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Abstract

Recent trends in semantic image segmentation have
pushed for holistic scene understanding models that jointly
reason about various tasks such as object detection, scene
recognition, shape analysis, contextual reasoning. In this
work, we are interested in understanding the roles of these
different tasks in aiding semantic segmentation. Towards
this goal, we “plug-in” human subjects for each of the
various components in a state-of-the-art conditional ran-
dom field model (CRF) on the MSRC dataset. Comparisons
among various hybrid human-machine CRFs give us indi-
cations of how much “head room” there is to improve seg-
mentation by focusing research efforts on each of the tasks.
One of the interesting findings from our slew of studies was
that human classification of isolated super-pixels, while be-
ing worse than current machine classifiers, provides a sig-
nificant boost in performance when plugged into the CRF!
Fascinated by this finding, we conducted in depth analysis
of the human generated potentials. This inspired a new ma-
chine potential which significantly improves state-of-the-art
performance on the MRSC dataset.

1. Introduction
We consider the problem of semantic image segmenta-

tion. Clearly, other image understanding tasks like object

detection [10], scene recognition [38], contextual reasoning

among objects [29], and pose estimation [39] can aid se-

mantic segmentation. For example, knowing that the image

is a street scene influences where we expect to find people.

Studies have shown that humans can effectively leverage

contextual information from the entire scene to recognize

objects in low resolution images that can not be recognized

in isolation [35]. In fact, different and functionally com-

plementary regions in the brain are known to co-operate to

perform scene understanding [28].

Recent works [12, 40, 16, 23], have thus pushed on holis-
tic scene understanding models for among other things, im-

proved semantic segmentation. The advent of general learn-

ing and inference techniques for graphical models has pro-

vided the community with appropriate tools to allow for
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Figure 1. A holistic scene understanding approach to semantic seg-

mentation consists of a conditional random field (CRF) model that

jointly reasons about: (a) classification of local patches (segmen-

tation), (b) object detection, (c) shape analysis, (d) scene recog-

nition and (e) contextual reasoning. In this paper we analyze the

relative importance of each of these components by building an

array of hybrid human-machine CRFs where each component is

performed by a machine (default), or replaced by human subjects

or ground truth, or is removed all together (top).

joint modeling of various scene understanding tasks. These

have led to some of the state-of-the-art performances in a

variety of benchmarks.

In this paper, we aim to determine the relative impor-

tance of the different recognition tasks in aiding semantic

segmentation. Our goal is to discover which of the tasks

if improved, can boost segmentation performance signifi-

cantly. In other words, to what degree can we expect to

improve segmentation performance by improving the per-

formance of individual tasks? We argue that understanding

which problems to solve is as important as determining how

to solve them. Such an understanding can provide valuable

insights into which research directions to pursue for further

improving state-of-art methods for semantic segmentation.
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We analyze the recent and most comprehensive holistic

scene understanding model of Yao et al. [40]. It is a con-

ditional random field (CRF) that models the interplay be-

tween segmentation and a variety of components such as

local super-pixel appearance, object detection, scene recog-

nition, shape analysis, class co-occurrence, and compatibil-

ity of classes with scene categories. To gain insights into

the relative importance of these different factors or tasks,

we isolate each one, and substitute a machine with a human

for that task, keeping the rest of the model intact (Figure 1).

The resultant improvement in segmentation performance, if

any, will give us an indication of how much “head room”

there is to improve segmentation by focusing research ef-

forts on that task. Note that human outputs are not syn-

onymous with ground truth information, because the tasks

are performed in isolation. For instance, humans would not

produce ground truth labels when asked to classify a super-

pixel in isolation into one of several categories1. In fact,

because of inherent local ambiguities, the most intelligent

machine of the future will likely be unable to do so either.

Hence, the use of human subjects in our studies is key, as it

gives us a feasible point of what can be done.

Our slew of studies reveal several interesting findings.

