − N∗ outliers. To quantify the levels of such diffi-

culty for recurring pattern discovery algorithms we define

the visual-word recall RVW and precision PVW rates re-

spectively as: RVW = N∗/N,PVW = N∗/|W|.

3.3. Object Geometric Affinity and a Joint Opti-
mization Problem

Objects of a potential recurring pattern need to be
supported not only by the appearance similarity of their
matched feature-pairs from distinct visual words, but also
by the geometric consistency of the spatial layouts of their
corresponding visual words across objects. The geomet-
ric configuration of an entry (feature point) in Ω(m,n) is
defined by (xm,n, sm,n, θm,n), denoting the centroid, scale
and rotation of the corresponding local image patch. The
geometric affinity metric for a 4-tuple feature structure, the
smallest recurring pattern (Fig. 2(a)), is defined over two
distinct visual words wmi , wmj and 2 objects onp , onq as

g(mi,mj , np, nq) = exp (− Δ2
θ

2σ2
θ

− Δ2
s

2σ2
s

), (3)

where Δs and Δθ are normalized scale and angular dis-

tances measured by

Δs =
1

2

∑

m=mi,mj

sm,nq
− r · sm,np√

r · sm,np
sm,nq

, (4)

Δθ =
1

2

∑

m=mi,mj

∠(θm,nq
− θm,np

− θ0), (5)

r = d(xminq − xmjnq )/d(xminp − xmjnp), ∠(·) is abso-
lute angular distance, and θ0 is the angle between line seg-
ment xminpxmjnp and xminqxmjnq (Fig. 2(a)). Parameters
σθ, σs control the tolerance for shape deformation; both are
set to 0.2 in the experiments. The overall geometric affinity
of a candidate recurring pattern ΩM,N is then given by

G(ΩM,N ) =
1

M ·N −N0

∑

mi,mj=1..M
np,nq=1..N

g(mi,mj , np, nq),

(6)

where N0 is the number of missing features. Finally, we

can formalize recurring pattern detection as a joint opti-
mization problem:

Ω∗ = arg max
Ω,M,N

{G(ΩM,N )}. (7)

Tolerance to missing features:
We set g(mi,mj , np, nq) = 0 in case any of the features
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Alg.1: Greedy randomized adaptive search procedure

Repeat: randomly initialize the feature matrix ΩMN

Repeat: sequentially apply moves1 1-5

Until: no valid moves increase G in Eqn. 7

Until: maximum number of re-initializations reached
1Only moves that improve Eqn. 7 are valid.

in the 4-tuple structure is missing (Ω(m,n) = 0). This

is later compensated for by a smaller normalization term

(M · N − N0) (Eqn.6). Our empirical results demonstrate

that our framework can tolerate missing features as long as

the recall rate RVW ≥ 50% and every object contains at

least 50% of the valid visual words. It can be proven that

the first missing entry from a full M -by-N matrix will on

average decrease the G score by 3/(MN − 1).

3.4. GRASP Optimization

The optimization problem specified in Eqn.7 is NP-hard.

We hereby adopt a Greedy Randomized Adaptive Search
Procedure(GRASP) [13, 22]. This approach is commonly

applied to solve difficult combinatorial optimization prob-

lems, athough it has rarely been applied to computer vision

problems in the past.

3.4.1 GRASP Framework

GRASP is a multi-start metaheuristic algorithm for solving

combinatorial optimization problems. Each iteration con-

sists of two phases: (1) random initialization of a feasi-

ble solution: since GRASP seeks a local optimum for each

random initialization, it is important that a variety of ini-

tial states be generated to fully explore the solution space.

We randomly select 2 visual words for initialization in our

experiments.(2) local greedy optimization: We define 5 ba-

sic local moves to construct a neighborhood-traversal sys-

tem in the solution space: (a)add a visual word, (b)add
an object, (c)modify a single feature point, (d)remove a vi-
sual word and (e)remove an object. These correspond to

adding/removing a row/column or modifying an entry in the

assignment matrix ΩMN (Fig. 2(b)). We apply stochastic

greedy moves, which means that all candidate moves are

evaluated and we randomly select among the top 3 moves

that improve the objective function. This approach lets us

explore a variety of local optima through different random-

ized paths during the expansion of Ω.

