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Abstract

Rolling Shutter (RS) cameras are used across a wide
range of consumer electronic devices—from smart-phones
to high-end cameras. It is well known, that if a RS camera
is used with a moving camera or scene, significant image
distortions are introduced. The quality or even success of
structure from motion on rolling shutter images requires the
usual intrinsic parameters such as focal length and distor-
tion coefficients as well as accurate modelling of the shutter
timing.

The current state-of-the-art technique for calibrating the
shutter timings requires specialised hardware. We present a
new method that only requires video of a known calibration
pattern. Experimental results on over 60 real datasets show
that our method is more accurate than the current state of
the art.

1. Introduction
Most consumer electronic devices—such as smart-

phones—leave no room for a mechanical global shutter

(GS). Those cameras make use of what is called an elec-

tronic shutter. The electronic shutter of CCD sensors ex-

poses every row of the image during the same timespan,

similar to a mechanical shutter. CMOS sensors often only

have a rolling shutter (RS). The image rows are exposed

and read sequentially, which introduces significant image

distortions if either the camera or the scene are in motion.

To account for those RS effects, the frame time and the time

of integration of every line need to be known. On most RS

cameras, each image is captured with a fixed line delay—

the time between the start of integration of two consecutive

lines. Using this assumption, the timestamp of each line is

uniquely defined by the line delay and the frame time. A

GS image only encodes the pose of an object relative to the

camera frame. The RS camera may be interpreted as a high

frequency sensor returning sparse spatial information with

a dense temporal coverage encoded by distortions [2].

Conventional structure from motion (SfM) methods es-

timate a single camera pose per frame. While a single pose

is sufficient in the GS case, RS models require one cam-

Figure 1. The reprojected chessboard corners after a continuous-

time camera pose estimation. The red dots show the corner po-

sitions for our continuous-time rolling shutter model. The green

dots show the results with a discrete-time global shutter model.

era pose estimate per sensor line. This results in a large

number of parameters to estimate. A common solution is

to only estimate one pose per frame and perform a linear

interpolation between consecutive camera poses to approx-

imate the intermediate states. An alternative solution that

allows dense temporal modelling without a growing num-

ber of parameters is given by Furgale et al. [7], who pro-

pose a continuous-time batch optimisation approach. In

contrast to all prior work, which uses linear interpolation

between poses, we propose the use of a continuous-time

batch optimisation technique for higher order modelling of

the rolling-shutter effect.

However, to perform SfM using a rolling shutter camera,

the line delay must be known accurately. For many con-

sumer devices, one may not have access to the data sheet

or specific configuration information. Hence, the line delay

must be discovered through a calibration process.

This paper presents an offline calibration procedure to

determine the rolling shutter line delay for use in high accu-

racy SfM, such as the work of [9]. Existing autocalibrating

or calibration-free algorithms (as presented by Grundman et
al. [8] and Baker et al. [3]) aim at removing the rolling shut-

ter wobble. [9] shows that SfM on wobble-corrected images

performs worse (in terms of pose estimation accuracy) when

compared to a continuous motion parametrisation operating

on raw images with a calibrated RS model. In light of this,

high-accuracy rolling shutter calibration that does not need

specialised hardware (as in [14, 15]) is highly desirable.

The current state of the art for line delay calibration
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was proposed by Geyer et al. [14]. The sensor is exposed

with an LED flashing at high frequency. The resulting im-

ages include light and dark lines whose spatial frequency

is linked to the line delay and the known LED frequency.

The method, however, requires expensive hardware and is

prone to imprecision, especially if the camera has a fixed

lens. We propose to use standard GS calibration means to

also calibrate the RS line delay. First, the intrinsics and

distortion coefficients of a RS camera are determined with

GS methods using still images and the help of a known pat-

tern. Next, RS distortion generating camera motion is pro-

duced in front of the known pattern. The resulting video se-

quence is used to simultaneously estimate the camera pose

in continuous-time and the line delay. This method removes

the dependency on expensive hardware and we are able to

show that the resulting line delay estimates are more accu-

rate than those produced by the method of Geyer et al. [14].

