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Abstract

We present a new point matching algorithm for robust
nonrigid registration. The method iteratively recovers the
point correspondence and estimates the transformation be-
tween two point sets. In the first step of the iteration, fea-
ture descriptors such as shape context are used to establish
rough correspondence. In the second step, we estimate the
transformation using a robust estimator called L2E. This is
the main novelty of our approach and it enables us to deal
with the noise and outliers which arise in the correspon-
dence step. The transformation is specified in a functional
space, more specifically a reproducing kernel Hilbert space.
We apply our method to nonrigid sparse image feature cor-
respondence on 2D images and 3D surfaces. Our results
quantitatively show that our approach outperforms state-of-
the-art methods, particularly when there are a large num-
ber of outliers. Moreover, our method of robustly estimating
transformations from correspondences is general and has
many other applications.

1. Introduction
Point set registration is a fundamental problem which

frequently arises in computer vision, medical image analy-

sis, and pattern recognition [5, 4, 6]. Many tasks in these

fields – such as stereo matching, shape matching, image

registration and content-based image retrieval – can be for-

mulated as a point matching problems because point repre-

sentations are general and easy to extract [5]. The points

in these tasks are typically the locations of interest points

extracted from an image, or the edge points sampled from

a shape contour. The registration problem then reduces to

determining the correct correspondence and to find the un-

derlying spatial transformation between two point sets ex-

tracted from the input data.

The registration problem can be categorized into rigid or

nonrigid registration depending on the application and the

form of the data. Rigid registration, which only involves a

small number of parameters, is relatively easy and has been

widely studied [5, 4, 7, 19, 14]. By contrast, nonrigid reg-

istration is more difficult because the underlying nonrigid

transformations are often unknown, complex, and hard to

model [6]. But nonrigid registration is very important be-

cause it is required for many real world tasks including

hand-written character recognition, shape recognition, de-

formable motion tracking and medical image registration.

In this paper, we focus on the nonrigid case and present

a robust algorithm for nonrigid point set registration. There

are two unknown variables we have to solve for in this prob-

lem: the correspondence and the transformation. Although

solving for either variable without information regarding

the other is difficult, an iterated estimation framework can

be used [4, 3, 6]. In this iterative process, the estimate of the

correspondence is used to refine the estimate of the trans-

formation, and vice versa. But a problem arises if there

are errors in the correspondence which occurs in many ap-

plications particularly if the transformation is large and/or

there are outliers in the data (e.g., data points that are not

undergoing the non-rigid transformation). In this situation,

the estimate of the transformation will degrade badly un-

less it is performed robustly. The main contribution of our

approach is to robustly estimate the transformations from

the correspondences using a robust estimator named the L2-

Minimizing Estimate (L2E) [20, 2].

More precisely, our approach iteratively recovers the

point correspondences and estimates the transformation be-

tween two point sets. In the first step of the iteration, fea-

ture descriptors such as shape context are used to estab-

lish correspondence. In the second step, we estimate the

transformation using the robust estimator L2E. This esti-

mator enable us to deal with the noise and outliers in the

correspondences. The nonrigid transformation is modeled

in a functional space, called the reproducing kernel Hilbert

space (RKHS) [1], in which the transformation function has

an explicit kernel representation.

1.1. Related Work

The iterated closest point (ICP) algorithm [4] is one

of the best known point registration approaches. It uses
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nearest-neighbor relationships to assign a binary correspon-

dence, and then uses estimated correspondence to refine the

transformation. Belongie et al. [3] introduced a method for

registration based on the shape context descriptor, which

incorporates the neighborhood structure of the point set

and thus helps establish correspondence between the point

sets. But these methods ignore robustness when they re-

cover the transformation from the correspondence. In re-

lated work, Chui and Rangarajan [6] established a general

framework for estimating correspondence and transforma-

tions for nonrigid point matching. They modeled the trans-

formation as a thin-plate spline and did robust point match-

ing by an algorithm (TRS-RPM) which involved determin-

istic annealing and soft-assignment. Alternatively, the co-

herence point drift (CPD) algorithm [17] uses Gaussian ra-

dial basis functions instead of thin-plate splines. Another

interesting point matching approach is the kernel correla-

tion (KC) based method [22], which was later improved

in [9]. Zheng and Doermann [27] introduced the notion

of a neighborhood structure for the general point matching

problem, and proposed a matching method, the robust point

matching-preserving local neighborhood structures (RPM-

LNS) algorithm. Other related work includes the relaxation

labeling method, generalized in [11], and the graph match-

ing approach for establishing feature correspondences [21].

