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Abstract

We propose an uncalibrated photometric stereo method
that works with general and unknown isotropic reflectances.
Our method uses a pixel intensity profile, which is a se-
quence of radiance intensities recorded at a pixel across
multi-illuminance images. We show that for general
isotropic materials, the geodesic distance between intensity
profiles is linearly related to the angular difference of their
surface normals, and that the intensity distribution of an
intensity profile conveys information about the reflectance
properties, when the intensity profile is obtained under uni-
formly distributed directional lightings. Based on these ob-
servations, we show that surface normals can be estimated
up to a convex/concave ambiguity. A solution method based
on matrix decomposition with missing data is developed for
a reliable estimation. Quantitative and qualitative evalua-
tions of our method are performed using both synthetic and
real-world scenes.

1. Introduction
Photometric stereo recovers the surface normals of a

scene from a set of images recorded under varying lighting

conditions. The original method of Woodham [32] assumes

Lambertian reflectance and known directional lightings. To

make the approach more practical, there have been a variety

of recent studies on relaxing these assumptions. Most focus

on relaxing either of the two assumptions while retaining

the other.

There are previous approaches that estimate surface nor-

mals under less restricted conditions by making use of in-

tensity profiles [16, 19, 26, 25]. An intensity profile is an

ordered sequence of measured intensities at a pixel under

varying illumination. The ordered measurement can offer

information that cannot be found in the bare set of measure-

∗Part of this work was done while the first author was visiting Microsoft

Research Asia as a research intern. This work was also supported in part

by Grant-in-Aid for Scientific Research on Innovative Areas “Shitsukan”

from MEXT, Japan.

ments. However, the previous methods have certain limi-

tations in recovering the surface normals. They either still

require calibrated lightings or Lambertian reflectance [25]

or only cluster similar surface orientations [19], or require

additional assumptions on occluding boundaries, certain re-

flectance models [26], and calibrated reference objects [16].

In this paper, we further exploit the observation on in-

tensity profiles and develop a photometric stereo method

that works with general and unknown isotropic bidirection-

al reflectance distribution functions (BRDFs) and unknown

lighting directions. We show that the proposed method

can reliably recover surface normals up to a binary con-

vex/concave ambiguity when the scene has a uniform (up

to albedo differences) reflectance.

Our method has the following advantages over the previ-

ous methods. First, our method solves a more general prob-

lem compared with the prior ones. We assume uncalibrated

lights and unknown and general isotropic BRDFs. Our so-

lution method is highly deterministic without assuming oc-

cluding boundaries or certain reflectance models, and it re-

covers surface normals up to only a binary convex/concave

ambiguity. Second, we show the relation between the sur-

face reflectance property and the intensity distribution of

the observed intensity profile. In particular, we calculate

the skewness of the intensity distribution and demonstrate

that the skewness can be used to infer an important linear

coefficient for recovering the surface normals for unknown

reflectance, without using reference objects or other priors.

Finally, we develop a robust solution technique that only s-

elects and uses reliable measurements for highly correlated

surface normals, which makes a step toward practical pho-

tometric stereo.

1.1. Previous work

A variety of previous studies have been conducted to

relax the constraints of the Lambertian model and known

lighting directions in photometric stereo. Non-Lambertian

reflectances have been handled either by 1) regarding non-

Lambertian components as outliers, or 2) using more gen-

eral reflectance models. The former class of method-
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s finds non-Lambertian observations in a robust estima-

tion framework using color-cues [4], median filter [22],

rank-minimization [33], or Markov random field with hid-

den variables [34]. The latter class of methods studies

reflectance properties, such as bilateral symmetry [1], re-

flective symmetry about the halfway vector [18], isotropy

and monotonicity [17, 28], and other reflectance symme-

tries [30]. There are methods that use sophisticated para-

metric models, such as ones that use the Ward model [14, 9],

Lambertian+specular models [23] and bi-variate BRDF rep-

resentation [3]. These methods assume that the lighting di-

rections are known.

There are uncalibrated photometric stereo techniques

wherein the lighting directions are unknown. Most of the

existing methods attempt to resolve the Generalized Bas-

Relief (GBR) ambiguity [6] with the Lambertian model.

Various surface properties are used for resolving the GBR

ambiguity, such as diffuse maxima [12], specularity [11,

10], low-dimensional space [5], minimum entropy [2], in-

terreflections [8], color profiles [27], reflectance symme-

try [30], and certain configuration of the light sources [35].

