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Abstract

Late fusion addresses the problem of combining the pre-
diction scores of multiple classifiers, in which each score
is predicted by a classifier trained with a specific feature.
However, the existing methods generally use a fixed fusion
weight for all the scores of a classifier, and thus fail to op-
timally determine the fusion weight for the individual sam-
ples. In this paper, we propose a sample-specific late fusion
method to address this issue. Specifically, we cast the prob-
lem into an information propagation process which prop-
agates the fusion weights learned on the labeled samples
to individual unlabeled samples, while enforcing that posi-
tive samples have higher fusion scores than negative sam-
ples. In this process, we identify the optimal fusion weights
for each sample and push positive samples to top position-
s in the fusion score rank list. We formulate our problem
as a L∞ norm constrained optimization problem and apply
the Alternating Direction Method of Multipliers for the op-
timization. Extensive experiment results on various visual
categorization tasks show that the proposed method consis-
tently and significantly beats the state-of-the-art late fusion
methods. To the best knowledge, this is the first method sup-
porting sample-specific fusion weight learning.

1. Introduction
Recently, “multi-feature late fusion” has been advocated

in the computer vision community, and its effectiveness has

been demonstrated in various applications such as objec-

t recognition [22, 24], biometric analysis [15], video event

detection [14, 24]. Given multiple classifiers trained with

different low-level features, late fusion tries to combine the

prediction scores of all classifiers (the prediction score of

each sample generated by a classifier indicates the confi-

dence of classifying the sample as positive). Such a fusion

method is expected to assign positive samples higher fu-

sion scores than the negative ones so that the overall perfor-

mance can be improved. Although very simple, this method

has proved to be effective in improving performance of each
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Figure 1. An illustration of the proposed sample-specific late fu-

sion method. Given n images and their prediction score vectors
si (i = 1, . . . , n), where the images with green and red borders
are respectively labeled as positive and negative while the others

are unlabeled, we want to learn a fusion weight vectorwi for each
sample. The problem is cast into an information propagation pro-

cedure which propagates the fusion weights of the labeled images

to the individual unlabeled ones along a graph built on low-level

features. During the propagation, we use an infinite push con-

straint to ensure the positive samples have higher fusion scores

than the negative samples. The fusion scoresw�i si can be used to
rank the images where the positive images will appear at the top

positions of the rank list. This figure is best viewed in color.

individual classifier and also produces highly comparative

results to multi-feature early fusion methods [21, 24].

The simplest approach to late fusion is to estimate a fixed

weight for each classifier and then use a weighted summa-

tion of the prediction scores as the fusion result. Obviously,

this assumes all the prediction scores of a classifier share

the same weight and fails to consider the differences of the

classifier’s prediction capability on individual samples. A

classifier, in fact, does have different prediction capabili-

ties on different samples, where some samples are correctly

predicted while others are not. Therefore, instead of using

a fixed weight for each classifier, a promising alternative is

to estimate the specific fusion weights for each sample to
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alleviate the individual prediction errors from the imperfect

classifiers and achieve robust fusion.

Discovering the sample specific fusion weights is a non-

trivial task due to the following issues. First, given the pre-

diction scores of a test sample, since its label information

is unavailable, it is unknown how to determine the sample

specific fusion weights for such an unlabeled sample. Sec-

ond, to get a robust late fusion result, we need to maximally

ensure positive samples have the highest fusion scores in

the fusion result. Indeed, the visual recognition task can

be seen as a ranking process that aims at assigning positive

samples higher scores than the negative samples.

In this paper, we address the above issues by propos-

ing the Sample Specific Late Fusion (SSLF) method, which

learns the optimal sample-specific fusion weights from su-

pervision information while directly enforcing that positive

samples have the highest fusion scores in the fusion result.

Figure 1 illustrates the framework of our proposed method.

Specifically, we define the fusion process as an information

propagation procedure which propagates the fusion weights

learned on the individual labeled samples to the individual

unlabeled ones. The propagation is guided by a graph built

on low-level features of all samples, which enforces visual-

ly similar samples have similar fusion scores and offers the

capability to infer fusion weights for unlabeled samples. To

ensure most positive samples have the highest fusion scores

as possible, we use the L∞ norm infinite push constrain-

t to minimize the number of positive samples scored low-

er than the highest-scored negative sample. By this propa-

gation process, we identify the optimal sample-specific fu-

sion weights and push positive samples to have the high-

est fusion scores. We will demonstrate experimentally the

proposed method can achieve significant performance gains

when evaluated over various visual recognition tasks.