The main contributions of our work include: (i) we pro-

pose a new robust algorithm to estimate a spatial transfor-

mation/mapping from correspondences with noise and out-

liers; (ii) we apply the robust algorithm to nonrigid point

set registration and also to sparse image feature correspon-

dence.

2. Estimating Transformation from Corre-
spondences by L2E

Given a set of point correspondences S = {(xi, yi)}ni=1,

which are typically perturbed by noise and by outlier points

which undergo different transformations, the goal is to esti-

mate a transformation f : yi = f(xi) and fit the inliers.

In this paper we make the assumption that the noise on

the inliers is Gaussian on each component with zero mean

and uniform standard deviation σ (our approach can be di-

rectly applied to other noise models). More precisely, an

inlier point correspondence (xi, yi) satisfies yi − f(xi) ∼
N(0, σ2I), where I is an identity matrix of size d×d, with d
being the dimension of the point. The data {yi− f(xi)}ni=1
can then be thought of as a sample set from a multivariate

normal density N(0, σ2I) which is contaminated by out-

liers. The main idea of our approach is then, to find the

largest portion of the sample set (e.g., the underlying inlier

set) that “matches” the normal density model, and hence

estimate the transformation f for the inlier set. Next, we in-

troduce a robust estimator named L2-minimizing estimate

(L2E) which we use to estimate the transformation f .

2.1. Problem Formulation Using L2E: Robust Esti-
mation

Parametric estimation is typically done using maximum

likelihood estimation (MLE). It can be shown that MLE
is the optimal estimator if it is applied to the correct proba-

bility model for the data (or to a good approximation). But

MLE can be badly biased if the model is not a sufficiently

good approximation or, in particular, there are a significant

fraction of outliers. In many point matching problems, it

is desirable to have a robust estimator of the transformation

f because the point correspondence set S usually contains

outliers. There are two choices: (i) to build a more complex

model that includes the outliers – which is complex since it

involves modeling the outlier process using extra (hidden)

variables which enable us to identify and reject outliers,

or (ii) to use an estimator which is different from MLE
but less sensitive to outliers, as described in Huber’s robust

statistics [8]. In this paper, we use the second method and

adopt the L2E estimator [20, 2], a robust estimator which

minimizes the L2 distance between densities, and is par-

ticularly appropriate for analyzing massive data sets where

data cleaning (to remove outliers) is impractical. More for-

mally, L2E estimator for model f(x|θ) recommends esti-

mating the parameter θ by minimizing the criterion:

L2E(θ) =

∫
f(x|θ)2dx− 2

n

n∑
i=1

f(xi|θ). (1)

To get some intuition for why L2E is robust, observe that its

penalty for a low probability point xi is −f(xi|θ) which is

much less than the penalty of− log f(xi|θ) given by MLE
(which becomes infinite as f(xi|θ) tends to 0). Hence

MLE is reluctant to assign low probability to any points,

including outliers, and hence tends to be biased by out-

liers. By contrast, L2E can assign low probabilities to

many points, hopefully to the outliers, without paying too

high a penalty. To demonstrate the robustness of L2E, we

present a line-fitting example which contrasts the behavior

of MLE and L2E, see Fig. 1. The goal is to fit a linear re-

gression model, y = αx + ε, with residual ε ∼ N(0, 1),
by estimating α using MLE and L2E. This gives, re-

spectively, α̂MLE = argmaxα
∑n

i=1 log φ(yi − αxi|0, 1)
and α̂L2E = argminα

[
1

2
√
π
− 2

n

∑n
i=1 φ(yi − αxi|0, 1)

]
,

where φ(x|μ,Σ) denotes the normal density.