For instance, we found that human classification of isolated
super-pixels when fed into the model provides a 5% im-

provement in segmentation accuracy on the MSRC dataset.

Hence, research efforts focused towards the specific task of

classifying super-pixels in isolation may prove to be fruit-

ful. Even more intriguing is that the human classification

of super-pixels is in fact less accurate than machine classifi-

cation. However when plugged into the holistic model, hu-

man potentials provide a significant boost in performance.

This indicates that to improve segmentation performance,

instead of attempting to build super-pixel classifiers that

make fewer mistakes, research efforts should be dedicated

towards making the right kinds of mistakes (e.g. comple-

mentary mistakes). This provides a refreshing new take on

the now well studied semantic segmentation task.

Excited by this insight, we conducted a thorough analy-

sis of the human generated super-pixel potentials to identify

precisely how they differ from existing machine potentials.

Our analysis inspired a rather simple modification of the

machine potentials which resulted in a significant increase

of 2.4% in the machine accuracy (i.e. no human involve-

ment) over the state-of-the-art on the MSRC dataset.

2. Related Work
Holistic Scene Understanding: The key motivation be-

hind holistic scene understanding, going back to the seminal

1Of course, ground truth segmentation annotations are themselves gen-

erated by humans, but by viewing the whole image and leveraging infor-

mation from the entire scene. In this study, we are interested in evaluating

how each recognition task in isolation can help segmentation performance.

work of Barrow in the seventies [3], is that ambiguities in

visual information can only be resolved when many visual

processes are working collaboratively. A variety of holis-

tic approaches have since been proposed. Many of these

works incorporate the various tasks in a sequential fashion,

by using the output of one task (e.g. object detection) as

features for other tasks (e.g. depth estimation, object seg-

mentation) [17, 16, 22, 5, 13]. There are fewer efforts on

joint reasoning of the various recognition tasks. In [36],

contextual information was incorporated into a CRF lead-

ing to improved object detection. A hierarchical generative

model spanning parts, objects and scenes is learnt in [34].

Joint estimation of depth, scene type, and object locations is

performed in [23]. Spatial contextual interactions between

objects have also been modeled [19, 29]. Image segmenta-

tion and object detection are jointly modeled in [21, 37, 12]

using a CRF. [6] also models global image classification in

the CRF. In this paper, orthogonal to these advances, we

propose the use of human subjects to understand the relative

importance of various recognition tasks in aiding semantic

segmentation.

Human-Studies: Numerous human-studies have been con-

ducted to understand the human ability to segment an image

into meaningful regions or objects. Rivest and Cavanagh

[30] found that luminance, color, motion and texture cues

for contour detections are integrated at a common site in

the brain. Fowlkes [11] found that machine performance at

detecting boundaries is equivalent to human performance in

small gray-scale patches. These and other studies are fo-

cused on the problem of unsupervised segmentation, where

the task is to identify object boundaries. In contrast, we are

interested in semantic segmentation which involves identi-

fying the semantic category of each pixel in the image.

Several works have studied high-level recognition tasks

in humans. Fei-Fei et al. [9] show that humans can rec-

ognize scenes rapidly even while being distracted. Bach-

mann et al. [2] show that humans can reliably recognize

faces in 16 × 16 images, and Oliva et al. [26] present sim-

ilar results for scene recognition. Torralba et al. [35] show

that humans can reliably detect objects in 32×32 images. In

contrast, in this paper, we study human performance at tasks

that closely mimic existing holistic computational models

for semantic segmentation in order to identify bottlenecks,

and better guide future research efforts.

Parikh et al. [27] recently applied human studies to iden-

tify the weakest links in existing models for the specific task

of person detection. In contrast, in this work, we are inter-

ested in systematically analyzing the roles played by several

high- and mid-level tasks such as grouping, shape analysis,

scene recognition, object detection and contextual interac-

tions in holistic scene understanding models for semantic

segmentation. While similar at the level of exploiting hu-

man involvement, the problem, the model, the methodolo-
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Figure 2. Overview of the holistic scene model of [40] that we

analyze using human subjects. For clarity, not all connections in

the model are shown here.

gies of the human studies and machine experiments, as well

as the findings and insights are all novel.

