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Abstract

Data fusion, which effectively fuses multiple prediction
lists from different kinds of features to obtain an accurate
model, is a crucial component in various computer vision
applications. Robust late fusion (RLF) is a recent proposed
method that fuses multiple output score lists from differ-
ent models via pursuing a shared low-rank latent matrix.
Despite showing promising performance, the repeated full
Singular Value Decomposition operations in RLF’s opti-
mization algorithm limits its scalability in real world vision
datasets which usually have large number of test examples.
To address this issue, we provide a scalable solution for
large-scale low-rank latent matrix pursuit by a divide-and-
conquer method. The proposed method divides the origi-
nal low-rank latent matrix learning problem into two size-
reduced subproblems, which may be solved via any base
algorithm, and combines the results from the subproblems
to obtain the final solution. Our theoretical analysis shows
that with fixed probability, the proposed divide-and-conquer
method has recovery guarantees comparable to those of its
base algorithm. Moreover, we develop an efficient base al-
gorithm for the corresponding subproblems by factorizing
a large matrix into the product of two size-reduced matri-
ces. We also provide high probability recovery guarantees
of the base algorithm. The proposed method is evaluated on
various fusion problems in object categorization and video
event detection. Under comparable accuracy, the proposed
method performs more than 180 times faster than the state-
of-the-art baselines on the CCV dataset with about 4,500
test examples for video event detection.

1. Introduction

Effectively integrating multiple cues/features to obtain
an accurate model, which is known as data fusion, is a pop-
ular approach to solve various tasks in computer vision and
multimedia analysis, such as object classification and de-
tection [4, 17, 19], video event detection [7, 8]. Various
methods that fuse multiple kinds of features have been pro-
posed in the literature (see, e.g. [18, 14, 4, 21], to just name

a few).
These methods can be categorized into two main

streams. The first stream is Early Fusion, which com-
bines multiple features into a common representation be-
fore (or in) the learning process. Multiple Kernel Learn-
ing (MKL) [1] is one of the representative method in this
stream. The second stream is Late Fusion, which firstly
learns models from different kinds of features, and then
combines the intermediate output scores of the learned
models to yield a final model.

In this paper, we focus on the problem of Robust Late Fu-
sion (RLF) proposed in [21], in which the authors formu-
lated late fusion as an optimization problem of Low-rank
Latent Matrix Pursuit (LLMP). As shown in Figure 1(a),
RLF fuses multiple models via seeking a shared low-rank
comparison matrix. The formulation of LLMP is general
and can also be applied to (with simple extensions) other
important problems, such as rank aggregation [5] for infor-
mation retrieval and collaborative filtering.

The authors in [21] solved the LLMP problem via the
popular Augmented Lagrange Multiplier method [9] (Here-
after we call it RLF-ALM for the algorithm in [21]). The
main drawback of RLF-ALM is that it needs repeated oper-
ations of full Singular Value Decomposition (SVD), whose
time complexity is cubic w.r.t. the number of test examples.
This limits RLF-ALM’s scalability on large-scale datasets
with thousands of test examples.

To address this issue, we develop a scalable method for
large-scale LLMP. Our method has two building blocks:
(1) Inspired by the recent advance in divide-and-conquer
matrix factorization, we develop a divide-and-conquer ap-
proach for LLMP. As illustrated in Figure 1(b), our method
divides the original LLMP problem into reduced-size sub-
problems, solves the subproblems via any base algorithm
for LLMP, and then combines the results from the subprob-
lems to obtain the final solution. Our theoretical analysis
shows that with fixed probability, the proposed divide-and-
conquer algorithm has recovery guarantees comparable to
those of the base algorithm. (2) To further improve the
scalability, we propose an efficient base algorithm for the
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Figure 1. A divide-and-conquer method for Low-rank Latent Matrix Pursuit in Robust Late Fusion. (a) Overview of Robust Late Fusion.
Given 𝑛 score lists 𝑠𝑖(𝑖 = 1 𝑡𝑜 𝑛) from different models, RLF constructs 𝑛 matrices 𝑇 (𝑖)(𝑖 = 1, 2, ..., 𝑛), where each 𝑇 (𝑖) encodes the
pairwise relations of scores of every two test images in score list 𝑠𝑖. Then 𝑇 (𝑖)(𝑖 = 1, 2, ..., 𝑛) are used as input of LLMP to learn a shared,
low-rank and skew-symmetric matrix 𝑇 . Each 𝑇 (𝑖) can be reconstructed by 𝑇 combining with an additive sparse matrix 𝐸(𝑖). At last, RLF
can recover a final and more accurate score list from 𝑇 . (b) An illustration of the proposed divide-and-conquer method to solve the LLMP
problem. We randomly divide 𝑇 (and correspondingly, each 𝑇 (𝑖) and each 𝐸(𝑖)) into four parts 𝑇𝑆 , 𝑇𝐴, 𝑇𝐵 , 𝑇𝐶 by sub-sampling. Then
in step 1-2, we recover 𝑇𝑆 and 𝑇𝐴 by solving two size-reduced subproblems like the original LLMP problem, respectively. In step 3, we
obtain 𝑇𝐵 by skew-symmetry of 𝑇 . In step 4, we calculate 𝑇𝐶 by simple matrix algebra. Finally, we simply combine the four parts to
obtain the final matrix 𝑇 .