The contributions of this paper are as follows:

1. we propose to use a continuous-time trajectory model

combined with a rolling shutter camera model;

2. we propose a new method for RS calibration that re-

quires no additional hardware except for a known pat-

tern e.g. chessboard or circle grid also required for GS

camera calibration;

3. we solve a batch estimation problem to estimate the

camera pose and the line delay; in batch optimisation,

the error terms are commonly weighted by their in-

verse covariance; we derive the covariance matrix of

the reprojection error terms under a RS camera model

and discuss the motion dependence of the RS covari-

ance terms;

4. we parametrise the pose of the camera as a fourth-

order B-spline and propose the first scheme for adap-

tively choosing the number of B-spline basis functions

needed to represent different parts of the trajectory.

2. Related Work
Along with the proposition of the general projection

equations for RS cameras, Geyer et al. [14] focus on the

analysis of the projection subject to constant velocity mo-

tion. Additionally, they propose the current state-of-the-art

method for line delay calibration. The image sensor is ex-

posed with an LED flashing at high frequency. The precise

knowledge of the LED frequency is essential for a success-

ful calibration and the authors suggest to remove the lens

for best sensor illumination. Later, Ringaby and Forssén

[15] refine the method to cope with partly illuminated sen-

sors occurring if the lens is not removed. Besides the line

delay calibration proposed by Geyer et al. [14], Karpenko

et al. [1] propose a method to estimate the full calibration

of a rigidly attached camera and gyroscope, including the

camera’s line delay.

Ait-Aider et al. [2] stop considering the RS artefacts as

drawback and exploit them to simultaneously extract the

pose and velocity of an object relative to the camera frame

from a single view. With the pose extraction, they propose

the first perspective-n-point solution for RS cameras under

a linear motion. Their work shows that the higher temporal

density of RS cameras can effectively be used in real appli-

cations and stands as an advantage over GS cameras.

Some authors [14, 15] have already noted that GS ap-

proaches for SfM may fail on RS imagery due to the unmod-

elled feature distortions. The first specialised propositions

for RS motion estimation do not directly handle the RS but

circumvent its effects by first undistorting the frames with

methods as proposed in [15] and subsequently applying a

state-of-the-art GS SfM method. Klein and Murray [12], for

example, port their parallel tracking and mapping (PTAM)

framework [11] to an Apple iPhone 3GS. They first estimate

a constant camera velocity between two consecutive frames

which is then used to undistort the RS keypoints. The new

keypoints are afterwards used in their GS framework.

A more advanced approach is proposed by Hedborg et
al. [10], the first RS-specific structure from motion algo-

rithm. The camera trajectory is described by linearly in-

terpolating between the camera poses at the beginning of

each frame. The rotational interpolation is performed using

SLERP (Spherical Linear intERPolation [16]). They also

propose to first undistort the keypoints and then apply a GS

SfM algorithm. Considering the observation, that the most

significant RS distortions occur for rotational motion, they

suggest to invert the projection equations with a rotation-

only assumption to undistort the keypoints [15].

The preliminary undistortion of the keypoints signifi-

cantly improves the results of SfM algorithms. However,

the additional step is not necessary and error prone. Fur-

thermore, it ignores the important velocity information con-

tained in the RS data. Hedborg et al. make the same obser-

vation and generalise their approach. They remove the un-

necessary undistortion step to propose the first RS bundle

adjustment [9]. The pose between two consecutive frames

is approximated with a linear interpolation for the position

and SLERP for the rotation parameters. They adapt the bun-

dle adjustment equations and propose the triangulation and

PnP steps for RS cameras. For solving the perspective pose

problem, they suggest to use a multi-frame PnP solver and

simultaneously estimate the pose of the camera in multiple

frames. The direct use of the RS images improves the per-

formance and stability of the pose estimation.

The pose parametrisations proposed in earlier publica-

tions are however not optimal as they assume a constant ve-

locity between two consecutive discrete camera poses. The

camera motion is thus assumed to be linear, which stands in

conflict with a general rapid motion. Recent publications in

the domain of continuous-time estimation and their applica-

tion to SLAM, as proposed in [7], allow a more general tra-

13591359135913611361



jectory description. This new approach does not imply any

assumptions about the motion. The calibration approach

proposed by Geyer et al. [14] and refined by Ringaby and

Forssén [15] requires a complex hardware setup. The ap-

proach of Karpenko et al. [1] relies on a gyroscope. We

propose a new calibration approach involving only a known

pattern as also used for the intrinsics and distortion coeffi-

cient calibration.