These methods rely on the assumption that the diffuse re-

flectance component follows the Lambertian model.

Handling both non-Lambertian reflectances and uncali-

brated light sources is far more challenging and, as a re-

sult, has been less studied. Silver [29] and Hertzmann and

Seitz [16] use reference objects that have unknown but the

same reflectance as a target object for estimating its sur-

face normals. Georghiades [13] uses the Torrance-Sparrow

model and proposes to optimize over a large set of variables

including the model parameters, surface normals, and illu-

mination. Chandraker et al. [7] recover surface iso-contours

from the differential images by restricting the positions of

the light sources to a circle around the camera axis. They

need additional information such as an initial normal to de-

termine surface normals. Sato et al. [26] propose a method

that uses intensity profiles for estimating surface normals,

but the method is limited to the Lambertian or Torrance-

Sparrow reflectance models, while our method can deal

with general isotropic reflectances. Okabe et al. [24] use

the similarity of attached shadow codes to deal with gener-

al BRDFs. Both of these methods assume that the surface

has visible occluding contours, which provide knowledge

of surface normals perpendicular to the viewing direction

for resolving the ambiguity. Unlike these approaches, our

method does not require such assumptions about reference

object, initial normals, or visible occluding contours.

2. What does intensity profile tell us?
An intensity profile is a sequence of radiance intensities

recorded at a pixel across multi-luminance images. It has

been used in various problems due to its following proper-

ties when assuming no cast shadow or interreflection.
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Figure 1. Illustration of intensity profiles. Surface points A, B, and

C have the same reflectance, but D is different. A, C, and D have

the same surface normal, while B has a different normal.

Orientation-consistency: Intensity profiles become exactly

the same, if and only if they correspond to the same sur-

face normal orientation and material (A and C in Fig. 1).

Using this simple observation, surface normals can be de-

termined by looking up a pre-stored table indexed with sur-

face brightness values [29], or match the intensity profiles to

those from a reference object [16]. Methods based on this

observation require the use of reference objects of known

shapes and the same material as the target.

Geometry-extrema: For many materials, intensity profiles

reach the extremas synchronously, if and only if they corre-

spond to the same surface normal (A and D in Fig. 1). This

fact is used for clustering surface orientations [19] without

determining the orientations.

Similarity: Similarity between intensity profiles is strongly

related with the difference between surface normals for the

same material (A and B in Fig. 1). Sato et al. [26] analyze

this relationship and exploit it to recover surface normals in

the cases of Lambertian and Torrance-Sparrow reflectance

and evenly distributed light sources with an assumption of

having occluding boundaries.

This paper makes a further observation about intensity

profiles and introduces the notion of conditional lineari-
ty. Different from [26], we do not restrict our analysis to

certain reflectance models. Instead, we take into accoun-

t more general isotropic reflectances in the MERL BRDF

database [21].

Conditional linearity: For most real-world isotropic re-

flectances, we observe a strong linear relation between the

distance among intensity profiles seen under evenly dis-

tributed lightings and the angular difference of surface nor-

mals, up to a certain normal angular difference. We also

observe that the linear coefficient is material-dependent and

closely related to the intensity distribution of the observed

intensity profile. These observations allow us to develop

an uncalibrated photometric stereo method that works with

general and unknown isotropic reflectances.

2.1. Geodesic distance of intensity profiles and nor-
mal angular difference

Let us assume evenly distributed light directions and a

scene with a uniform material; we show later that these can

be relaxed to some extent. Let {np,nq} be a surface nor-
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Figure 2. Geodesic distance calculation. Using geodesic distance

(right) preserves a linear relationship over a greater range of angu-

lar differences in comparison with using Euclidean distance (left).

mal pair, and {Ip, Iq} be the corresponding pixel intensity

profiles in a normalized form as below:

Ip =
[
I1p , . . . , I

L
p

]T
=

[
Ĩ1p , . . . , Ĩ

L
p

]T/√
Σl(Ĩ lp)

2 , (1)

where Ĩ lp is the recorded intensity at the p-th pixel for a

scene point (p = 1, . . . , P ), under the l-th lighting direction

(l = 1, . . . , L), and I lp is the normalized intensity.

The previous methods have shown that the similarity of

intensity profiles and surface normals are strongly correlat-

ed [19, 26]. The similarity can be straightforwardly defined

using the Euclidean distance of two intensity profiles as

‖Ip − Iq‖2. It indeed correlates with the angular difference

cos−1(nT
p nq) of surface normals np and nq at scene points

p and q (np,nq ∈ R
3×1); however, the linear relationship

holds only in a limited range as depicted in Fig. 2 (left).