corresponding subproblems. In each iteration, the base al-
gorithm factorizes a large comparison matrix 𝑇 ∈ ℝ

𝑚1×𝑚2

into the product of two size-reduced matrices (i.e.,𝑚1 × 𝑟
and 𝑟 × 𝑚2, 𝑟 ≪ 𝑚𝑖𝑛(𝑚1,𝑚2)), so that on the one
hand, the corresponding optimization problem only has
𝑂((𝑚1 +𝑚2)𝑟) variables; on the other hand, we only need
to conduct a size-reduced SVD operation in each iteration,
which is much cheaper than the SVD operation on the orig-
inal full matrix. We further provide recovery guarantees of
the proposed base algorithm. We conduct extensive experi-
ments to evaluate the proposed method. The results on the
Columbia Consumer Video (CCV) dataset with 4,658 test
examples show that, under comparable accuracy, the pro-
pose method performs more than 180 times faster than the
state-of-the-art RLF-ALM algorithm.

2. Related Work

Integrating multiple kinds of complementary features is
a common approach in various vision tasks. The strategies
of feature combination can be divided into early fusion and
late fusion.

A representative method of early fusion is MKL [1],
which simultaneously learns kernel matrices and their asso-
ciated combination weights. Combining multiple features
via MKL showed good performance in object classifica-
tion [4] and object detection [19]. However, some empirical
studies [4] also showed that MKL may not perform better
than the simple average kernel combination.

Many methods of late fusion have been proposed. Nan-
dakumar et al. [14] used finite Gaussian mixture to model
the distribution of the intermediate output scores, and then
combined the scores via likelihood ratio test. Terrades et
al. [18] used a non-Bayesian probabilistic framework to
fuse multiple output scores by minimizing the misclassifi-
cation rates under the ℓ1 constraint. The most related work
to ours is the recently proposed Robust Late Fusion in [21],
where the authors formulated late fusion as a problem of
pursuing a shared low-rank latent matrix, and then proposed
to the corresponding optimization problem via an algo-
rithm based on Augmented Lagrange Multiplier method [9].
However, the optimization algorithm in [21] needs repeated
full SVD operations whose time complexity is cubic w.r.t.
the number of text examples, which limits its scalability on
large-scale real world applications.

Our work is motivated by the recent progress in effi-
cient algorithms for large-scale low-rank matrix learning.
Mackey et al. [13] proposed a divide-and-conquer algo-
rithm for robust principal component analysis (RPCA) [3]
problems. The main idea is to divide a large-scale ma-
trix learning problem into several size-reduced subprob-
lems, solve the subproblems in parallel, and then combine
the results from the subproblems. With fixed probabil-
ity, their divide-and-conquer algorithm has estimation er-
ror bound guarantees compared to its base algorithm that
directly solves the original large-scale problem. In con-
trast to RPCA with a single low-rank and sparse decom-
position constraint, our work focus on a divide-and-conquer
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approach for the LLMP problem that seeks to learn a shared
skew-symmetric comparison matrix with multiple low-rank
and sparse decomposition constraints.

3. Problem Formulation

The robust late fusion problem [21] is to fuse 𝑛
confidence score lists {𝑠(𝑖)}𝑛𝑖=1. Each list 𝑠(𝑖) =

(𝑠
(𝑖)
1 , 𝑠

(𝑖)
2 , ..., 𝑠

(𝑖)
𝑚 )𝑇 is an intermediate output of a learned

model (e.g., a classifier) from a specific kind of fea-
tures/cues.

Next, we will first introduce how to construct the com-
parison matrices (as inputs to the LLMP problem), and then
describe the formulation of LLMP.