3. Theory
We first introduce the concepts of continuous-time tra-

jectory modelling in its most general form. Next, we pro-

pose a continuous-time perspective projection model for RS

cameras derived from the general projection equations, and

give the related perspective localisation theory. We derive

the equations for line delay estimation and combine them

with the perspective pose equations to simultaneously esti-

mate the camera pose and the line delay based on a set of

known landmarks. Finally, we derive the covariance matrix

of the RS reprojection errors to build a standard maximum

likelihood estimator.

3.1. Continuous-Time Pose Parametrisation

The following derivations are based on the concepts in-

troduced by Furgale et al. [7]. Let the pose of the camera,

x(t), be represented as the weighted sum of a set of known

analytical temporal basis functions1,

x(t) := Φ(t)c, (1)

Φ(t) :=
[
φ1(t) ... φB(t)

]
, (2)

where φb(t) are the known analytical D × 1 functions of

time stacked in the D×B basis matrix Φ(t). The B×1 co-

efficient matrix, c, is the generating quantity that describes

the shape of the D trajectories.

The continuous-time representation of a transformation

matrix is obtained by first expressing the pose parameters

as a vector-valued continuous-time function

x(t) :=
[

t(t)
ϕ(t)

]
=

[
Φt(t)ct
Φϕ(t)cϕ

]
, (3)

with t(t) the translational and ϕ(t) the rotational parametri-

sation. If we let C(·) be a function converting a set of rota-

tion parameters into the corresponding rotation matrix, we

obtain the continuous-time transformation matrix:

T(t) =
[

C(ϕ(t)) t(t)
0T 1

]
. (4)

3.2. Rolling Shutter Camera Model

The general perspective projection model for cameras is

given by

u(t) := π(T(t)p), (5)

1Please note, that this is the most general form of a basis function

parametrisation. The derivations in the following section remain indepen-

dent of the basis function choice and the choice is up to the user.

where p is a homogeneous point expressed in world coor-

dinates, π(·) is the camera’s projection function, u(·) is the

projection in the image plane and t the time of projection.

In a general RS setup, the timestamp of a feature is un-

known, only its position in the image plane is observable.

We assume that the start time of integration of the first line

of the image, t̄, is known. Beginning the integration at

the first line, and assuming that the line delay, d, remains

constant, the time of exposure of the vth line becomes:

t = t̄ + vd. The projection of a point, p, onto the image

plane, u(t) = (u, v), expressed relative to the frame time, t̄,
is then written as:

u(t) = π(T(t̄+ vd)p). (6)

Equation (6), with the proposed continuous-time

parametrisation (4) is a fully analytic expression. This

model is more general than the linear interpolation proposed

in previous publications [1, 9, 10, 15]. we encode a more

general continuous motion instead of linear interpolations

between consecutive frames.

3.3. Reprojection Error Modelling

In the following, we derive the reprojection error terms

for the RS case and build the perspective localisation prob-

lem. Perspective localisation is widely known and aims at

minimising the squared reprojection error of a set of known

landmarks (k) in every frame (i), weighted by the inverse

covariance matrix of the error, R̄k,i. Following the approach

described in the previous section, we estimate the column of

basis function coefficients, c, and a set of time-invariant pa-

rameters2, θ. The perspective localisation problem becomes

c∗,θ∗ = argmin
c,θ

∑
i,k

eTk,iR̄
−1
k,iek,i, (7)

where the reprojection errors are defined as the difference

between an observed feature, yi
k = (ui

k, v
i
k), generated by a

landmark, pk, in the ith frame and the reprojected landmark

given the camera position T(·):
yik = π(T(t̄i + vikd)pk) + nk,i, (8)

ek,i := yik − π(T(t̄i + vikd)pk). (9)