3. CRF Model
We analyze the recently introduced CRF model of [40]

which reasons jointly about a variety of scene components.

While the model shares similarities with past work [20, 21,

6], we choose this model because it provides state-of-the-

art performance in holistic scene understanding, and thus

forms a great starting point to ask “which components need

to be improved to push the state-of-the-art further?”. More-

over, it has a simple “plug-and-play” architecture making

it feasible to insert humans in the model. Inference is per-

formed via message passing [31] and so it places no restric-

tions (e.g. submodularity) on the potentials. This allows us

to conveniently replace the machine potentials with human

responses: after all, we cannot quite require humans to be

submodular!

We now briefly review this model (Figure 2). We refer

the reader to [40] for further technical details. The problem

of holistic scene understanding is formulated as that of in-

ference in a CRF. The random field contains variables rep-

resenting the class labels of image segments at two levels

in a segmentation hierarchy: super-pixels and larger seg-

ments. To be consistent with [40], we will refer to them as

segments and super-segments. The model also has binary

variables indicating the correctness of candidate object de-

tection bounding boxes. In addition, a multi-label variable

represents the scene type and binary variables encode the

presence/absence of a class in the scene.

The segments and super-segments reason about the se-

mantic class labels to be assigned to each pixel in the image.

The model employs these two segmentation layers for com-

putational efficiency, i.e., the super-segments are fewer but

more densely connected to other parts of the model. The

binary variables corresponding to each candidate bound-

ing box generated by an object detector allow the model

to accept or reject these detections. A shape prior is asso-

ciated with these nodes encouraging segments that respect

this prior to take on corresponding class labels. The bi-

nary class variables reason about which semantic classes

are present in the image. This allows for a natural way to

model class co-occurrences as well as scene-class affinities.

These binary class variables are connected to i) the super-

segments via a consistency potential that ensures that the

binary variables are turned on if a super-segment takes the

corresponding class label ii) binary detector variables via

a similar consistency potential iii) the scene variable via a

potential that encourages certain classes to be present in cer-

tain scene types iv) to each other via a potential that encour-

ages certain classes to co-occur more than others.

More formally, let xi ∈ {1, · · · , C} and yj ∈
{1, · · · , C} be two random variables representing the class

label of the i-th segment and j-th super-segment. We

represent candidate detections as binary random variables,

bi ∈ {0, 1}, taking value 0 when the detection is a false

detection. A deformable part-based model [10] is used to

generate candidates. The detector provides us with an ob-

ject class (ci), the score (ri), the location and aspect ratio

of the bounding box, as well as the root mixture component

ID that has generated the detection (mi). The latter gives

us information about the expected shape of the object. Let

zk ∈ {0, 1} be a random variable which takes value 1 if

class k is present in the image, and let s ∈ {1, . . . , Cl} be a

random variable representing the scene type among Cl pos-

sible candidates. The parameters corresponding to different

potential terms in the model are learnt in a discriminative

fashion [15]. Before we provide details about how the var-

ious machine potentials are computed, we first discuss the

dataset we work with to ground further descriptions.

4. Dataset
We use the standard MSRC-21 [33] semantic labeling

benchmark, also used by [40]. The MSRC dataset is widely

used, contains stuff (e.g., sky, water), things (i.e., shape-

defined classes such as cow, car) and a diverse set of scenes,

making it a good choice among existing datasets for our

study2. We use the more precise groundtruth of MSRC pro-

2The PASCAL dataset is more challenging in terms of object (“things”)

detection and segmentation. However, a large portion of its images, es-

pecially “stuff”, is unlabeled. The contextual interactions are also quite

skewed [7] making it less interesting for holistic scene understanding. The

SUN dataset [38] is prohibitively large for the scale of human studies in-

volved in our work. The SIFT-flow dataset [24] is dominated by “stuff”

with a small proportion of “things” pixels. Camvid [4] is limited to street

scenes.
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vided by Malisiewicz and Efros [25] and used in [40], as

it offers a more accurate measure of performance. We use

the same scene category and object detection annotations as

in [40]. Figure 2 lists this information. As the performance

metric we use average per-class recall (average accuracy).