As shown in Fig. 1, L2E is very resistant when we con-

taminate the data by outliers, but MLE does not show this

desirable property. L2E always has a global minimum at

approximately 0.5 (the correct value for α) but MLE’s es-

timates become steadily worse as the amount of outliers in-

creases. Observe, in the bottom right figure, that L2E also

has a local minimum near α = 2, which becomes deeper as

the number n of outliers increases so that the two minima

become approximately equal when n = 200. This is ap-
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Figure 1. Comparison between L2E and MLE for linear re-

gression as the number of outliers varies. Top row: data sam-

ples, where the inliers are shown by cyan pluses, and the out-

liers by magenta circles. The goal is to estimate the slope α of

the line model y = αx. We vary the number of data samples

n = 100, 120, · · · , 200, by always adding 20 new outliers (re-

taining the previous samples). In the second column the outliers

are generated from another line model y = 2x. Middle and bot-

tom rows: the curves of MLE and L2E respectively. The MLE
estimates are correct for n = 100 but rapidly degrade as we add

outliers, see how the peak of the log-likelihood changes in the sec-

ond row. By contrast, (see third row) L2E estimates α correctly

even when half the data is outliers and also develops a local mini-

mum to fit the outliers when appropriate (third row, right column).

Best viewed in color.

propriate because, in this case, the contaminated data also

comes from the same linear parametric model with slope

α = 2, e.g., y = 2x.

We now apply the L2E formulation in (1) to the point

matching problem, assuming that the noise of the inliers

is given by a normal distribution, and obtain the following

functional criterion:

L2E(f, σ
2) =

1

2d(πσ)d/2
− 2

n

n∑
i=1

φ
(
yi − f(xi)|0, σ2I

)
.

(2)

We model the nonrigid transformation f by requiring it to

lie within a specific functional space, namely a reproducing

kernel Hilbert space (RKHS) [1, 24, 16]. Note that other pa-

rameterized transformation models, for example, thin-plate

splines (TPS) [23, 15], can also be easily incorporated into

our formulation.

We define an RKHS H by a positive definite matrix-

valued kernel Γ : IRd × IRd → IRd×d. The optimal trans-

formation f which minimizes the L2E functional (2) then

takes the form f(x) =
∑n

i=1 Γ(x, xi)ci [16, 26], where

the coefficient ci is a d × 1 dimensional vector (to be de-

termined). Hence, the minimization over the infinite di-

mensional Hilbert space reduces to finding a finite set of

n coefficients ci. But in point correspondence problem the

point set typically contains hundreds or thousands of points,

which causes significant complexity problems (in time and

space). Consequently, we adopt a sparse approximation,

and randomly pick only a subset of size m input points

{x̃i}mi=1 to have nonzero coefficients in the expansion of the

solution. This follows [18] who found that this approxima-

tion works well and that simply selecting a random subset

of the input points in this manner, performs no worse than

more sophisticated and time-consuming methods. There-

fore, we seek a solution of form

f(x) =

m∑
i=1

Γ(x, x̃i)ci. (3)

The chosen point set {x̃i}mi=1 are somewhat analogous to

“control points” [5]. By including a regularization term for

imposing smooth constraint on the transformation, the L2E
functional (2) becomes:

L2E(f, σ
2) =

1

2d(πσ)d/2
− 2

n

n∑
i=1

1

(2πσ2)d/2

e−
‖yi−∑m

j=1 Γ(xi,x̃j)cj‖2
2σ2 + λ‖f‖2Γ, (4)

where λ > 0 controls the strength of regularization, and

the stabilizer ‖f‖2Γ is defined by an inner product, e.g.,

‖f‖2Γ = 〈f, f〉Γ. By choosing a diagonal decomposable

kernel [26]: Γ(xi, xj) = e−β‖xi−xj‖2I with β determining

the width of the range of interaction between samples (i.e.

neighborhood size), the L2E functional (4) may be conve-

niently expressed in the following matrix form:

L2E(C, σ
2) =

1

2d(πσ)d/2
− 2

n

n∑
i=1

1

(2πσ2)d/2

e−
‖yTi −Ui,·C‖2

2σ2 + λ tr(CTΓC), (5)

where kernel matrix Γ ∈ IRm×m is called the Gram matrix

with Γij = Γ(x̃i, x̃j) = e−β‖x̃i−x̃j‖2 , U ∈ IRn×m with

Uij = Γ(xi, x̃j) = e−β‖xi−x̃j‖2 , Ui,· denotes the i-th row

of the matrix U , C = (c1, · · · , cm)T is the coefficient ma-

trix of size m× d, and tr(·) denotes the trace.