Every nk,i is statistically independent Gaussian noise:

nk,i ∼ N (0,Rk,i).
The minimum of (7) is found using a Gauss-Newton

based optimisation which requires the linearisation of the

error terms with respect to the estimated quantity, c:

ek,i = yik − π
(
T(Φ(t̄i + vikd)(c + δc))pk

)
(10)

≈ ēk,i − JπΦ(t̄i + vikd)δc. (11)

We define the nominal error ēk,i = yi
k − π

(
T(Φ(tik)c)pk

)
and use a simplified notation for the time of exposure of

the kth landmark in the ith frame tik := t̄i + vikd, which

is a function of the line delay. Jπ = [jπ,u jπ,v]
T is the

Jacobian of the projection equation (6) with respect to small

2The parameter vector, θ, may e.g. include landmarks or the line delay.
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changes in the pose parameters, x(t), with jTπ,u and jTπ,v the

components in the u and v direction, respectively.

3.4. Shutter Calibration

To estimate the line delay, we linearise the error term

(9) with respect to small changes in the line delay. With

the nominal error ēk,i = yik − π
(
T(Φ(t̄i + vikd̄)c)pk

)
we

obtain:

ek,i = yik − π
(
T(Φ(t̄i + vik(d̄+ δd))c)pk

)
(12)

≈ ēk,i − JπΦ̇(t̄i + vikd̄)cv
i
kδd. (13)

To simplify the expressions equation (13) is merged with

(11) to obtain a single equation for simultaneous line delay

and pose estimation:

ek,i ≈ ēk,i−Jπ

[
Φ(t̄i + vikd̄) Φ̇(t̄i + vikd̄)v

i
k

] [δc
δd

]
(14)

As the trajectories are expressed with analytic basis func-

tions, the evaluation of Φ̇(·) is analytical.

3.5. Error Term Standardisation

The standardisation of the error terms aims at scaling

every term by its inverse covariance matrix such that all

terms end up with unit variance [17]. Features with high

variance—and thus a high probability of a large reprojec-

tion error—are offered less confidence by down-weighting

their influence on the total error. A low-variance feature is

offered more confidence by amplifying the error terms as

it is precisely localised in the image. In the previous sec-

tions, we assumed that the measurement noise is Gaussian.

The fundamental assumption for the following paragraphs

is, that the effect of the measurement noise on the error

terms is also approximately a Gaussian distribution.

As opposed to the GS case, the measurement noise nk,i

introduced in equation (8) is not directly fed through to the

error term (9) such that ek,i ∼ N (0,Rk,i). The time at

which a landmark is captured is a function of the frame time

t̄ and the measurement v, and v is affected by the second

component of the measurement noise nk,i = [nu
k,i, n

v
k,i]

T .

In essence, our uncertainty in the image plane is translated

into an uncertainty in the time the feature was observed and

both effects must be considered.

We approximate the covariance of the error terms by lin-

earisation of the measurement equations (8). This gives the

approximate mapping between a small perturbation, nv
k,i, of

the vertical feature position, v, and the feature’s position:

π(T(t̄i + (v̄ik + nv
k,i)d)pk) ≈ (15)

π(T(t̄i + v̄ikd)pk) + jTπ,v(t
i
k)Φ̇(tik)cdn

v
k,i. (16)

With the measurement equation (8) and the error term (9)

we approximate the effect of the noise, nk,i, on the error

terms:

ek,i = ek,i + jTπ,v(t
i
k)Φ̇(tik)cdn

k
v +

[
nu
k,i

nv
k,i

]
(17)

= ek,i +
([

1 0
0 1

]
+

[
0 1
0 1

]
jTπ,vdΦ̇(tik)c

)
︸ ︷︷ ︸

Ak(tik)

[
nu
k,i

nv
k,i

]
. (18)

The nominal error ēk,i = yik − π(T(t̄i + v̄ikd)pk) and

Ai
k := Ak(t

i
k) maps the feature variance onto the error term.

It is important to note that in the linearised form, (18), the

reprojection error terms fulfil the conditions under which

the least squares solution is equivalent to the maximum like-

lihood solution. The expected value of the error terms is

zero, E [ek,i] = 0, and the second condition—Gaussian er-

ror term variance—is given, as the Gaussian noise, nk,i, is

linearly mapped onto the error terms.