Similar trends in our results hold for average per-pixel re-

call (global accuracy [21]) as well. We use the standard

train/test split from [32] to train all machine potentials, de-

scribed next.

5. Machine CRF Potentials
We now describe the machine potentials we employed.

Our choices closely follow those made in [40].

Segments and super-segments: We utilize UCM [1] to

create our segments and super-segments as it returns a small

number of segments that tend to respect the true object

boundaries well. We use thresholds 0.08 and 0.16 for the

segments and super-segments respectively. On average, this

results in 65 segments and 19 super-segments per image for

the MSRC dataset. We use the output of the modified Tex-

tonBoost [33] in [20] to get pixel-wise potentials and aver-

age those within the segments and super-segments to get the

unary potentials. Following [18], we connect the two levels

via a pairwise Pn potential that encourages segments and

super-segments to take the same label.

Class: We use class-occurrence statistics extracted from

training data as a unary potential on zk. We also em-

ploy pairwise potentials between zi and zk that capture co-

occurance statistics of pairs of classes. However, for effi-

ciency reasons, instead of utilizing a fully connected graph,

we use a tree-structure obtained via the Chow-Liu algo-

rithm [8] on the class-class co-occurrence matrix.

Detection: Detection is incorporated in the model by gen-

erating a large set of candidate bounding boxes using the

deformable part-based model [10]. The CRF model reasons

about whether a detection is a false or true positive. On av-

erage, there are 16 hypotheses per image. A binary variable

bi is used for each detection and it is connected to the binary

class variable, zci , where ci is the class of the detector that

fired for the i−th hypothesis.

Shape: Shape potentials are incorporated in the model by

connecting the binary detection variables bi to all segments

xj inside the detection’s bounding box. The prior is de-

fined as an average training mask for each detector’s mix-

ture component. The values inside the mask represent the

confidence that the corresponding pixel has the same label

as the detector’s class. In particular, for the i-th candidate

detection, this information is incorporated in the model by

encouraging the xj segment to take class ci with strength

proportional to the average mask values within the segment.

Scene and scene-class co-occurrence: We train a classi-

fier [38] to predict each of the scene types, and use its con-

fidence to form the unitary potential for the scene variable.

The scene node connects to each binary class variable zi
via a pairwise potential which is defined based on the co-

occurance statistics of the training data, i.e., likelihood of

each class being present for each scene type.

6. Human CRF Potentials
We now explain our human studies. Section 7 presents

the results of feeding these human “potentials” into the ma-

chine model. We performed all human studies on Amazon

Mechanical Turk. Unless specified otherwise, each task was

performed by 10 different subjects. Depending on the task,

we paid participants 3−5 cents for answering 20 questions.

The response time was fast, taking 1 to 2 days to perform

each experiment. We randomly checked the responses of

the workers and excluded those that did not follow the in-

structions. More than 500 subjects participated in our stud-

ies that involved ∼ 300, 000 crowd-sourced tasks, making

the results obtained likely to be fairly stable across a differ-

ent sampling of subjects.