To extend the range, our method uses a geodesic distance

dG(Ip, Iq) instead of ‖Ip− Iq‖2 as it is used in [26] to mea-

sure the similarity of more diverse normals.

The geodesic distance corresponds to the shortest path

between two nodes in a graph, and is computed by adding

up small Euclidean distances of neighboring points along

the path [31]. In our case, we first compute and keep the

Euclidean distances for nearby {Ip, Iq}

d(Ip, Iq) =

{
‖Ip − Iq‖2 if ‖Ip − Iq‖2 < εp

+∞ otherwise,
(2)

where εp is a threshold at the point p. The geodesic distance

dG(Ip, Iq) can be computed using these d(Ip, Iq) as

dG(Ip, Iq) = Dsp({d(Ip, Iq)}), (3)

where function Dsp(·) calculates the shortest path on the

graph using Dijkstra’s algorithm. In this way, the geodesic

distance dG(Ip, Iq) comprises a set of small Euclidean dis-

tances that are within the linear range. Therefore, the linear-

ity is well preserved in the geodesic distance over a greater

range of angular differences, as shown in Fig. 2 (right).

We examine this linearity for all 100 materials in the

MERL BRDF database [21] by plotting the cos−1(nT
p nq)

and dG(Ip, Iq) values. Fig. 3 shows four typical plots, from

which we can make the following observations. First, the
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Figure 3. Examples of the linear relationship. Four typical shapes

(dark regions) are shown for the synthetic surfaces under uniform

lightings. Solid lines indicate linear fitting results within limited

regions, while dotted lines are the results for non-uniform lights.

use of geodesic distance generally shows the linear rela-

tionship with the angular difference of normals in a large

range. Second, most materials, even those having complex

reflectances, show obvious linear relationships. Such a lin-

ear relationship generally holds in the range of 0 to 70◦ of

the angular difference, but it does not span the entire range

for many materials. Finally, the linear coefficient, or slope,

varies with the material (solid lines in Fig. 3). The slope is

insensitive to random noise in lighting directions as shown

by the dotted lines in Fig. 3, which are the line fittings to the

plots produced with fluctuating light directions by 7◦ stan-

dard deviations. A more thorough analysis on non-uniform

light distributions is given in Sec. 4.1.

Interestingly, the first case in Fig. 3 is actually the prob-

lem solved in [26], which corresponds to an ideal subset

of the more general reflectances handled by our method.

Based on the above observations, we define a partial linear

conversion from the geodesic distance dG(Ip, Iq) to the an-

gular difference of surface normals cos−1(nT
p nq) in a cer-

tain range bounded by a threshold δ as

cos−1(nT
p nq) = αmdG(Ip, Iq) if cos−1(nT

p nq) < δ, (4)

with the material-dependent slope αm. Please note that in-

ferring such linear coefficient αm is important for deter-

mining the surface normals without assuming the occluding

boundaries used in [26] or other priors.

2.2. Reflectance property and linear coefficient

The linear coefficient αm described in the previous sec-

tion is material dependent, i.e., it is related to the surface

reflectance property of a material. To characterize such a

reflectance property, we show that the intensity distribution
observed in an intensity profile conveys information about

the reflectance property for the material. Fig. 4 show four o-

riginal intensity profiles, where each row corresponds to the

149014901492
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Figure 4. Intensity profiles w.r.t. material and surface normal. The

top row shows intensity profiles captured at two surface normals

for a specular material. The bottom row shows intensity profiles

captured at two surface normals for a diffuse material. The inten-

sity values are plotted in 1D to show their distributions.
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Figure 5. Average skewness and α−1
m values of 100 materials. The

correlation coefficient is 0.98. Error bars for different surface nor-

mals and the line fitting result are shown.

same material but different surface normals. These figures

indicate that an intensity profile’s shape depends on both

material (reflectance property) and surface normal. How-

ever, its intensity distribution, which does not rely on the

intensity order as shown by the 1D plots in Fig. 4, appears

stable against surface normal changes for the same material.

Based on these observations, we compute the skewness of

the intensity distribution for characterizing it with an aim of

deriving the linear coefficient αm via the skewness.