The GS relation of (18) is obtained if d = 0. As ex-

pected only a diagonal mapping, Ai
k = 12, remains, with

12 the 2 × 2 identity matrix. For d �= 0, the variance of

the feature detector is mapped onto both error term compo-

nents. In general the measurement noise—and thus the error

covariance—is assumed to be constant over time. This as-

sumption is no longer valid as the feature noise is mapped

onto the error terms with the time-dependent matrix Ai
k.

The scalar jπ,v(t
i
k)Φ̇(tik)c defines the scale factor of nk,i.

The influence of the off-diagonal terms becomes significant

for most fast motion patterns: small changes in the feature

row may, under rapid motion, induce a large change in the

camera position and propagate back to a large change in the

feature position in the image plane. For a slow motion the

matrix Ai
k tends to the GS case: identity. The covariance

matrix of the error terms is finally obtained via:

R̄k,i = E
[
(ek,i − ek,i)(ek,i − ek,i)T

]
(19)

= E

[
Ai

knk,inT
k,iA

i
k

T
]

(20)

= Ai
kRk,iAi

k

T
. (21)

Please note that the covariance is not constant in time and

needs to be re-evaluated each time the line delay changes

during estimation.

To visualise the effect of motion on the error covariance

ellipse we plot several examples in Figure 2. In this ex-

ample, the camera x-axis is aligned with the image u co-

ordinates, parallel to the sensor rows, the camera y-axis is

aligned with the v coordinates, aligned with the line scan-

ning direction, and the camera z-axis points towards the

landmarks in the scene. In Figure 2 (a-c) the landmark is

placed directly along the optical axis. A perturbation in the

vertical feature position changes the time of exposure of the

feature. If the camera moves along the x-axis, the position

of the camera also changes. The changed position produces

a shift in the u coordinate of the feature, Figure 2 (a).

Figure 2 (b) shows the covariance ellipses if the cam-
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era motion is parallel to the line scanning direction. If the

camera motion has the same direction as the line scanning,

the timespan during which a landmark is projected onto a

specific line is enlarged. The variance in the v coordinate

is thus reduced. The covariance matrix may, however, be-

come degenerate for fast motion along the line scanning di-

rection. This does not occur in practice but has to be taken

into account during implementation. Moving the camera in

the opposite direction reduces the timespan during which

a feature is projected onto a same line. Consequently, the

variance along the v-axis increases.

Placing a feature at an arbitrary position, as for exam-

ple the lower right of the image plane, produces similar co-

variance plots. The projection equations with the nonlinear

distortion model slightly rotate the covariance around the

z-axis. A significant change is observed for motion along

the z-axis (Figure 2 (d)) as the feature position is now influ-

enced by the distance between the landmark and the image

plane.

0.0

-0.5

0.5

no motion positivenegative

(a) centered, x (b) centered, y (c) centered, z (d) bottom-right, z
0.0 -0.50.5 0.0 -0.50.5 0.0 -0.50.5 0.0 -0.50.5

Figure 2. Covariance ellipse plots assuming a unit variance (black)

of the feature detector, (21). Figures (a,b,c) are for a feature cen-

tred in the image plane. Figure (d) assumes a feature at the bottom

right of the sensor. The motion is decomposed for all three trans-

lational axes and starts with a velocity in the negative direction

(red), goes to zero-motion (green) and to a velocity in the posi-

tive direction (blue). The line scanning direction is the positive

y-direction.

4. Implementation
In the following, we present our algorithm from an

implementation-specific view. We first give our assump-

tions and present our setup. We show that a weak motion

model is important in continuous-time estimation and dis-

cuss the problems related to a prior in the context of line

delay calibration. Finally, we propose our adaptive knot

placement algorithm which enables precise calibration re-

sults despite a motion prior.

4.1. Assumptions and Setting

We assume that (i) the camera intrinsics and the distor-

tion coefficients are known, (ii) the line delay is constant,

(iii) the correspondences between the features, yik, and the

landmarks, pk, are known, (iv) the geometry of the calibra-

tion pattern is known and with that the coordinates of the

landmarks, pk.