2. Related Work
Nandakumar et al. [15] employed the Gaussian mixture

model to approximate the score distributions of the classi-

fier, and then performed score fusion using likelihood ratio

test. Terrades et al. [22] developed a supervised late fusion
method which tried to minimize the classification error rates

under L1 constraints on the fusion weights. However, these
works focus on classifier-level fusion which determines a

fixed weight for all prediction scores of a specific classifier.

Such fusion methods blindly treat the prediction scores of a

classifier as equally important and cannot optimally deter-

mine the fusion weights for each sample.

Recently, Liu et al. [14] proposed a local expert forest
model for late fusion, which partitioned the score space in-

to local regions and learned the local fusion weights in each

region. However, the learning can only be performed on

the training samples whose label information is provided,

and hence cannot be applied to learn the fusion weights on

the test samples. In addition, the partition requires a thresh-

old, which is difficult, if not impossible, to predefine. One

promising work that tries to obtain sample specific fusion

scores is the low rank late fusion method proposed by Ye et
al [24]. Specifically, they converted the prediction score
vectors of multiple classifiers into various pairwise relation

matrices and then extracted a shared rank-2 matrix by de-
composing each original matrix into a common rank-2 ma-
trix and a sparse residual matrix. Finally, a score vector is

extracted from the rank-2 matrix as the late fusion result.
Despite its benefits, in practice, when seeking shared score

patterns across the classifiers, supervision information is not

present. As a result, it totally depends on the agreement of

different classifiers, which may blindly bring the common

prediction errors shared across different classifiers into the

final fusion. Instead, we focus on learning the optimal fu-

sion weights for the individual samples by exploiting the

supervision information, which accounts for the differences

in the classifiers’ prediction abilities on the individual sam-

ples, and hence achieve robust fusion.

We are motivated by the recent infinite push ranking

method in machine learning. One representative work is the

support vector infinite push method [1], which introduces

theL∞ push loss function into the learning-to-rank problem
with the purpose of maximizing the number of positive sam-

ples on the absolute top of the list [20]. Rakotomamonjy et
al. [19] further developed a sparse support vector infinite
push method, which incorporated feature selection into the

support vector infinite push method. However, these meth-

ods can only learn a uniform ranking function for all the

test samples, and cannot be applied to the sample specific

fusion weight learning. Related work can also be found in

graph-based semi-supervised learning [3, 25], but they are

restricted to estimating the classification or ranking score

of each node, and thus cannot be used to learn the weights

for fusion. Our method is related to instance-specific met-

ric learning [26], which aims at deriving a proper distance

metric for each instance rather than optimally determining

the fusion weights of each instance for ranking.

3. Learning Sample-Specific Fusion Weight
In this section, we will introduce our Sample-Specific

Late Fusion (SSLF) method. We first present the notation

and definition, and then describe the problem formulation.

3.1. Notation and Definition

Suppose we have a set of m classifiers Ci’s (i =
1, . . . ,m), each of which is learned based on one type of
feature. The proposed method works in a transductive set-

ting in which l labeled samples {xi, yi}li=1 and u unlabeled
samples {xi}l+u

i=l+1 are available, where yi ∈ {0, 1} is the
label of sample xi. Specifically, the labeled samples are re-
sponsible for providing supervision information while the
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unlabeled samples correspond to test samples whose pre-

diction confidences are expected from the fusion. Since our

method works on the prediction scores of the classifiers, it

is important to note that the labeled samples employed in

our method should be disjoint from the training samples

used for classifier training. This is due to the fact that the

ground-truth labels of the training samples have been ex-

ploited by the classifiers, making the prediction scores on

these training samples bias toward the ground-truth labels.

Such prediction scores cannot reflect the classifier’s predic-

tion capabilities on unseen samples, defeating the value of

a fusion method. In real-world visual classification tasks,

such labeled sample set can be easily obtained. For exam-

ple, besides training and test set, many visual classification

tasks also provide a validation set for parameter selection.