The skewness γ of an intensity distribution, which is ir-
relevant to the intensity/lighting order, is calculated as

γ(I) = L
1
2

∑
l
(I l)3

/(∑
l
(I l)2

) 3
2

, (5)

where I is an intensity profile, and I l is its l-th element

that corresponds to the l-th lighting direction. Indeed, the

skewness of the intensity distributions has high correlation

with the inverse of the linear coefficient α−1
m . To examine

this, we plot the skewness γ and inverse slope α−1
m using all

100 materials using synthetic scenes as shown in Fig. 5. It

show a linear relation with a correlation coefficient of 0.98.

Fig. 5 also shows error bars that demonstrate the stability of

skewness values computed across diverse surface normals.

Therefore, it is efficient to estimate αm for unknown ma-

terials from the skewness of the intensity distribution. In

this way, Eq. (4) becomes deterministic in our method.

Fig. 5 also shows that the skewness increases as the ma-

terials vary from matte to shiny ones. This is because spec-

ular components generate large pixel intensities only under

a limited light directions, which increases the skewness of

the intensity distribution. Note that a few outliers exist in

Fig. 5; they correspond to materials that have both signif-

icant diffuse and very narrow specular lobes. An example

of such materials is one in Fig. 3 (bottom-right), and these

materials show larger errors in our experiment.

3. Surface normal recovery
We describe our proposed method for recovering surface

normals based on the discussion in Sec. 2. From the ob-

served intensity profiles {Ip}, we compute the geodesic dis-

tance dG(Ip, Iq) using Eq. (2) and Eq. (3). We then convert

dG(Ip, Iq) into a normal angular difference cos−1(nT
p nq)

using Eq. (4). As discussed in the previous section, since

the conversion is only valid when cos−1(nT
p nq) < δ holds,

we rewrite Eq. (4) as the following:

cos−1(nT
p nq) =

{
αmdG(Ip, Iq) if αmdG(Ip, Iq) ≤ δ

Undefined otherwise,

(6)

where αm is obtained by using the skewness (Sec. 2.2).

In our implementation, the threshold εp in Eq. (2) is em-

pirically set to the 10-th shortest distance from Ip to any

other Iq , and threshold δ in Eq. (6) is set to π/4 to ensure

good linear regions in Fig. 3 for different materials.

3.1. Formulation

We wish to recover surface normals of scene points that

correspond to P pixels in the observed image from a set

of images taken under varying unknown lightings. Let the

surface normal matrix be N = [n1,n2, . . . ,nP ] ∈ R
3×P

that we solve for. We define the observation matrix O as

O = {op,q = nT
p nq} ∈ R

P×P , (7)

whose elements op,q = nT
p nq are readily obtained from E-

q. (6). In particular, the diagonal elements op,p in O are all

ones, which ensures the unit normal length constraint for

{np}. Notice that Eq. (6) has undefined cases for some p
and q; therefore, only a portion of O’s elements have well-

defined values. In other words, the observation matrix O
has missing elements. With a sparse error matrix E that ac-

counts for the errors due to the missing entries, the relation-

ship between the observation matrix O and surface normal

N can be written as

NTN = O +E. (8)
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We wish to solve for surface normal N by using the incom-

plete matrix O and unknown but sparse error matrix E.

3.2. Matrix decomposition with missing data

Solving Eq. (8) for N involves recovering and decom-

posing the incomplete observation matrix O. We use a ma-

trix A for A = NTN , where we know that rank(A) = 3
since rank(N) = 3. Let Ω be a set of indices where op,q are

well-defined in O, and let its complement set be Ωc. By re-

stricting the error matrix E only to account for the missing

entries Ωc, the original problem of Eq. (8) can be written as

argmin
A

‖A−O−E‖2F s.t. rank(A) = 3, kΩ(E) = 0,

(9)

where kΩ(·) is an operator that only keeps the entries in Ω
unchanged and sets others zero. We solve the problem of

Eq. (9) by alternatingly estimating A and E. The optimiza-

tion begins by initializing E = 0 and setting the missing

entries of O to zeros so that kΩc(O) = 0.

At the k-th iteration, we update Ak+1 by

USV T ← SVD(O +Ek),

Ak+1 ← U

(
S

[
I3 0
0 0

])
V T = US(3)V

T,
(10)

where Ak+1 is reconstructed using only the first three sin-

gular values of S to ensure rank(Ak+1) = 3. We then

update Ek+1 by

Ek+1 ← kΩc(O −Ak+1). (11)

Eq. (11) assigns values to Ek+1 only for those entries in

Ωc. This ensures the second constraint of Eq. (9) to hold.