3.4.2 Local Moves

For all moves described below, only moves that improve

Eqn. 7 are valid (see Alg. 1).

1. Add-a-visual-word: ΩM,N → ΩM+1,N . Let a new

word candidate contain n′ = 1, . . . , N ′ feature points

(|WM+1| = N ′). The assignment of N ′ points to N ob-

jects can be solved using graph matching by defining an

N ′N -by-N ′N affinity matrix U , with each entry U(i, j)
indicating the co-assignment affinity of n′

i to ni and n′
j to

nj , evaluated by:

U(i, j) =
M∑

m=1

g(m,M + 1, ni, nj). (8)

The assignment of features in the new word WM+1 to each

object can be determined from the optimal binary indicator

vector: x∗ = argmax(xTUx), subject to an additional 1-

to-1 feature allocation constraint.

Eqn.8 reflects one distinctive characteristic of our ap-

proach: we are looking for a consistent matching between

the new candidate WM+1 and all existing visual words

Wm,m = 1, . . . ,M , instead of only isolated pairwise

matches. Although the graph matching problem with 1-to-1
constraints is NP-hard, our subproblem is of small scale,

and can be handled by state-of-the-art empirical graph

matching methods (e.g.[3]).

2. Add-an-object: ΩM,N → ΩM,N+1. Any remain-

ing feature points fi in Wm′ ,m′ = 1, . . . ,M can start

a new column Ωm′,N+1 to propose a new candidate ob-

ject. We then fill in the rest of column N + 1 by in-

dependently examining leftover feature points in Wm as

well as missing features Ω(m,N + 1) = 0, for m =
{1, . . . ,M}�m′, and optimizing the affinity between the

new object N+1 and all existing objects: Ω(m,N+1)∗ =

argmax
∑N

n=1 g(m,m′, n,N + 1).
3. Modify-feature-entries enumerates and replaces all en-

tries in ΩM,N (m,n) with the remaining feature points in

the same words Wm or Ωm,n = 0.

4/5. Remove-a-visual-word/object removes a row or col-

umn from the feature matrix ΩM,N .

4. Experimental Validation
We validate the effectiveness of our algorithm and com-

pare to existing algorithms on four different datasets (422

images total): (1) a synthesized image set (262 images) gen-

erated under controlled visual words precision/recall rates

and geometric deformations (Fig. 5); (2) a subset of pub-

lic domain supermarket image set [23] (100 images); (3) a

public domain face dataset [24] (30); and (4) our own col-

lection of various real world recurring patterns (30 images

containing diverse photos, paintings and texture synthesized

images).

Generalization to multiple patterns/images: Although

the description of our approach (Section 3) has focused on

discovering a single recurring pattern in a single image, we

can generalize it to multiple patterns/images. We treat mul-

tiple images as one huge image and impose an extra con-
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straint that forbids feature points across different images to

be associated to form an ‘object’. Multiple recurring pat-

terns are discovered with a recursive greedy approach: each

time a pattern is discovered, all its associated feature points

are removed and the discovery process restarts.

4.1. Controlled Stress-Test and Comparison

We carefully divide computational challenges at the in-

put feature level for recurring pattern discovery into 3 cate-

gories: (1) low visual word recall rate Rin due to imper-

fect feature extraction, (2)low visual word precision rate
Pin due to background clutter, and (3) noisy feature loca-
tions due to geometric deformation. To control the level of

difficulty, we simulate these challenges on an image of coins

by randomly eliminating feature points, generating outlier

features at random locations, and adding Gaussian noise to

feature point locations (Fig. 5)(a). The performance of the

algorithms is then evaluated at the object-level by the ob-
ject recall (Rout) and precision(Pout) rates (with known

ground-truth). We compare our method with the pairwise

visual word association method in [7], at different levels of

visual-word recall/precision rate as well as geometric defor-

mation as plotted in Fig. 4. It is interesting to note that under

high input feature recall rate Rin, performance difference is

minimal; it is when the feature recall Rin is low that the

algorithms diverge in performance. Compared with [7], our

proposed approach illustrates robustness against low Rin

(red curves in Fig. 4) and has a low false alarm rate in all

cases. Object recall/precision rates under varying geometric

deformation levels are shown in Fig. 4(c,d).