In this case, we can directly apply it as our labeled sample

set. Even when the validation set is not available, we can

also obtain such samples by splitting from the training sam-

ples before classifier training or crawling online resources.

By applying the classifiers on the labeled samples and

unlabeled samples, we obtain a labeled score vector set

{si, yi}li=1 and unlabeled score vector set {si}l+u
i=l+1, where

si = [s1i , . . . , s
m
i ]� denotes the prediction score vector

of sample xi (i = 1, . . . , l + u) with sji being the pre-
diction score of the j-th classifier Cj . Furthermore, for

ease of discussion, we divide the labeled sample set in-

to a positive subset P = {s+i }pi=1 and a negative subset

N = {s−i }ni=1, where s+i and s−i respectively denote the

score vector of a positive sample and a negative sample,

p and n are respectively the total number of positive and
negative samples. Finally, we stack all score vectors into a

matrix S = [s1, . . . , sl+u], where the positive samples are
placed before the negative samples and all unlabeled sam-

ples are placed in the last columns of the matrix.

3.2. Problem Formulation

We want to learn a sample-specific fusion function

fi(si) = w�i si for each sample (i = 1, . . . , l + u), where
wi = [w1

i , . . . , w
m
i ]� is a non-negative fusion weight vec-

tor with wj
i being the fusion weight of s

j
i . Obviously, we

can directly derive the fusion weights of the labeled samples

based on their label information. However, it is non-trivial

to learn fusion weights for the unlabeled samples since there

is no supervision information that can be directly applied.

To solve this problem, we resort to the local smoothness

property in graph-based semi-supervised learning which as-

sumes similar samples have similar labels within a local re-

gion of the sample space. To realize this property, we build

a nearest neighbor graph based on the low level features.

For each sample xi, we find itsK nearest neighbors and es-

tablish an edge between xi and each of its neighbors. The
entry Gij in the weight matrixG associated with the graph

is calculated by

Gij =

{
exp(− d̄(xi,xj)

σ ), if i ∈ NK(j) or j ∈ NK(i),
0, otherwise,

(1)

where NK(i) denotes the index set of the K nearest neigh-

bors of samples xi (we set K = 6 here), d̄(xi, xj) =
1
m

∑m
k=1 d

k(xi, xj) is the average distance between two
samples, in which dk(xi, xj) denotes the distance calcu-
lated based on the k-th feature type (In our experiments,
we use different distances for different features). σ is the
radius parameter of the Gaussian function, which is set as

the mean value of all pairwise average distances among the

samples.

Our late fusion method is formulated as follows:

min
W

Ω(W) + λ�({fi}li=1;P,N ),

s.t. wi ≥ 0, i = 1, . . . , l + u, (2)

whereW = [w1, . . . ,wl+u] consists of l+u fusion weight
vectors to be derived for both labeled and unlabeled sam-

ples, and λ is a trade-off parameter among the two compet-
ing terms. The first term is a regularization term designed

for the purpose of fusion weight propagation:

Ω(W) =
l+u∑
i,j=1

Eij(w
�
i si −w�j sj)

2

=
(
π(W)

)�
L
(
π(W)

)
, (3)

where E = U−
1
2GU−

1
2 is a normalized weight matrix of

G. The matrix U is a diagonal matrix where the (i, i)-
entry is the i-th row or column sum of G. L = (I − E)
is the graph laplacian [2]. π(W) is a vector defined as
π(W) =

(
(W�S) ◦ I)1, where ◦ is the Hadamard matrix

product. Intuitively, the minimization of Eq. (3) enforces a

smooth fusion score propagation over the graph structure,

making similar samples have similar fusion scores. An al-

ternative to the above regularization term is to replace the

score difference (w�i si −w�j sj)
2 with the squared L2 dis-

tance of weight vectors, i.e., ‖wi − wj‖22. However, this
ignores the prediction scores of the individual test samples

and does not fully take advantage of the prediction capabil-

ity of the trained classifiers.