The iteration stops when it converges:

‖Ek‖F − ‖Ek+1‖F ≤ ξ‖O‖F , where ξ is a small

value (set to10−4). We finally obtain the solution of the

surface normals N̂ as

N̂ = S
1
2

(3)U
T = S

1
2

(3)V
T. (12)

3.3. Concave/Convex ambiguity

Like any other uncalibrated approach, our solution con-

tains ambiguity. In our case, any matrix Q ∈ R
3×3 that

satisfies QTQ = I can be multiplied with the solution for

Eq. (8), without violating the equality:

NTQTQN = (QN)T(QN) = O +E. (13)

Therefore, QN ∈ R
3×P is also a solution to the prob-

lem. We state that such ambiguity, which corresponds to

rotations and reflections, can be reduced by using the in-

tegrability constraint. Belhumeur et al. [6] show that if

rank(N) = 3, the ambiguity due to a general 3× 3 matrix

90o 75o 60o

Figure 6. Surfaces used for synthesis. Notice that these are side

view images of three spherical caps. In experiments, the capture

direction is from the top.

can be reduced to the GBR ambiguity using the integrabili-

ty constraint. This is also true in our case since Q ∈ R
3×3.

Therefore, by enforcing integrability of N , our original ro-

tation and reflection ambiguity can be reduced to intersect

with the GBR ambiguity. As a result, the resulting ambigu-

ity should take the form of a GBR transformation, and also

satisfy QTQ = I in our case. Then, it must be

Q̃ =
1

λ

⎡
⎣1 0 μ
0 1 ν
0 0 λ

⎤
⎦ =

1

λ

⎡
⎣1 0 0
0 1 0
0 0 λ

⎤
⎦ , λ = ±1. (14)

This is a binary ambiguity where λ = ±1 corresponds to

physically valid convex/concave surfaces that are not dis-

tinguishable without light calibration. Therefore, by using

integrability constraint, our method recovers surface nor-

mals up to only a binary convex/concave ambiguity.

4. Experimental results
We evaluate the proposed method using synthetic and

real-world data. The experiments using synthetic data are

for making a quantitative evaluation, and the real-world ex-

periments are for making a qualitative assessment.

4.1. Synthetic data

We use three different synthetic surfaces, i.e., a hemi-

sphere, a spherical cap whose surface normals deviate from

the viewing direction by 0◦ ∼ 75◦, and another spherical

cap with the smaller range of 0◦ ∼ 60◦, as shown in Fig. 6.

For each scene, images are synthesized using all 100 ma-

terials in the MERL BRDF database. We densely arrange

642 uniform light sources via icosahedron-division on the

entire sphere. For each light direction, an image with a res-

olution of 80 × 80 is synthesized. It contains about 5000
valid pixels, at which we estimate the surface normals.

Accuracy with known αm. We first show the results with

known linear coefficient αm values to factor out the effect

of estimation of αm. Table 1 shows the average errors of the

100 materials with the three surfaces. Our method performs

better for normals that are less perpendicular to the viewing

direction, because the intensity distribution is more stable

for these normals. Table 1 also shows the results for some

materials on which our method works best. The estimation

accuracy is generally high, in particular, it is quite accurate

for 50 out of 100 materials in the database.
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Normal range

hemisphere 0◦ ∼ 75◦ 0◦ ∼ 60◦

All 100 materials 10.87◦ 7.25◦ 5.76◦

Best 75 materials 7.79◦ 4.69◦ 3.04◦

Best 50 materials 5.14◦ 3.27◦ 2.00◦

Table 1. Recovery errors using the known αm.

Normal range

hemisphere 0◦ ∼ 75◦ 0◦ ∼ 60◦

All 100 materials 10.86◦ 7.68◦ 6.73◦

Best 75 materials 7.93◦ 5.39◦ 4.23◦

Best 50 materials 5.76◦ 4.25◦ 2.93◦

Table 2. Recovery errors using the estimated αm.

In addition, we conduct one more experiment using 162
uniform lightings and the hemispherical surface. The aver-

age errors are 11.04◦, 7.76◦ and 5.44◦ for the 100, 75 and

50 materials, respectively. This shows that reducing the illu-

mination number to 162 dose not affect the accuracy much.

Accuracy with the estimated αm. Next we estimate the

linear coefficient αm via the skewness of intensity distri-

butions and perform the whole pipeline. As shown in Ta-

ble 2, the errors do not change significantly compared with

the case in which we know the exact αm (Table 1). Fig. 7

shows the results of the hemispherical surface scene with

100 BRDFs. As the selected examples show, the accuracy

clearly depends on the degree of linearity.