Computational time and Repeatability We provide em-

pirical time estimates for GRASP optimization on the coin

(a) (b)

(c) (d)

Figure 4. Quantitative evaluation under controlled conditions.

Alg.1: our approach (Red); Alg.2: [7] (Green). We show the ob-

ject recall and precision rates under two levels of feature recall and

precision rates, 0.9 and 0.7, respectively, while fixing the geomet-

ric deformation at level 5. See the full evaluation and movie in our

supplemental material.

(a)

(b)
Figure 5. (a) Synthesized coins with increased geometric deforma-

tion (left to right). top: results of our approach; bottom: results of

[7]. (b) Average convergence time (seconds) of GRASP optimiza-

tion versus the number of input feature points

images under different Rin, Pin and deformation levels

as plotted in Fig.5(b). The average convergence time af-

ter each random initialization appears to be linear with the

number of input feature points (total input visual words).

Although the GRASP optimization requires repeated calcu-

lation and evaluation of candidate moves, most calculation

involves the geometric affinity estimation of Eqn. 3. These

affinities can be pre-computed on all 4-tuple combinations,

and the main computation during optimization is only the

summation and indexing from Eqn. 7. The algorithm is im-

plemented using Matlab with no compiler optimization and

was run on a 2.6GHz, i7 CPU. To evaluate the repeatabil-

ity and variance of GRASP initialization, we performed 30
random initializations for GRASP, and observed on aver-

age that 29% of the attempts end up with equivalently high

Rout/Pout performances.

4.2. Supermarket and Face Datasets: Validation
and Comparison

Supermarket scene images typically contain multiple re-

curring patterns. We evaluate dominant patterns detected

by the algorithm in [7] and our approach. We also run our

algorithm on the face dataset used in [7]. For each run we

randomly form a collage of 6 ∼ 24 faces, and repeat 30
times. The result statistics on both datasets are given in Ta-

ble 1. Sample results of our algorithm on the supermarket

and face datasets are shown in Fig. 6.
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Figure 6. TOP: Sample results of our algorithm on the supermarket

scene (Table 1) where it captures multiple recurring patterns in

single images. BOTTOM: Sample results on a collage from the

face dataset with object-level precision rate 98.4% and recall rate

63.8% (Table 1 right column).

Dataset supermarket face

#Total recurring patterns 100 30
Avg. #obj/per pattern ±std 8.82± 4.47 22± 2.86

Recall rate (%) [ours] 87.8 63.8
Recall rate (%) [7] 71.5 39.4

Precision rate (%) [ours] 95.4 98.4
Precision rate (%) [7] 88.5 96.3

Table 1. Object-Level precision/recall rates on publicly available

Supermarket [23] and Face [24] datasets

(a) Result of [19] (c) Result of [19]

(b) Result of [19] (d) Our Result finds 3 RPs
Figure 7. Qualitative comparison with [19]. The top 3 object pair

clusters detected by [19] are shown in r,g,b in (a),(b),(c). Corre-

sponding results of our algorithm for (a) and (b) can be found in

Figure 1. In (c) 29 object pairs (out of 178) detected by [19] while

our approach recognizes 3 dominant recurring patterns with 13-,

11-, 6-instances respectively, achieving an average object detec-

tion recall rate of 90%.

4.3. Qualitative Comparisons

State-of-the-art work in object-pair matching [19] uses

agglomerative clustering (many-to-many) for recurring pat-

tern detection. We use the publicly available code of [19],

setting the parameter for number of initial matches to 4, 000

and maximum matches per feature to 10. The output of

the algorithm is associated object pairs: feature point corre-

spondences between the same object pair are associated to-

gether and shown in the same color. As can be seen in Fig.7,

[19] recognizes 3 (overlapping) object pairs (red,green,

blue) in (a) and (b) instead of the recurring patterns that

contain 6 babies and 8 cars respectively. The algorithm thus

fails to recognize the smallest recurring ‘object’ in these

cases, which is an issue not addressed by previous work.