Segments and Super-segments: The study involves having

human subjects classify segments into one of the semantic

categories. Subjects were only shown pixels that belong to

the segment. The segment was shown within a rectangle

corresponding to the image around it, making its location

and scale in the image evident. If confused, subjects were

allowed to select multiple classes for each segment. See

Figure 3. The machine classifier, TextonBoost [33] in par-

ticular, has access to a large neighborhood (200x200 pix-

els) around the segment. Clearly, it does not use informa-

tion only from the pixels in the segment while classifying

the segment. However, showing all the information that the

machine uses to human subjects would lead to nearly 100%

classification accuracy by the subjects, leaving us with lit-

tle insights to gain. More importantly, a 200 x 200 window

occupies nearly 60% of the image, resulting in humans po-

tentially using holistic scene understanding while classify-

ing the segments. This would contradict our goal of having

humans perform individual tasks in isolation. Finally, a di-

rect comparison between humans and machines is not of

interest to us. We are interested in understanding the poten-

tial each component in the model holds. To this goal, the

discrepancy in information shown to humans and machines

is not a concern, as long as humans are not shown more in-

formation than the machine has access to. We experimented

with several interfaces (e.g. showing subjects a collection of

segments and asking them to click on all the ones likely to

belong to a certain class, or allowing a subject to select only

one category per segment, etc.). The one shown in Figure 3

resulted in most consistent responses from subjects.

Our experiment involved having subjects label all seg-

ments and super-segments from the MSRC dataset contain-

ing more than 500 pixels. This resulted in 10976 segments

314431443146



Figure 3. Segment labeling interface.
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Figure 4. Isolated segment labels generated by human subjects

and 6770 super-segments. They cover 90.2% and 97.7%

of all pixels in the dataset3. Figure 4 shows examples of

segmentations obtained by assigning each segment to the

class with most human votes. The black regions correspond

to either the “void” class (unlabeled regions in the MSRC

dataset) or to small segments not being shown to the sub-

jects. Assigning each segment to the class with the highest

number of human votes achieves an accuracy of 72.2%, as

compared to 77.4% for machines4. As expected, humans

perform rather poorly when only local information is avail-

able. Accuracy for super-segments is 84.3% and 79.6% re-

spectively. The C dimensional human unary potential for a

(super)segment is proportional to the number of times sub-

jects selected each class, normalized to sum to 1. We set the

potentials for the unlabeled (smaller than 500 pixels) (su-

per)segments to be uniform.

Class Unary: We showed subjects 50 random images from

the MSRC dataset to help them build an intuition for the

image collection (not to count the occurrence of objects in

the images). For all pairs of categories, we then ask sub-

jects which category is more likely to occur in an image

from the collection. We build the class unary potentials

by counting how often each class was preferred over all

other classes. We ask MAP-like questions (“which is more

3Covering 100% of the pixels in the dataset would involve labeling

three times the number of segments, and the resources seemed better uti-

lized in the other human studies.
4This accuracy is calculated only over segments larger than 500 pixels

that were shown to humans. Machine accuracy over all segments is 74.2%.

likely”) to build an estimate of the marginals (“how likely is

this?”) because asking subjects to provide scalar values for

the likelihood of something is prone to high variance and

inconsistencies across subjects.

Class-Class Co-occurrence: To obtain the human co-

occurrence potentials we ask subjects the following ques-

tion for all triplets of categories {zi, zj , zk}: “Which sce-

nario is more likely to occur in an image? Observing (zi
and zj) or (zi and zk)?”. Note that in this experiment we did

not show subjects any images. The obtained statistics thus

reflect human perception of class co-occurrences as seen in

the visual world in general rather than the MSRC dataset.

Given responses to these questions, for every category zi,
we count how often they preferred each category zj over

the other categories. This gives us an estimate of P (zj |zi)
from humans. We compute P (zi) from the training images

to obtain P (zi, zj), which gives us a 21× 21 co-occurrence

matrix. We use the Chow-Liu algorithm on this matrix, as

was used in [40] on the class co-occurrence potentials to ob-

tain the tree structure, where the edges connect highly co-

occurring nodes. The structure of the human tree is quite

similar to the tree obtained from the MSRC training set. Vi-

sualizations of the trees are available on author’s webpage.

Object Detection: Since most objects in the MSRC dataset

are quite big, it is expected that human object detection

would be nearly perfect. As a crude proxy, we showed sub-

jects images inside ground truth object bounding boxes and

asked them to recognize the object. Performance was al-

most perfect at 98.8%.