2.2. Estimation of the Transformation

Estimating the transformation requires taking the deriva-

tive of the L2E cost function, see equation (5), with respect
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Algorithm 1: Estimation of Transformation from Cor-

respondences

Input: Correspondence set S = {(xi, yi)}ni=1,

parameters γ, β, λ
Output: Optimal transformation f

1 Construct Gram matrix Γ and matrix U ;

2 Initialize parameter σ2 and C;

3 Deterministic annealing:

4 Using the gradient (6), optimize the objective

function (5) by a numerical technique (e.g., the

quasi-Newton algorithm with C as the old value);

5 Update the parameter C ← argminC L2E(C, σ
2);

6 Anneal σ2 = γσ2;

7 The transformation f is determined by equation (3).

to the coefficient matrix C, which is given by:

∂L2E

∂C
=
2UT[V ◦ (W ⊗ 11×d)]

nσ2(2πσ2)d/2
+ 2λΓC, (6)

where V = UC − Y and Y = (y1, · · · , yn)T are matrices

of size n × d, W = exp{diag(V V T)/2σ2} is an n × 1
dimensional vector, diag(·) is the diagonal of a matrix, 11×d

is an 1×d dimensional row vector of all ones, ◦ denotes the

Hadamard product, and ⊗ denotes the Kronecker product.

By using the derivative in equation (6), we can employ

efficient gradient-based numerical optimization techniques

such as the quasi-Newton method and the nonlinear con-

jugate gradient method to solve the optimization problem.

But the cost function (5) is convex only in the neighborhood

of the optimal solution. Hence to improve convergence we

use a coarse-to-fine strategy by applying deterministic an-

nealing on the inlier noise parameter σ2. This starts with

a large initial value for σ2 which is gradually reduced by

σ2 �→ γσ2, where γ is the annealing rate. Our algorithm is

outlined in algorithm 1.

Computational complexity. By examining equations (5)

and (6), we see that the costs of updating the objective func-

tion and gradient are both O(dm2 + dmn). For the nu-

merical optimization method, we choose the Matlab Opti-

mization toolbox, which implicitly uses the BFGS Quasi-

Newton method with a mixed quadratic and cubic line

search procedure. Thus the total complexity is approxi-

mately O(dm2 + dm3 + dmn). In our implementation,

the number m of the control points required to construct the

transformation f in equation (3) is in general not large, and

so use m = 15 for all the results in this paper (increasing

m only gave small changes to the results). The dimension d
of the data in feature point matching for vision applications

is typically 2 or 3. Therefore, the complexity of our method

can be simply expressed as O(n), which is about linear in

the number of correspondences. This is important since it

enables our method to be applied to large scale data.

2.3. Implementation Details

The performance of point matching algorithms depends,

typically, on the coordinate system in which points are ex-

pressed. We use data normalization to control for this. More

specifically, we perform a linear re-scaling of the correspon-

dences so that the points in the two sets both have zero mean

and unit variance.

We define the transformation f as the initial position plus

a displacement function v: f(x) = x+v(x) [17], and solve

for v instead of f . This can be achieved simply by setting

the output yi to be yi − xi.

Parameter settings. There are three main parameters in

this algorithm: γ, β and λ. The parameter γ controls the an-

nealing rate. The parameters β and λ control the influence

of the smoothness constraint on the transformation f . In

general, we found our method was very robust to parameter

changes. We set γ = 0.5, β = 0.8 and λ = 0.1 through-

out this paper. Finally, the parameter σ2 and C in line 2 of

algorithm 1 were initialized to 0.05 and 0 respectively.

3. Nonrigid Point Set Registration

Point set registration aims to align two point sets {xi}ni=1
(the model point set) and {yj}lj=1 (the target point set).