The second term is an infinite push loss function [1],

which tries to minimize the number of positive samples s-

cored below the highest-scored negative. In fact, the num-

ber of positive samples scored below the highest-scored

negative is exactly the maximum number of positives scored

below any negative, which is defined as:

�({fi}li=1;P,N ) = max
1≤j≤n

(1
p

p∑
i=1

Ifi(s+i )<fj(s
−
j )

)
, (4)

where I· is the indicator function whose value is 1 if the
argument is true and 0 otherwise. The maximum operator
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over j equals to calculating the L∞ norm of a vector con-

sisting of n entries, each of which corresponds to one value
based on j in the parentheses of Eq. (4). By minimizing
this penalty, positive samples tend to score higher than any

negative sample. This essentially ensures positive samples

have higher fusion scores than the negative, leading to more

accurate fusion results.

The minimization of Eq. (4) is intractable due to its dis-

crete nature, so we minimize a convex upper bound [1]:

�({fi}li=1;P,N ) = max
1≤j≤n

(
1

p

p∑
i=1

(
1−(w�i s+i −w�j s−j )

)
+

)
,

(5)
where (u)+ = u if u > 0 and 0 otherwise.
Finally, the objective function can be written as:

min
W

(π(W)
)�

L
(
π(W)

)

+λ max
1≤j≤n

(
1

p

p∑
i=1

(
1− (w�i s+i −w�j s−j )

)
+

)
,

s.t. wi ≥ 0, i = 1, . . . , l + u. (6)

The above objective function is convex, and thus can

achieve the global optimum. In the next section, we will

introduce an efficient procedure to solve it.

4. Optimization Procedure
In this section, we follow the optimization procedure

in [19] and derive an Alternating Direction Method of Mul-

tipliers (ADMM) method [4] for the optimization. To this

end, we first drop thewi ≥ 0 constraint, so that the ADMM
method can be applied to solve Eq. (6), and then we project

the solution back to the feasible region.

4.1. ADMM Formulation

We convert the optimization problem in Eq. (6) into the

following problem with linear constraints:

min
W,aij

Ω(W) + λ max
1≤j≤n

(1
p

p∑
i=1

(aij)+
)
,

s.t. aij = 1− (w�i s+i −w�j s−j ). (7)

Then, by defining the matrix J =
[(A

⊗
B)�, (D

⊗
C)�, (F

⊗
B)�]�, where A = Ip,

B = 1�n×1, C = In, D = −1�p×1, F = 0u×p,
⊗

denotes the Kronecker product, X = (W�S) ◦ I,
the vector a composing of all aij’s and the function

g(a) = λmax1≤j≤n

(
1
p

∑p
i=1max(aij , 0)

)
, we arrive at

the following formulation:

min
W,a

Ω(W) + g(a),

s.t. J�X1+ a− 1 = 0. (8)

The augmented Lagrangian of the above problem is

L(W, a, γ, μ) = Ω(W) + g(a) + γ�(J�X1+ a− 1)

+
μ

2
‖J�X1+ a− 1‖22, (9)

where γ is the vector of Lagrangian multipliers of the linear
constraints and μ is a weighting parameter of the quadrat-
ic penalty. Following the experimental practices of ADM-

M [4], we set μ to be 10−4. The above formulation can be
equally rewritten as

L(W, a, β) = Ω(W) + g(a) +
μ

2
‖J�X1+ a− 1+ β‖22,

(10)

where β = γ/μ. Finally, the optimization becomes it-

eratively solving the saddle point of the augmented La-

grangian. At iteration k, we need to solve the following
three sub-problems:

Wk+1 = argmin
W
L(W, ak, βk), (11)

ak+1 = argmin
a
L(Wk+1, a, βk), (12)

βk+1 = βk + J�Xk+11+ ak+1 − 1, (13)

whereXk+1 =
(
(Wk+1)�S

) ◦ I. Next, we will show how
to solve these sub-problems.

4.2. Alternating Optimization

The optimization of Eq. (11) can be written as

min
W

Ξ(W) ≡ μ
2
‖J�X1− t‖22 +Ω(W), (14)

where t = 1−ak−βk and its gradient can be calculated as
∇Ξ(W)

Wij
= tr

[(
μJ(J�X1− t)1� + 2LX11�

)� ∂X
∂Wij

]
, (15)

through which the optimization problem can be solved by a

conjugate gradient descent method.