For each 𝑠(𝑖), we convert it into a 𝑚 × 𝑚 comparison
matrix 𝑇 (𝑖), in which each 𝑇

(𝑖)
𝑗,𝑘 is defined as:

𝑇
(𝑖)
𝑗,𝑘 = 𝑠𝑖𝑔𝑛(𝑠

(𝑖)
𝑗 − 𝑠

(𝑖)
𝑘 ). (1)

Each comparison matrix 𝑇 (𝑖) is an isotonic representa-
tion that encodes the relative relationship among the test
examples. Some entries in 𝑇 (𝑖) correctly reflect the relative
relationship among the test examples, while other entries
may be incorrect due to the wrong predictions in the score
list 𝑠(𝑖). 𝑇 (𝑖) can be viewed as a combination of two parts:
a shared low-rank part 𝑇 that reflects the correct relation-
ship among the test examples, and a sparse part 𝐸(𝑖) that
encodes the irregular corruptions made by the incorrect en-
tries. 𝑇 (𝑖) will be used as inputs to the LLMP optimization
problem.

Ideally, assume there exists a score list 𝑠 that correctly
explains the relations of the test examples, then 𝑇 can be
viewed as a matrix which encodes the relations in 𝑠, i.e.,
𝑇 = 𝑠𝑒𝑇 − 𝑒𝑠𝑇 where 𝑒 denotes the vector with all ones.
Obviously, 𝑇 in this form is a rank-2 matrix. However, if
there is large variation in the scores, the matrix 𝑇 might
have an unknown rank higher than 2. This motivates us to
formulate RLF as an optimization problem of pursuing a
shared, low-rank and skew-symmetric latent matrix:

min
𝑇,{𝐸(𝑖)}𝑛𝑖=1

𝑟𝑎𝑛𝑘(𝑇 ) + 𝜆

𝑛∑
𝑖=1

∣∣𝐸(𝑖)∣∣0

𝑠.𝑡. 𝑇 (𝑖) = 𝑇 + 𝐸(𝑖), 𝑖 = 1, 2, ..., 𝑛, 𝑇 = −𝑇𝑇 .

(2)

It is known that (2) is NP-hard in general due to the non-
convex 𝑟𝑎𝑛𝑘(𝑇 ) and ∣∣𝐸(𝑖)∣∣0 norm. One popular way is to
replace 𝑟𝑎𝑛𝑘(𝑇 ) with ∣∣𝑇 ∣∣∗, ∣∣𝐸(𝑖)∣∣0 with ∣∣𝐸(𝑖)∣∣1, which
leads to the following LLMP optimization problem:

min
𝑇,{𝐸(𝑖)}𝑛𝑖=1

∣∣𝑇 ∣∣∗ + 𝜆
𝑛∑

𝑖=1

∣∣𝐸(𝑖)∣∣1

𝑠.𝑡. 𝑇 (𝑖) = 𝑇 + 𝐸(𝑖), 𝑖 = 1, 2, ..., 𝑛, 𝑇 = −𝑇𝑇 ,

(3)

where ∣∣𝑇 ∣∣∗ denotes the trace norm of 𝑇 .
Given the learned matrix 𝑇 , we can easily obtain the

score list 𝑠 by 𝑠 = 1
𝑚𝑇𝑒𝑇 .

The LLMP optimization problem is the core in RLF.
More importantly, LLMP is general and can also be applied
to other family of problems, such as rank aggregation [5]
for information retrieval and collaborative filtering. In this
paper, we only focus on its applications in computer vision
tasks.

4. A Divide-and-Conquer Solution

The existing algorithms for LLMP, such as RLF-
ALM [21], need repeated SVD operations on the whole
comparison matrix, which have cubic time complexity w.r.t.
the number of test examples. This makes them scale poorly
on large-scale real world datasets. Inspired by the recent
advance in divide-and-conquer algorithms [13] for RPCA
problems [3], we propose a scalable divide-and-conquer
method for the LLMP optimization problem. The main
idea is to divide the optimization problem (3) into small-
size subproblems, each of which can be easily solved by a
base algorithm or by simple algebra, and then combine the
results to get a low-rank and skew-symmetric comparison
matrix.