Typically, in the nonrigid case, it requires estimating a non-

rigid transformation f which warps the model point set to

the target point set. We have shown above that once we

have established the correspondence between the two point

sets even with noise and outliers, we are able to estimate the

underlying transformation between them. Next, we discuss

how to find correspondences between two point sets.

3.1. Establishment of Point Correspondence

Recall that our method described above does not jointly

solve the transformation and point correspondence. In order

to use algorithm 1 to solve the transformation between two

point sets, we need initial correspondences.

In general, if the two point sets have similar shapes, the

corresponding points have similar neighborhood structures

which could be incorporated into a feature descriptor. Thus

finding correspondences between two point sets is equiv-

alent to finding for each point in one point set (e.g., the

model) the point on the other point set (e.g., the target) that

has the most similar feature descriptor. Fortunately, the ini-

tial correspondences need not be very accurate, since our

method is robust to noise and outliers. Inspired by these

facts, we use shape context [3] as the feature descriptor in

the 2D case, using the Hungarian method for matching with

the χ2 test statistic as the cost measure. In the 3D case, the

spin image [10] can be used as a feature descriptor, where

the local similarity is measured by an improved correlation
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Algorithm 2: Nonrigid Point Set Registration

Input: Two point sets {xi}ni=1, {yj}lj=1
Output: Aligned model point set {x̂i}ni=1

1 Compute feature descriptors for the target point set

{yj}lj=1;

2 repeat
3 Compute feature descriptors for the model point

set {xi}ni=1;

4 Estimate the initial correspondences based on the

feature descriptors of two point sets;

5 Solve the transformation f warping the model

point set to the target point set using algorithm 1;

6 Update model point set {xi}ni=1 ← {f(xi)}ni=1;

7 until reach the maximum iteration number;

8 The aligned model point set {x̂i}ni=1 is given by

{f(xi)}ni=1 in the last iteration.

coefficient. Then the matching is performed by a method

which encourages geometrically consistent groups.

The two steps of estimating correspondences and trans-

formations are iterated to obtain a reliable result. In this

paper, we use a fixed number of iterations, typically 10 but

more when the noise is big or when there are a large per-

centage of outliers contained in the original point sets. We

summarize our point set registration method in algorithm 2.

3.2. Application to Image Feature Correspondence

The image feature correspondence task aims to find vi-

sual correspondences between two sets of sparse feature

points {xi}ni=1 and {yj}lj=1 with corresponding feature de-

scriptors extracted from two input images. In this paper,

we assume that the underlying relationship between the in-

put images is nonrigid. Our method for this task is to esti-

mate correspondences by matching feature descriptors us-

ing a smooth spatial mapping f . More specifically, we first

estimate the initial correspondences based on the feature de-

scriptors, and then use the correspondences to learn a spatial

mapping f fitting the inliers by algorithm 1.

Once we have obtained the spatial mapping f , we then

have to establish accurate correspondences. We prede-

fine a threshold τ and judge a correspondence (xi, yj) to

be an inlier provided it satisfies the following condition:

e−‖yj−f(xi)‖2/2σ2 > τ . We set τ = 0.5 in this paper.

Note that the feature descriptors in the point set reg-

istration problem are calculated based on the point sets

themselves, and are recalculated in each iteration. How-

ever, the descriptors of the feature points here are fixed

and calculated from images in advance. Hence the iterative

technique for recovering correspondences, estimating spa-

tial mapping, and re-estimating correspondences can not be

used here. In practice, we find that our method works well

without iteration, since we focus on determining the right

correspondences which does not need precise recovery of

the underlying transformation, and our approach then plays

a role of rejecting outliers.

4. Experimental Results
In order to evaluate the performance of our algorithm,

we conducted two types of experiments: i) nonrigid point

set registration for 2D shapes; ii) sparse image feature cor-

respondence on 2D images and 3D surfaces.