The optimization problem in Eq. (12) becomes

min
a
g(a) +

μ

2
‖a− t‖22, (16)

where t = 1 − βk − J�Xk+11. To solve the two nested
max operators in g(a), we use the double trick and convert
the problem as in [19]:

min
a+,a−

1

2
‖a+ − a− − t‖22 + max

1≤j≤n

( λ
μp

∑
i∈Gj

a+i
)

s.t. a+ ≥ 0,a− ≥ 0, (17)

where a = a+ − a− and Gj denotes the indices of the pos-
itive samples in vector a that are coupled with the nega-
tive sample sj . This problem can be solved by iterative op-
timization by employing the optimization method in [19],

where a− has a closed-form solution while a+ can be

solved by Douglas-Rachford method [7], which alternate-

ly performs two proximal operators on the positive quad-

rant and the L1,∞ mixed norm until convergence [18]. The

optimization procedure is shown in Algorithm 1.
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Algorithm 1 ADMM for Sample Specific Late Fusion

1: Input: S ∈ R
m×(l+u), L ∈ R

(l+u)×(l+u), {yi}li=1, λ.
2: Initialization: k = 0, a0, β0 = 0,W0 > 0, μ = 10−4.

3: Calculate J ∈ {−1, 0, 1}(l+u)×pn based on the label infor-
mation.

4: repeat
5: t = 1− ak − βk.
6: Wk+1 = argminW

μ
2
‖J�X1− t‖22 +Ω(W).

7: Force the negative values inWk+1 to 0.
8: Xk+1 =

(
(Wk+1)�S

) ◦ I.
9: t = 1− βk − J�Xk+11.
10: Obtain a− and a+ by solving Eq. (17) based on [19].
11: ak+1 = a+ − a−.
12: βk+1 = βk + J�Xk+11+ ak+1 − 1.
13: k = k + 1.
14: until convergence.
15: Output: fi(si) = (w∗i )

�si, i = l + 1, . . . , l + u.

4.3. Algorithmic Analysis

Algorithm 1 is built upon ADMM and Douglas-

Rachford procedure, each of which has shown very good

convergence property. Since the objective function is con-

vex, the algorithm will approach the global optimum. In

our later experiment, we observe that the objective function

value converges to the minimum after few iterations. For

example, in the experiment on Oxford Flower 17 dataset
(see Section 5.1) implemented on the MATLAB platform

on an Intel XeonX5660 workstation with 3.2 GHz CPU and
18GBmemory, Algorithm 1 finishes efficiently within 3.56
seconds on average for each category. Note that the scala-

bility of our algorithm is dominated by the total number of

samples involved in the optimization.

5. Experiments

In this section, we will evaluate the proposed late fusion

method by applying it to various visual recognition tasks

including object categorization and video event detection.

We compare the performances of the following five meth-

ods: (1) Kernel Averaging (KA), we average the kernel ma-

trices of different features to obtain a fused kernel matrix.

This is actually the most common method for early fusion

of multiple features and is proved to achieve highly com-

parative results as multiple kernel learning [9]. Therefore,

we do not include MKL as a comparing baseline since no

significant performance difference is expected. (2) Aver-

age Late Fusion (ALF), we directly average the prediction

scores from all the classifiers as the fusion results. (3) Low

Rank Late Fusion (LRLF), in this method, the prediction s-

cores of each classifier are first converted into a binary com-

parative relationship matrix and a shared rank-2 matrix is
then discovered across all matrices. The final fusion score

vector can be extracted from the rank-2 matrix by matrix

decomposition. (4) Fixed Weight Late Fusion (FWLF), in-

stead of learning sample-specific fusion functions, we learn

a fixed fusion function f(s) = w�s for all the samples.
This essentially applies the same weight wi to all the scores

of the i-th classifier. To achieve this, we replace the fu-
sion function fi(si) = w�i si in our objective function with
f(si) = w�si (i = 1, . . . , l+u). (5) Our proposed Sample-
Specific Late Fusion (SSLF).

Following previous work on late fusion [24], we employ

the probabilistic outputs of the one-vs-all SVM classifier as

the prediction scores, in which each value measures the pos-

sibility of classifying a sample as positive. On each dataset,

we do not manually specify the number of classifiers (i.e.,

the number of features), but directly utilize the available

features on the dataset to train classifiers (one for each clas-

sifier). To evaluate the performance of each method, the Av-

erage Precision (AP) is employed as the evaluation metric.