Shape: We showed 5 subjects the segment boundaries in

the ground truth object bounding boxes along with its cat-

egory label and contextual information from the rest of the

scene. See Figure 5 5. Using the interface of [14], sub-

jects were asked to trace a subset of the segment boundaries

to match their expected shape of the object. The accuracy

of the best of the 5 masks obtained for each object (nor-

malized for foreground and background) was found to be

80.2%. The corresponding accuracy for the detector-based

shape prior snapped to the segments is 78.5%, not much

worse than the human subjects. This shows that humans

can not decipher the shape of an object from the UCM seg-

ment boundaries better than an automatic approach. Hence,

it is unlikely that simply “puzzling together” UCM-like seg-

ments will improve shape analysis.

Scene Unary: We ask human subjects to classify an im-

age into one of the 21 scene categories used in [40] (see

Figure 2). Images were presented at varying resolutions

(i.e. original resolution, smallest dimension rescaled to

32, 24 and 20 pixels). Subjects were allowed to select

5We showed subjects contextual information around the bounding box

because without it humans were unable to recognize the object category

reliably using only the boundaries of the segments in the box (54% accu-

racy). With context, classification accuracy was 94.0%.
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Figure 5. Shape mask labelling interface.

more than one category when confused, and the potential

was computed as the proportion of responses each category

got. Human accuracy at scene recognition was 90.4, 89.8,

86.8 and 85.3% for the different resolutions, as compared

to the machine accuracy of 81.8%. Note that human per-

formance is not 100% even with full resolution images be-

cause the scene categories are semantically ambiguous. Hu-

mans clearly outperform the machine at scene recognition,

but the question of interest is whether this will translate to

improved semantic segmentation performance.

Scene-Class Co-occurrence: Similar to the class-class ex-

periment, subjects were asked which object category is

more likely to be present in the scene. We “show” the scene

either by naming its category (no visual information), or by

showing them the average image for that scene category.

The normalized co-occurrence matrix is then used as the

pairwise potential.

Ground-truth Potentials: In addition to human potentials

(which provide a feasible point), we are also interested in

establishing an upper-bound on the effect each subtask can

have on segmentation performance. We do so by introduc-

ing ground truth (GT) potentials into the model. We formed

each potential using the dataset annotations. For segments

and super-segments we simply set the value of the potential

to be 1 for the segment GT label and 0 otherwise, similarly

for scene and class unary potentials. For object detection,

we used the GT boxes as the candidates and set their detec-

tion scores to 1. For the shape prior, we use a binary mask

that indicates which pixels inside the GT object bounding

box have the object’s label.

7. Experiments with Human-Machine CRFs
We now describe the results of inserting the human po-

tentials in the CRF model. We also investigated how plug-

ging in GT potentials or discarding certain tasks all together

affects segmentation performance on the MSRC dataset.

For meaningful comparisons, CRF learning and inference

is performed every time a potential is replaced, be it with (i)
Human or (ii) Machine or (iii) GT or (iv) Remove.

A summary of the results for the four different settings

is shown in Figure 6. Note that in each experiment only a

single machine potential was replaced, which is indicated in

the x axis of the plot. Missing bars for the remove setting

indicate that removing the corresponding potential would

result in the CRF being disconnected, and hence that exper-

iment was not performed. GT is not meaningful for pairwise

70 
75 
80 
85 
90 
95 

100 

Remove 

Machine 

Human 

GT 

Figure 6. Impact of each component on semantic segmentation.

potentials. The average recall is shown on the y axis. Due to

space considerations, we provide detailed class-wise accu-

racy tables in a separate document on the author’s webpage.