The perspective pose problem is initialised using the

GS PnP implementations available in OpenCV. Even if one

should not expect the PnP solution to be a good pose esti-

mate, it still proves to be of sufficient precision to serve as

initial guess. A RS-specific PnP solver, such as proposed by

Hedborg et al. [9], may be implemented in future. Further-

more, we assume a zero frame-delay to initialise the line

delay as d0 = 1
fps

1
NR

, where fps is the average number of

Frames Per Second and NR the number of rows of the sen-

sor. The trajectory parameters, x(t), are described with a

4th order B-spline and initialised using the linear solution

proposed by Schoenberg and Reinsch ([6]). We chose a

4th order B-spline as it is the first form which describes

a continuous, jump-less motion. Additionally, the 2nd or-

der derivative is well defined which allows us to implement

a motion prior based on accelerations. Given the nonlin-

ear least-squares problem it is preferable to use a minimal

parametrisation for the rotation to avoid any constraints on

the estimated quantities. A good choice is the axis angle

representation which has a singularity at 2kπ, k ∈ [0, 1, ...],
and an ambiguity in the combination of the sign of the an-

gle and the vector direction. For discrete time estimation the

ambiguity is of less importance as one is mainly interested

in the encoded rotation matrix. If however a continuous

parametrisation is chosen changes occurring in the direction

of the axis and the sign of the angle introduce jumps in the

supposedly continuous trajectories. To cope with that prob-

lem we assume a jump-less motion and select, for every PnP

estimate, the rotation vector which is, in a geometric sense,

closest to the vector in the previous time-step. The vector

at time step i (vi), given by an axis (vi = vi
‖vi‖ ) and angle

(φi = ‖vi‖), is compared to the set of possible equivalent

parametrisations vi
k = vi · (φi + 2kiπ) with ki ∈ [Kl,Ku]

generating a plausible range of rotations. At each discrete

measurement step, the calculated parametrisation is com-

pared to the previous rotation vector and ki is chosen as:

ki = argmin
kj

‖vi
kj
− vi−1

ki−1
‖. (22)

With this preprocessing we obtain continuous trajectories

even if the motion includes rotations passing 2π.

Continuous-time estimation requires enough informa-

tion in every time segment to estimate the spline coeffi-

cients, c. A lack of measurements in one segment results

in an under-constrained problem. To guarantee a well de-

fined problem, even if no measurements are available, a

weak motion prior is included [7]. We chose a prior of the

form ẍ ∼ GP(0,Qδ(t − t′)), with the covariance function

Qδ(t− t′) and δ(·) is Dirac’s delta function. The zero-mean

GP is the natural choice: in the absence of measurements,

it is assumed that the sensor moves with minimum accel-

eration. The motion prior takes a visible influence only

if no information on the pose is available. The weight,

Q := diag
(
10−5, 10−5, 10−5, 10−2, 10−2, 10−2

)
, was se-

lected once and kept constant for all experiments. Figure 3
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viate from the nominal value. At the same time the RMS position

error increases. The grey area shows the range in which the results

are unbiased.

shows how a motion prior improves the stability of the esti-

mated camera position in a general setup.

To solve the nonlinear least-squares problem, we used a

DogLeg implementation as suggested by Lourakis and Ar-

gyros [13]. The sparse matrix equations were solved using

the sparse Cholesky solver of CHOLMOD [5].

4.2. Adaptive Knot Placement

As explained in the previous section, the optimisa-

tion problem requires a weak motion prior to deal with

measurement-poor time intervals. However, the motion

prior can introduce a bias. Figure 4 shows the line delay es-

timates for an increasing number of uniformly spaced knots.

As the line delay is a physical parameter, we expect its value

to be independent of the motion parametrisation as long as

enough representational power is available to accurately de-

scribe the motion. However, in Figure 4 we see that the line

delay estimate stabilises between 600 and 1000 knots but

then begins to diverge as more knots allow the curve to over

fit. The same effect is seen for the RMS-position error (see

Section 5), which starts to increase, while the estimator cost

is constantly reduced. We conclude that the selection of an

appropriate number of knots becomes important for line de-

lay calibration.