4.1. Results on Nonrigid Point Set Registration

We tested our method on the same synthesized data as in

[6] and [27]. The data consists of two different shape mod-

els: a fish and a Chinese character. For each model, there

are five sets of data designed to measure the robustness of

registration algorithms under deformation, occlusion, rota-

tion, noise and outliers. In each test, one of the above distor-

tions is applied to a model set to create a target set, and 100
samples are generated for each degradation level. We use

the shape context as the feature descriptor to establish initial

correspondences. It is easy to make shape context transla-

tion and scale invariant, and in some applications, rotation

invariance is also required. We use the rotation invariant

shape context as in [27].

Fig. 2 shows the registration results of our method on

solving different degrees of deformations and occlusions.

As shown in the figure, we see that for both datasets with

moderate degradation, our method is able to produce an

almost perfect alignment. Moreover, the matching perfor-

mance degrades gradually and gracefully as the degree of

degradation in the data increases. Consider the results on

the occlusion test in the fifth column, it is interesting that

even when the occlusion ratio is 50 percent our method can

still achieve a satisfactory registration result. Therefore our

method can be used to provide a good initial alignment for

more complicated problem-specific registration algorithms.

To provide a quantitative comparison, we report the re-

sults of four state-of-the-art algorithms such as shape con-

text [3], TPS-RPM [6], RPM-LNS [27], and CPD [17]

which are implemented using publicly available codes. The

registration error on a pair of shapes is quantified as the

average Euclidean distance between a point in the warped

model and the corresponding point in the target. Then the

registration performance of each algorithm is compared by

the mean and standard deviation of the registration error of

all the 100 samples in each distortion level. The statistical

results, error means, and standard deviations for each set-

ting are summarized in the last column of Fig. 2. In the

deformation test results (e.g., 1st and 3rd rows), five algo-

rithms achieve similar registration performance in both fish
and Chinese character at low deformation levels, and our

method generally gives better performance as the degree of
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Figure 2. Point set registration results of our method on the fish (top) and Chinese character (bottom) shapes [6, 27], with deformation and

occlusion presented in every two rows. The goal is to align the model point set (blue pluses) onto the target point set (red circles). For each

group of experiments, the upper figure is the model and target point sets, and the lower figure is the registration result. From left to right,

increasing degree of degradation. The rightmost figures are comparisons of the registration performance of our method with shape context

(SC) [3], TPS-RPM [6], RPM-LNS [27] and CPD [17] on the corresponding datasets. The error bars indicate the registration error means

and standard deviations over 100 trials.

deformation increases. In the occlusion test results (e.g.,

2nd and 4th rows), we observe that our method shows much

more robustness compared with the other four algorithms.

More experiments on rotation, noise and outliers are also

performed on the two shape models, as shown in Fig. 3.

From the results, we again see that our method is able to

generate good alignment when the degradation is moderate,

and the registration performance degrades gradually and

is still acceptable as the amount of degradation increases.

Note that our method is not affected by rotation which is

not surprising because we use the rotation invariant shape

context as the feature descriptor. We also performed exper-

iments on 3D data and got similar results.

In conclusion, our method is efficient for most non-rigid

point set registration problems with moderate, and in some

cases severe, distortions. It can also be used to provide

a good initial alignment for more complicated problem-

specific registration algorithms.
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Figure 4. Results of image feature correspondence on 2D image pairs of deformable objects. From left to right, increasing degree of

deformation. The inlier percentages in the initial correspondences are 79.61%, 56.57%, 51.84% and 45.71% respectively, and the corre-

sponding precision-recall pairs are (100.00%, 99.73%), (99.06%, 99.53%), (99.09%, 99.35%) and (100.00%, 98.96%) respectively. The

lines indicate matching results (blue = true positive, green = false negative, red = false positive). Best viewed in color.

Figure 3. From top to bottom, results on rotation, noise and outliers

presented in every two rows. For each group of experiments, the

upper figure is the data, and the lower figure is the registration

result. From left to right, increasing degree of degradation.

4.2. Results on Image Feature Correspondence

In this section, we perform experiments on real images,

and test the performance of our method for sparse image

feature correspondence. These images contain deformable

objects and consequently the underlying relationships be-

tween the images are nonrigid.