We calculate AP for each visual category and then calculate

the mean Average Precision (mAP) across all categories of

the entire dataset as the final evaluation metric.

To determine the appropriate parameter for our method

and FWLF, we vary the value of λ in the grid of

{10−3, 10−2, . . . , 103} and then run 2-fold cross validation
on the labeled sample set to select the best parameter value

based on validation performance. Regarding the parameter

setting of LRLF, we follow the suggested parameter setting

strategy as in [24] and choose the best parameter values

based on 2-fold cross-validation. The tradeoff parameter
for SVM is selected from {10−1, . . . , 103} through 5-fold
cross-validation on the training set.

5.1. Results for object categorization

In this subsection, we evaluate our proposed method on

the object categorization task. Two benchmark datasets are

utilized: PASCAL VOC’07 and Oxford Flower 17.

PASCAL VOC’07. This dataset consists of 9, 963 im-
ages which are crawled by querying for images of 20 differ-
ent object categories from Flickr website. For feature rep-

resentations, we directly download the 15 features provided
by [8], including 4 kinds of SIFT Bag-Of-Words (BoW) his-
tograms [12], 4 kinds of Hue BoW histograms [23], 2 kinds
of RGB color histograms, 2 kinds of HSV histograms, 2
kinds of LAB color histograms and 1 GIST feature [17].
The details on the features can be found in [8]. Follow-

ing [8], we use L1 distance for the color histograms, L2 for
GIST, and χ2 for the visual word histograms. For a given
distance matrix, the kernel matrix of SVM classifier is cal-

culated as exp(−d(x, y)/σ) where d(x, y) is the distance
between x and y and σ is the mean value of all the pairwise
distances on the training set.

We follow the standard training (5, 011 images) and test
(4, 952 images) data split provided by this dataset in our ex-
periment. To generate the labeled sample set for late fusion,
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plane bike bird boat bottle bus car cat chair cow table dog horse moto person plant sheep sofa train tv mAP

KA 73.9 54.0 48.5 68.3 19.8 55.2 71.5 50.2 44.1 33.5 44.4 41.6 77.4 60.5 84.9 37.5 36.1 39.1 77.4 42.0 53.0

ALF 70.0 55.4 47.2 62.8 20.4 56.0 69.6 51.9 43.2 39.1 43.5 41.7 76.7 58.2 82.3 33.1 37.7 37.0 76.4 41.1 52.2

LRLF 76.0 57.7 52.8 73.2 24.5 63.5 73.0 53.4 49.3 39.5 48.1 45.7 80.9 62.2 88.1 40.6 40.1 45.5 72.3 42.7 56.5

FWLF 74.6 55.2 50.7 68.9 22.8 57.1 72.5 51.9 46.7 37.1 47.0 43.5 77.8 61.4 85.5 39.4 39.0 42.0 78.1 44.2 54.8

SVM [8] 72.7 53.0 49.1 66.8 25.6 52.4 69.9 50.0 46.0 36.4 43.3 43.9 74.7 59.5 83.4 39.0 39.5 39.9 74.3 42.8 53.1

SSLF 78.0 64.9 58.0 73.1 32.2 64.0 76.4 62.4 57.3 44.6 56.7 51.0 80.4 65.9 87.5 46.5 46.3 49.7 82.9 55.3 61.7

Table 1. Per-category performance comparison (AP %) of different methods on PASCAL VOC’07 dataset. The standard deviations for
FWLF and SSLF are respectively 0.7% and 0.5%.
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Figure 2. Precision/recall curves of different methods on three categories of PASCAL VOC’07 dataset. This figure is best viewed in color.
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Figure 3. Example images and their rank positions in the fusion

score rank list obtained from different fusion methods. For each

method, the rank list is obtained by ranking all 4, 952 test images
in descending order based on the fusion scores.

we uniformly divide the training samples of each catego-

ry into 5 folds, and then use 4 folds as the training data
for SVM training while using the remaining 1 fold as the
labeled sample set for late fusion. The experiments are re-

peated 5 times so that each fold can be used as the labeled
sample set, and the average result is reported. Note that such

splits are only applicable in the FWLF and SSLF methods

which need supervision information. For other methods in-

cluding KA, ALF, LRLF, we still use the original data split.