Comparison with other methods. Strictly speaking, it is

not easy to find prior methods that can completely handle

unknown reflectances and uncalibrated illuminations with-

out additional assumptions to ours. For instance, [26] does

not work when occluding boundaries with normals perpen-

dicular to the viewing direction are unavailable. Therefore,

we choose the following ones that at least separate the re-

flectance and illumination factors without knowing the light

directions:

1. SVD [15]: we implement it as a baseline method that

assumes Lambertian reflectance and no shadows.

2. RPCA [33]: a state-of-the-art method that robustly

handles non-Lambertian components and takes into

account shadows.

and provide the ground truth light directions for their dis-

ambiguation, so that they will give most ideal results.

Fig. 8 shows the results for the same dataset

(hemisphere/100 materials). The SVD method fails for n-

early 30 materials. The RPCA method gives good estimates

for dozens of materials that contain dominant Lambertian

components, but it fails for many others, because the origi-

nal method requires a shadow mask to be specified. On the
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Figure 8. Comparison of methods. Normal recovery errors for al-

l 100 materials using the proposed, the SVD [15], and the RP-

CA [33] methods. Errors larger than 70◦ are cut off.
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Figure 9. Non-uniform lights. Normal recovery errors under 1) u-

niform lights, 2) GBR transformed lights, 3) light sources distort-

ed by Gaussian noise with standard deviations of 3◦ and 7◦, and

4) lights from only the upper hemisphere. Light patterns and typ-

ical normal error maps are shown for each case.

other hand, our method works reliably for all 100 material-

s, even the extreme ones. Although its accuracy is not that

high for some easy cases of Lambertian materials, notice

that it works in a completely uncalibrated manner.

Non-uniform light sources. We investigate the effects of

non-uniform lights beyond our uniform light assumption.

We design four representative non-uniform light pattern-

s, by applying the GBR transformation, adding Gaussian

noise, and only using the upper lights. These lights and

results are shown in Fig. 9, where each color of the error

bars indicates one material. First, GBR distortion caus-

es errors for all materials, and the error map has a simi-

lar distortion pattern. Second, diffuse surfaces are robust

against random noise and hemi-lights, while specular sur-

faces are more affected. This is because specular materials

have rapidly changing intensities, as shown in Fig. 4, and

thus, the calculation is sensitive to light position biases. In

particular, using only upper lights causes large errors espe-

cially near the occluding boundaries for specular materials.
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Figure 7. Average normal recovery errors for all 100 materials. The materials are listed by ranking their corresponding recovery errors.

4.2. Real-world data

Images for real-world objects are captured at a resolution

of 640×480, by rotating the light source around the objects

to generate about 150 light directions. Some objects with

large concavity suffer from severe cast shadows produced

by sidelights and backlights. To avoid this, we use lights

mainly from the upper hemisphere for these objects. The

results are summarized in Fig. 10. As the results show, d-

ifferent colors/albedos on the same object are well handled,

because of the normalization in Eq. (1) and the fact that d-

ifference in albedos does not essentially change the linear

relation and its linear coefficient. We make a quantitative

evaluation for a metallic hemisphere (the leftmost case) of

which we know the exact shape, and the average angular er-

ror is 3.45◦. A few scenes on the right do not have occluding

boundaries, while we can still estimate their surface normal-

s purely from the images of the surface patches. This shows

the advantage of the proposed method over the prior meth-

ods [26, 24]. In all results, there exists a convex/concave

ambiguity as discussed. We resolve the ambiguity by man-

ually selecting one as our ambiguity is binary.

5. Conclusion

We present a photometric stereo technique that recover-

s surface normals with unknown real-world reflectances in

an uncalibrated manner. We have shown that the informa-

tion extracted from the pixel intensity profiles across images

offers a strong cue for solving the problem. Our method

solves the problem up to only a binary convex/concave am-

biguity, and the effectiveness of our method has been shown

by testing it on both synthetic and real-world data.

One limitation is that our method currently assumes

a scene to have a uniform (up to albedo differences) re-

flectance. Relaxing this assumption will enhance the ap-

plicability of the proposed method. Since our method can

naturally distinguish different reflectances and recover sur-

face normals accordingly, our next goal is to fully exploit

such ability to deal with surfaces composed of more com-

plex spatially-variant reflectances.
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