In Fig.7(c), [19] recognizes 29 object pairs, while the im-

age contains 3 recurring patterns with N1 = 14, N2 = 12
and N3 = 7 instances, respectively, which result in a to-

tal of
∑

i

(
Ni

2

)
= 178 groundtruth object pairs. The main

reason for this is that pairwise-independent object matching

does not consider recurring patterns of multiple instances as

a whole.

4.4. Real World Recurring Patterns: Validation

The recurring pattern dataset we have collected contains

a variety of challenging real-world images including street

views, architecture, faces, animals, hand-painting, texture-

like patterns and objects with symmetries. The recurring

patterns exhibit different levels of deformation, rotation,

scaling, background clutter, image resolution and a wide

range in the number of recurring instances (from 2 to 30).

Sample results of our approach are shown in Figures 1 and

8. Our method achieves an object recall rate of 92% with an

object precision of 96%.

4.5. Applications

As a byproduct of recurring pattern discovery, we can

directly match and register (visual word by visual word) all

instances found in a recurring pattern, which can be further

used for regularity evaluation and categorization. Fig. 9(a)

shows a detected recurring pattern with an average pairwise
normalized correlation (APNC) score of 0.86 after pattern

registration, suggesting high likelihood of a doctored photo

of crowds, as compared with an APNC score of a small

group of llamas at 0.64 (Fig. 9(b)). Using the average ob-

ject geometry deformation and the APNC score of a recur-

Figure 9. (a) a doctored photo with found recurring pattern:

APNC score = 0.86; (b) an example of registered recurring pat-

tern of a group of llamas with an APNC scores of 0.64, indicating

their inherent and statistically significant category differences.
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Figure 8. Sample output of our algorithm. Object recall and precision rates are 92% and 96% respectively. Average objects per recurring

pattern is 10. Worth noting: bottom-left painting contains only all the chicks facing to the left while the rotated object instances in the

top-right image are found completely. This reflects that at object-level the instances are shift- and rotation-invariant yet not reflection

invariant.

ring pattern to approximate its quantified regularity in a 2D

space (Figure 10), we observe a striking relation between

recurring pattern categories and their geometry/photometry

deviation from perfect regularity. We thus see much poten-

tial of our unsupervised recurring pattern discovery algo-

rithm to contribute to object recognition and pattern catego-

rization.

5. Discussion and Conclusion

Our work is the first to propose a joint object-visual

word level optimization for recurring pattern discovery, ex-

tending beyond popular pairwise matching. We present a

novel adaptation of GRASP and demonstrate its effective-

ness through extensive evaluations on a variety of difficult

synthetic and real-world images. Compared to state-of-the-

art approaches, our method achieves superior object-level

precision and recall rates under challenging stress-test con-

ditions, in particular when feature-level recall rates are low.

Although GRASP is not theoretically guaranteed to reach

the global optimum compared to MCMC, practically it ter-

minates a bad initialization quickly and thus explores the

solution space more efficiently (Fig. 5(b)). The potential ap-

plications of an automated recurring pattern discovery tool

are enormous, ranging from image registration, segmenta-

tion, people/product counting, surveillance to saliency per-

ception. Our future work includes further exploration of

alternative low-level feature descriptors to enrich the visual
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Figure 10. Distributions of automatically discovered recurring pat-

terns by our algorithm arranged in a 2D geometry and appear-

ance regularity space. Point (0,0) means no deviations from a

perfect regular pattern. The general trend agrees with common

sense: man-made rigid objects are more regular than man-made

deformable objects, which are in turn more regular than herds of

animals (cats, penguins, lamas, ducks) and human babies.

word vocabulary, and development of a self-enhancement

strategy for recurring pattern discovery.
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