Table 1 shows the per-category performances of all the

methods in comparison. From the results, we have the fol-

lowing observations: (1) The proposed SSLF method con-

sistently beats all the other baseline methods by a large mar-

gin, which demonstrates its effectiveness in determining the

optimal fusion weights for each sample. (2) The LRLF,

FWLF and SSLF late fusion methods all outperform the

ALF method. This is due to the fact that the former method-

s take advantage of additional knowledge (either consistent

score patterns across the classifiers or supervision informa-

tion) while the latter only blindly averages the scores from

different classifiers without accounting their difference. (3)

The sample level late fusion methods including LRLF and

SSLF outperform the FWLF. The reason may be that FWLF

only tries to learn uniform fusion weights for all the sam-

ples and hence cannot discover the optimal fusion weights

for each sample. (4) Our SSLF method performs better than

LRLF method, since the latter does not exploit the supervi-

sion information. In Figure 2, we show the precision-recall

curves of different methods for some representative cate-

gories. As can be seen, the precisions of our method are

higher than the other methods when the recall varies from 0
to 1. This clearly demonstrates that our method is able to as-
sign higher fusion scores to the positive samples. In our ex-

periments, we also observe that prediction scores frommore

reliable classifiers tend to have higher fusion weights than

the scores from the less reliable classifiers. Figure 3 shows

the rank positions of some example images after ranking

the 4, 952 test images based on fusion scores of different
methods. As seen, SSLF can successfully rank the images

at higher positions in the rank list.

Oxford Flower 17. The Oxford Flower 17 dataset is
a benchmark dataset for multi-feature object categoriza-

tion [16]. This dataset consists of 1, 360 images falling in-
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to 17 different species of flowers, and each class contains
80 images. We use the predefined training (17 × 40), val-
idation (17 × 20) and test (17 × 20) data splits along with
the χ2 distance matrices calculated from different features

in our experiment. There are seven features provided by

this dataset, including color, shape, texture, HOG [6], clus-

tered HSV values, SIFT feature on the foreground boundary

(SIFTbdy) and SIFT feature on the foreground internal re-

gion (SIFTint). For SVM classifier, we use the χ2 kernel
and the best parameter C is selected via validation perfor-
mance on the validation set. We use the validation set as the

labeled sample set for FWLF and SSLF.

The results of our proposed method and all other base-

line methods are shown in Table 2. As can be seen, our

proposed method outperforms all the baseline methods. A-

gain, the experiment results demonstrate the superiority of

the proposed method. Figure 4 shows the image ranking

results of different fusion methods.

methods mAP

KA 86.0 ± 1.7
ALF 86.9 ± 2.1
LRLF 91.7 ± 1.7
FWLF 91.2 ± 1.5

Our SSLF Method 93.40± 1.3

Table 2. Performance comparisons (AP%) on Oxford Flower 17.
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Figure 4. Top 15 images ranked with the fusion scores of different
methods. Images with red borders are incorrect. This figure is best

viewed in color.

5.2. Results for video event detection

We also test our method on the task of video event detec-

tion, in which the TRECVID 2011 Multimedia Event De-

tection (MED) development set and Columbia Consumer

Video (CCV) are utilized as the testbed.

TRECVID 2011 MED development set. This dataset
contains 10, 804 video clips from 17, 566 minutes of we-
b video programs falling into five event classes and the

background class. The five events are attempting a board
trick, feeding an animal, landing a fish, wedding ceremony,
and working on a woodworking project respectively. The
dataset is partitioned into the training set (8, 783 videos)
and test set (2, 021 videos). The training set contains 8, 273
background videos that do not belong to any of the event

classes, making the detection task challenging.
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Figure 5. Per-category performance comparison on TRECVID

MED 2011 development dataset. The five events from left to right

in the horizontal axis are (1) “attempting a board trick”, (2) “feed-
ing an animal”, (3) “landing a fish”, (4) “wedding ceremony”,
and (5) “working on a woodworking project” respectively. The
standard deviations of mAP for FWLF and SSLF are respectively

1.1% and 1.3%. This figure is best viewed in color.