Fig. 4 contains a newspaper with different amounts of

spatial warps. We aim to establish correspondences be-

tween sparse image features in each image pair. In our eval-

uation, we first extract SIFT [13] feature points in each in-

put image, and estimate the initial correspondences based

on the corresponding SIFT descriptors. Our goal is then to

reject the outliers contained in the initial correspondences

and, at the same time, to keep as many inliers as possible.

Performance is characterized by precision and recall.

The results of our method are presented in Fig. 4. For the

leftmost pair, the deformation of the newspaper is relatively

slight. There are 466 initial correspondences with 95 out-

liers, and the inlier percentage is about 79.61%. After using

our method to establish accurate correspondences, 370 out

of the 371 inliers are preserved, and simultaneously all the

95 outliers are rejected. The precision-recall pair is about

Table 1. Performance comparison on the image pairs in Fig. 4. The

values in the first row are the inlier percentages (%), and the pairs

are the precision-recall pairs (%).

Inlier 79.61 56.57 51.84 45.71

ICF [12] (96.05, 98.38) (83.95, 86.73) (80.43, 95.48) (75.42, 92.71)

VFC [26] (100.00, 97.04) (98.59, 99.53) (98.09, 99.35) (98.94, 97.91)

Ours (100.00, 99.73) (99.06, 99.53) (98.09, 99.35) (100.00, 98.96)

(100.00%, 99.73%). On the rightmost pair, the deforma-

tion is relatively large and the inlier percentage in the initial

correspondences is only about 45.71%. In this case, our

method still obtains a good precision-recall pair (100.00%,

98.96%). Note that there are still a few false positives and

false negatives in the results since we could not precisely

estimate the true warp functions between the image pairs

in this framework. The average run time of our method on

these image pairs is about 0.5 seconds on an Intel Pentium

2.0 GHz PC with Matlab code.

In addition, we also compared our method to two state-

of-the-art methods, such as identifying point correspon-

dences by correspondence function (ICF) [12] and vector

field consensus (VFC) [26]. The ICF uses support vector

regression to learn a correspondence function pair which

maps points in one image to their corresponding points in

another, and then reject outliers by the estimated correspon-

dence functions. While the VFC converts the outlier re-

jection problem into a robust vector field learning problem,

and learns a smooth field to fit the potential inliers as well

as estimates a consensus inlier set. The results are shown in

Table 1. We see that all the three algorithms work well when

the deformation contained in the image pair is relatively

slight. As the amount of deformation increases, the perfor-

mance of ICF degenerates rapidly. But VFC and our method

seem to be relatively unaffected even when the number of

outliers exceeds the number of inliers. Still, our method

gains slightly better results compared to VFC.

Our next experiment involves feature point matching on

3D surfaces. We adopt MeshDOG and MeshHOG [25] as

the feature point detector and descriptor to determine the
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Figure 5. Results on 3D surfaces of deformable objects (INRIA

Dance-1 sequence). Top: results on frames 525 and 527; bottom:

frames 530 and 550. For each group, the left pair denotes the

identified suspect inliers, and the right pair denotes the removed

suspect outliers.

initial correspondences. For the dataset, we use the INRIA

Dance-1 sequence [25], in which each surface is from the

same moving person. Note that it is hard to give a quan-

titative performance comparison since the correctness of a

correspondence is hard to decide. So we just schematically

show our results in Fig. 5. In the upper group, the two

frames are nearby, and the level of deformation is relatively

slight. There are 191 initial correspondences, of which 156
are preserved after using our method to establish accurate

correspondences. In the lower group, the two frames are

far apart, and the level of deformation is relatively large,

leading to less good initial correspondences. There are 23
initial correspondences, and 18 of which are preserved by

our method.

5. Conclusion
In this paper, we have presented a new approach for

nonrigid point set registration. A key characteristic of our

approach is the estimation of transformation from corre-

spondences based on a robust estimator named L2E. The

computational complexity of estimation of transformation

is linear in the scale of correspondences. We applied our

method to sparse image feature correspondence, where the

underlying relationship between images is nonrigid. Exper-

iments on a public dataset for nonrigid point registration,

2D and 3D real images for sparse image feature correspon-

dence demonstrate that our approach yields results superior

to those of state-of-the-art methods when there is significant

noise and/or outliers in the data.
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