We propose an adaptive knot placement method that

avoids over-fitting by adaptively adjusting the number of

knots until the residuals agree with their theoretical ex-

pected value. Each inverse-covariance-weighted error in (7)

can be considered standardised, in the sense that the weight-

ing whitens each error to follow a standard normal distribu-

tion ([4], chapter 5.4). This implies that ([4], section 1.4.17)

E

[
eTk,iR̄

−1
k,iek,i

]
= E

[
ẽTk,iẽk,i

]
= n, (23)

where ẽk,i ∼ N (0, 1) and n is the dimension of the error

term, in our case n = 2. Summing up, we obtain the ex-

pected cost in (7) to be

E [J ] =

N∑
i=0

E

[
eTk,iR̄

−1
k,iek,i

]
(24)

= 2N, (25)

where N is the number of vector-valued reprojection error

terms. To detect over-fitting, we can compare J , evaluated

for a dataset, with its expected value. When J > E [J ] for

some segment of the trajectory, this implies that the spline

does not have enough knots to be able to represent the mo-

tion in that segment. Consequently, the number of knots

should be increased. This adaptive knot picking scheme

was crucial for us to be able to estimate the line delay over

a wide range of datasets.

4.3. Calibration Algorithm

Finally, we can outline our complete algorithm for line

delay calibration:

1. Collect a video sequence of a known calibration pat-

tern and extract keypoint measurements.

2. Initialise d = 1
fps

1
NR

3. Initialise a smoothing spline using the GS PnP solution

at each image time. The spline should have a uniform

knot sequence with an approximate number of knots,

preferably too few knots.

4. Solve problem (7) with θ = d.

5. For every segment j and with Jj the actual cost and

Nj the number of error terms in the jth segment check

2Nj ≤ Jj , if True: split the segment in half by adding

a knot at tnew = 1
2 (tj−1+ tj), where tj is the position

of the jth knot.

6. if new knots were added, go to 4)

5. Experiments
In this section, we describe three experiment types. For

all three types we collected a series of datasets by mov-

ing the camera in front of a calibration pattern for 30–

60s. The presented results were obtained with a Matrix
Vision BlueFOX IGC202dG. The camera is attached to a

large rig equipped with Vicon motion capture system mark-

ers for ground truth. The calibration process as well as the
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perspective localisation datasets used chessboard corners,

with known relative positions as landmarks, extracted us-

ing OpenCV. The transformation between the rig and the

camera is estimated with Tsai’s method [18] applied to a

series of static images. The method proposed by Liu and

Xia [19] is applied to synchronise both Vicon and camera

timestamps. The camera-rig transformation and the time

synchronisation are only required for validation against the

ground truth and have no influence on the calibration or lo-

calisation tasks themselves. For the calibration of the in-

trinsics and the distortion coefficients of the RS camera the

OpenCV tools were used. To prevent RS distortions, the

camera was kept still but not mounted to a fixed stand.

5.1. Continuous-Time Localisation

Our first experiment is designed to show that our algo-

rithm is capable of estimating the motion of a rolling shutter

camera; simultaneous calibration of the line delay is not per-

formed. The line delay is first calibrated using the approach

proposed by Geyer et al. [14]. We chose a low framerate

(≈ 7fps) for which the line delay lies around d = 137μs.

The extremely large line delay, around 4 times larger than

for common smart-phones, produces significant distortions,

even if only slow motion is produced. Comparing the re-

sults obtained with our approach to a GS discrete-time PnP

solution, Figure 5, shows the importance of using an ap-

propriate RS model. The Sum of Squared Errors (SSE) of

the position and orientation3 are significantly reduced and

the reprojection errors confirm those results. The grey ar-

eas mark the time-ranges during which valid measurements

were obtained. In accordance with the constant-acceleration

hypothesis introduced by regularisation (Section 4.1) the es-

timated pose parameters remain bounded even if no mea-

surements are obtained. A significant increase of the po-

sition error is however unpreventable as no information on

the camera pose is available.