Given a video clip, we sample 1 frame every 2 sec-
onds. For each frame, we extract 5, 000-dimension
SIFT BoW and then average all frame features within a

video as the static video representation. We also extrac-

t 5, 000-dimension Spatial-Temporal Interest Points (STIP)
BoW [13] and 4, 000-dimension Mel-Frequency Cepstral
Coefficients (MFCC) BoW. We use the L2 distance to cal-
culate the distance matrix of each feature and then train

SVM classifiers with χ2 kernel. Following the experiment
setting on PASCAL VOC’07, we uniformly split the train-

ing samples into 5 folds and use 4 folds for SVM training

and 1 fold for learning fusion weight. The experiments are
repeated 5 times and the averaged result is reported.

Figure 5 shows the per-event performance of all the

methods. As can be seen, our method achieves the best

performance on four out of the five events. Specifically,

our method outperforms the KA, ALF, LRLF and FWLF

by 10.3%, 10.1%, 5.3% and 5.1% respectively in terms of

mAP. Moreover, it achieves the best performances on most

of the event categories. For instance, on event “feeding an

animal”, our method outperforms the best baseline FWLF

by 7.4%. Once again the experiment results demonstrate
the effectiveness of our method.

CCV. This dataset contains 9, 317 YouTube videos an-
notated over 20 semantic categories, where 4, 659 videos
are used for training and 4, 658 videos are used for test-
ing [11]. We downloaded three kinds of low-level fea-

tures provided by this dataset as the feature representa-

tions which include 5, 000-dimension SIFT BoW, 5, 000-
dimension STIP BoW and 4, 000-dimension MFCC BoW.
We follow the same setting as in the TRECVID MED

dataset and the per-category results are shown in Figure 6.

From the results, we can see that the proposed SSLF

achieves the best performance in terms of mAP, where it

outperforms KA, ALF, LRLF and FWLF by 8.7%, 9.3%,
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Figure 6. Per-category performance comparison on CCV dataset. The 20 categories from left to right in the horizontal axis are (1)

“basketball”, (2) “baseball”, (3) “soccer”, (4) “ice skating”, (5) “skiing”, (6) “swimming”, (7) “biking”, (8)“cat”, (9)“dog”, (10)“bird”,
(11)“graduation”, (12)“birthday”, (13)“wedding reception”, (14)“wedding ceremony”, (15)“wedding dance”, (16)“music performance”,
(17)“non-music performance”, (18)“parade”, (19)“beach”, (20)“playground” respectively. The standard deviations of mAP for FWLF and
SSLF are respectively 0.2% and 0.4%. This figure is best viewed in color.

5.4% and 4.9% respectively. This demonstrates that our

method is effective in the task of video event detection.

5.3. Discussion

We note that we can apply the classical out-of-sample

extension method in transductive learning to estimate the

fusion score of a new sample [5, 10, 24]. For a new test

sample z, we can use the low-level feature to find a set
of nearest neighbors {xi}qi=1 from all samples in the o-

riginal dataset, where xi is a neighbor of z and q is the
total number of neighbors. Based on the neighborhood

set, the late fusion score can be determined as f(z) =∑q
i=1

G(z,xi)∑q
i=1 G(z,xi)

(w∗i )
�si, where G(z, xi) is the similar-

ity between z and xi, and (w
∗
i )
�si is the fusion score of xi

obtained on the original dataset. In this way, we obtain the

fusion score for the unseen sample.

6. Conclusions
We have introduced a sample-specific late fusion method

to learn the optimal fusion weights for each sample. The

proposed method works in a transductive setting which

propagates the fusion weights of the labeled samples to the

individual unlabeled samples, while leveraging the infinite

push constraint to enforce positive samples to have higher

fusion scores than negative samples. The process is for-

mulated into a convex objective function, and the ADMM

method is employed for the optimization. Extensive exper-

iments have demonstrated the effectiveness of the proposed

method on various visual category recognition tasks includ-

ing object categorization and video event detection. For fu-

ture work, we will pursue the sample-specific late fusion for

multi-class and multi-label visual recognition tasks.
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