Class presence, class-class co-occurrence, and the scene-

class potentials have negligible impact on the performance

of semantic segmentation. The choice of the scene clas-

sifier also has little impact on this dataset. We find that

GT object detection boosts performance, which is not sur-

prising. GT shape also improves performance, but as dis-

cussed earlier, we find that humans are unable to instanti-

ate this potential using the UCM segment boundaries. This

makes it unclear what the realizable potential of shape is

for the MSRC dataset. One human potential that does im-

prove performance is the unitary segment potential. This

is quite striking since human labeling accuracy of segments

was substantially worse than machine’s (72.2% vs. 77.4%),

but incorporating the potential in the model significantly

boosts performance (from 77.2% to 82.3%). Intrigued by

this, we performed detailed analysis to identify properties

of the human potential that are leading to this boost in per-

formance. Resultant insights provided us concrete guidance

to improve machine potentials and hence state-of-the-art ac-

curacies. We now describe the various hypotheses we ex-

plored (including unsuccessful and successful ones).

Scale: We noticed that the machine did not have access to

the scale of the segments while humans did. So we added

a feature that captured the size of a segment relative to the

image and re-trained the unary machine potentials. The re-

sultant segmentation accuracy of the CRF was 75.2%, un-

fortunately worse than the original accuracy at 77.2%.

Over-fitting: The machine segment unaries are trained on

the same images as the CRF parameters, potentially leading

to over-fitting. Humans obviously do not suffer from such

biases. To alleviate any over-fitting in the machine model,

we divided the training data into 10 partitions. We trained

the machine unaries on 9 parts, and evaluated them on the

10th part, repeating this 10 times. This gives us machine

unaries on the entire training set, which can be used to train

the CRF parameters. While the machine unaries may not be

exactly calibrated, since the training splits are different by

a small fraction of the images, we do not expect this to be a

significant issue. The resultant accuracy was 76.5%, again,

not an improvement.
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Ranking of the correct label: It is clear that the high-

est ranked label of the human potential is wrong more of-

ten than the highest ranked label of the machine potential

(hence the lower accuracy of the former outside the model).

But we wondered if perhaps even when wrong, the human

potential gave a high enough score to the correct label mak-

ing it revivable when used in the CRF, while the machine

was more “blatantly” wrong. We found that among the mis-

classified segments, the rank of the correct label using hu-

man potentials was 4.59 – noticeably better than 6.19 (out

of 21) by the machine.

Uniform potentials for small segments: Recall that we did

not have human subjects label the segments smaller than

500 pixels and assigned a uniform potential to those seg-

ments. The machine on the other hand produced a poten-

tial for each segment. We suspected that ignoring the small

(likely to be misclassified) segments may give the human

potential an advantage in the model. So we replaced the

machine potentials for small segments with a uniform dis-

tribution over the categories. The average accuracy unfortu-

nately dropped to 76.5%. As a follow-up, we also weighted

the machine potentials by the size of the corresponding seg-

ment. The segmentation accuracy was 77.1%, almost the

same as the original 77.2%.

Regressing to human potentials: We then attempted to

directly regress from the machine potential as well as the

segment features (TextonBoost, LBP, SIFT, ColorSIFT, lo-

cation and scale) to the human potential, with the hope that

if for each segment, we can predict the human potential, we

may be able to reproduce the high performance. We used a

Gaussian Process regressor with RBF kernel. The average

accuracy in both cases was lower: 75.6% and 76.5%. We

also replicated the sparsity of human potentials in the ma-

chine potentials, but this did not improve performance by

much (77.3%).

Complementarity: To get a deeper understanding as to

why human segment potentials significantly increase per-

formance when used in the model, we performed a vari-

ety of additional CRF experiments with hybrid potentials.

These included having human (H) or machine (M) poten-

tials for segments (S) or super-segments (SS) or both, with

or without the Pn potential in the model. The results are

shown in Table 1. The last two rows correspond to the case

where both human and machine segment potentials are used

together at the same level. In this case, using a Pn poten-

tial or not has little impact on the accuracy. But when the

human and machine potentials are placed at different lev-

els in the model (rows 3 and 4), not having a Pn potential

(and thus losing connection between the two levels) signif-

icantly hurts performance. This indicates that even though

human potentials are not more accurate than machine po-

tentials, when both human and machine potentials interact,

there is a significant boost in performance, demonstrating

the complementary nature of the two.