5.2. Shutter Calibration

The second experiment was designed to test the accuracy

of our algorithm in estimating the line delay. We calibrated

our camera with forty different real datasets at four differ-

ent pixel-clock values with our approach and again with

forty different datasets using the Geyer calibration. As this

publication only presents a calibration method a thorough

analysis of the required motion patterns for a successful

calibration is left for future research. Our results are con-

sistent with the results obtained with the established Geyer

approach and both are in accordance with the nominal val-

ues. The numerical values are available in Table 1. The

nominal values were obtained using the relation between

the pixel clock (P [Hz]) and the time required for reading

a single line containing NP pixels given in the data sheet:

3to quantify the errors an Euler Roll-Pitch-Yaw parametrisation is used
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Figure 5. Continuous-time RS perspective localisation (green) and

a discrete-time GS PnP solution (blue) compared to the Vicon

ground truth. The grey areas show the time-ranges during which

valid measurements were received. As expected, both solutions

deviate from the ground truth if no measurements are available.

The mean absolute errors for the GS and RS estimates, respec-

tively, are 189 and 8.34 mm for the position, and 0.34 and 0.03
rad for the orientation.

0
10
20
30

-8 -6 -4 -2 8
0

10
20
30

2 4 60

C
ou

n
t

C
ou

n
t

Deviation from Nominal Line Delay [μs]

Our Calibration

Geyer Calibration

Figure 6. Deviation of the calibration results with our approach

and the Geyer approach from the nominal values based on 40 real

datasets at different values of pixel-clock.

tl = NP
1
P . In our case the number of pixels including

horizontal blanking is NP = 1650. The numerical values

in Table 1 and the error histogram in Figure 6 both con-

firm that our approach delivers line delay estimates close to

the nominal values. As the nominal values might not be the

camera’s exact value we take an additional comparison step.

We expect a linear relation between the line delay and the

pixel timing (μs) passing through the origin. The results of

a linear least squares fit of the line delays estimated by both

methods are shown in Table 2. The behaviour of the line

delay as a function of the pixel clock is more accurately de-

scribed with our results. In conclusion, our method signifi-

cantly outperforms the state-of-the-art technique in terms of

reproducibility, while requiring a much simpler setup.

5.3. Smart-Phone Calibration Results

We performed a series of calibration runs for differ-

ent smart-phones using our proposed method, see Table

3. Smart-phones typically have large exposure times. For

that reason, we suggest using circle patterns for calibrat-

ing smart-phone cameras as blob detection algorithms are
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Nominal Median Std. Deviation

New Geyer New Geyer

12MHz 137.5 137.7 136.86 0.56 3.12

20MHz 82.5 82.55 83.54 0.15 1.23

32MHz 51.56 51.35 51.48 0.19 1.70

40MHz 41.25 41.14 41.09 0.21 0.82
Table 1. Numerical values of the line delay estimation. Compari-

son between our approach, the Geyer calibration and the nominal

values. The line delay units are μs.

Nominal New Geyer

Slope 1650.0 1650.02 1642.54

Intercept 0 −0.0016 0.39

Residual 0 3.90e−6 1.40
Table 2. Comparison of the nominal slope and intercept to a least

squares fit of our results and the results with the Geyer calibration.

fps Resolution d σ N

iPhone3GS 30 640× 480 64.41 0.11 5

iPhone4S 30 1920× 1080 24.12 0.52 12

Galaxy S3 30 1920× 1080 30.25 0.68 7
Table 3. Calibration results for three common smart-phones. The

line delay d and the standard deviation σ are given in μs. The

estimates are based on N datasets.

in general more robust to motion blur than chessboard cor-

ner detectors. We used the detection algorithms offered by

OpenCV 2.4. The length of the recorded video sequences is

50− 60s.

6. Conclusion and Future Work
In this paper, we derived a new method of estimating the

line delay of a rolling shutter camera, using only video im-

ages of a chessboard or other calibration pattern with known

geometry. The estimation is performed using the batch,

continuous-time approach of [7]. The line delay calibration

method outperforms the current state-of-the-art technique

[14] without requiring any specialised hardware.

The complexity of the simultaneous calibration of the

camera intrinsics and distortion parameters remains an open

problem which should be addressed by further research. Be-

sides that, a series of RS cameras influence the line delay

by tuning the exposure while recording a video. We believe

that our approach could be modified to an online line delay

estimation to take full advantage of the sensors.
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