Pn without Pn

H S, H SS 78.9 77.2
M S, M SS 77.2 77.0
H S, M SS 82.3 75.3
M S, H SS 81.2 78.2

H S+M S, M SS 80.9 81.3
H S+M S, H SS 82.3 82.8

Table 1. Human & machine segment potentials are complementary
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Figure 7. (Sub) confusion matrices for isolated segment classifica-

tion. M = machine.

So we hypothesized that the types of mistakes that the

machine and humans make may be different. We qualita-

tively analyzed the confusion matrices for both. We no-

ticed that the machine confuses categories that spatially sur-

round each other e.g. bird and grass or water and boat (Fig-

ure 7(a)). This was also observed in [33] and is understand-

able because TextonBoost uses a large (200× 200) window

surrounding a pixel to generate its feature descriptor. On

the other hand, human mistakes are between visually simi-

lar categories e.g. car and boat (Figure 7(b)).6 Hence, we

trained TextonBoost with smaller windows. The resultant

confusion matrix was more similar to that of human sub-

jects (Figure 7(c)). For the full confusion matrix refer to

the author’s webpage. We re-computed the segment unaries

and plugged them into the model in addition to the original

unaries that used large windows. The average accuracy we

obtained by the model using window sizes of 10, 20, 30 and

40 were 77.9, 78.5, 79.6 and 79.6 (compare to 77.2%). This

improvement of 2.4% over state-of-the-art is quite signifi-

cant for this dataset7! Notice that the improvement provided

by the entire CRF model over the original machine seg-

ment unaries alone was 3% (from 74.2% to 77.2%). While

a fairly straightforward change in the training of machine

unaries lead to this improvement in performance, we note

that the insight to do so was provided by our use of humans

to “debug” the state-of-the-art model.

6One consequence of this is that the mistakes made within a super-

segment are consistent for machines but variable for humans. Specifically,

on average machine assigns different labels to 4.9% of segments, while

humans assign different labels to 12% of the segments within a super-

segment. The consistent mistakes may be harder for other components

in the CRF to fix.
7Adding a new unary potential simply by incorporating a different set

of features and kernels than TextonBoost (such as color, SIFT and self-

similarity with intersection kernel) provides only a small boost at best

(77.9%).
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Potential of the pipeline: Of course, in spite of MSRC

being a well studied dataset, there is still room for improve-

ment. GT labels for segments when plugged into the CRF

provide an accuracy of 94% (and not 100% because deci-

sions are made at the segment level which are not perfect).

We find that not just the dataset, but even the particular

model of Yao et al. [40] that we analyze in this paper has

further potential. Plugging in human potentials for all the

components gives us an accuracy of 89.5%. Our analysis

reveals precisely which directions to pursue to reach this

potential. We expect even more insightful findings if this

model is studied on larger and more challenging datasets

like the SUN dataset [38], which is part of future work.

8. Conclusion

Researchers have developed sophisticated machinery for

semantic segmentation of images. Insights into which as-

pects of these models are crucial, especially for further im-

proving state-of-the-art performance is valuable. We gather

these insights by analyzing a state-of-the-art CRF model for

semantic segmentation on the MSRC dataset. Our analysis

hinges on the use of human subjects to produce the different

potentials in the model. Comparing performance of vari-

ous hybrid human-machine models allows us to identify the

components of the model that still have “head room” for

improving segmentation performance. One of our findings

was that human responses to local segments in isolation,

while being less accurate than machines’, provide comple-

mentary information that the CRF model can effectively ex-

ploit. We explored various avenues to precisely character-

ize this complementary nature, which resulted in a novel

machine potential that significantly improves accuracy over

the state-of-art.
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