The proposed divide-and-conquer method for LLMP is
summarized in Algorithm 1. It has the following three main
steps:
(1) Partitioning the matrices Let 𝑇 ∈ ℝ

𝑚×𝑚, and 𝑆
be a set of 𝑘 (𝑘 ≪ 𝑚) indices randomly sampled from
{1, 2, ...,𝑚} without replacement. For a matrix 𝑀 , we de-
note 𝑀𝑆 as the 𝑘 × 𝑘 submatrix in 𝑀 where both the row
set and column set are 𝑆. For ease of presentation, without
loss of generality, we assume 𝑆 = {1, 2, ..., 𝑘}, and then
𝑀𝑆 is the top and left 𝑘 × 𝑘 submatrix of 𝑀 . We sample
the submatrices 𝑇𝑆 , 𝑇 (𝑖)

𝑆 and 𝐸
(𝑖)
𝑆 , and then each matrix is

partitioned into four parts:

T =

[
𝑇𝑆 𝑇𝐴

𝑇𝐵 𝑇𝐶

]
, (4)

T(i) =

[
𝑇

(𝑖)
𝑆 𝑇

(𝑖)
𝐴

𝑇
(𝑖)
𝐵 𝑇

(𝑖)
𝐶

]
, E(i) =

[
𝐸

(𝑖)
𝑆 𝐸

(𝑖)
𝐴

𝐸
(𝑖)
𝐵 𝐸

(𝑖)
𝐶

]
.

Since 𝑇 is skew-symmetric, we have 𝑇𝐴 = −𝑇𝑇
𝐵 .

(2) Recovering the seed matrix We recover the seed ma-
trix 𝑇𝑆 by solving the following subproblem:

min
𝑇𝑆 ,{𝐸(𝑖)

𝑆 }𝑛𝑖=1

∣∣𝑇𝑆 ∣∣∗ + 𝜆

𝑛∑
𝑖=1

∣∣𝐸(𝑖)
𝑆 ∣∣1

𝑠.𝑡. 𝑇
(𝑖)
𝑆 = 𝑇𝑆 + 𝐸

(𝑖)
𝑆 , 𝑖 = 1, 2, ..., 𝑛, 𝑇𝑆 = −𝑇𝑇

𝑆 .

(5)

Obviously this is a size-reduced problem of (3) which can
be solved by any base algorithm for LLMP (i.e., RLF-
ALM).
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Algorithm 1: Divide-and-Conquer LLMP (DC-LLMP)
Input: 𝑇 (𝑖) (i=1,2,...,n), 𝜆, 𝑘
Output: 𝑇 , 𝑇 (𝑖) (i=1,2,...,n)
1. Randomly sample a set of 𝑘 indices to partition each

matrix of 𝑇 (𝑖) into 4 parts (𝑇 (𝑖)
𝑆 , 𝑇

(𝑖)
𝐴 , 𝑇

(𝑖)
𝐵 , 𝑇

(𝑖)
𝐶 );

2. Recover the seed matrix 𝑇𝑆 and 𝐸
(𝑖)
𝑆 by (5);

3. Recover 𝑇𝐴 and 𝐸
(𝑖)
𝐴 by (6);

4. Calculate 𝑇𝐵 and 𝐸
(𝑖)
𝐵 by (7);

4. Calculate 𝑇𝐶 and 𝐸
(𝑖)
𝐶 by (8);

5. Output: 𝑇 , 𝐸(𝑖)(𝑖 = 1, 2, ..., 𝑛).

(3) Recovering the rest parts We obtain (𝑇𝐴, 𝐸
(𝑖)
𝐴 ) by

solving the following subproblem:

min
𝑇𝐴,𝐸

(𝑖)
𝐴

∣∣𝑇𝐴∣∣∗ + 𝜆
𝑛∑

𝑖=1

∣∣𝐸(𝑖)
𝐴 ∣∣1

𝑠.𝑡. 𝑇
(𝑖)
𝐴 = 𝑇𝐴 + 𝐸

(𝑖)
𝐴 , 𝑖 = 1, 2, ..., 𝑛,

(6)

Since 𝑇 is skew-symmetric, we have 𝑇𝐴 = −𝑇𝑇
𝐵 .

Hence, we can get (𝑇𝐵 , 𝐸
(𝑖)
𝐵 ) by

𝑇𝐵 = −𝑇𝑇
𝐴 , 𝐸

(𝑖)
𝐵 = −𝐸

(𝑖)
𝐴

𝑇
(𝑖 = 1, 2, ...𝑛). (7)

Now we are ready to calculate the last part 𝑇𝐶 by

𝑇𝐶 = 𝑇𝐵𝑇+
𝑆 𝑇𝐴, 𝐸

(𝑖)
𝐶 = 𝑇

(𝑖)
𝐶 − 𝑇𝐶 (𝑖 = 1, 2, ...𝑛), (8)

where 𝑇+
𝑆 = 𝑉 Σ−1𝑈𝑇 denote the pseudo inverse of 𝑇𝑆 ,

and 𝑈Σ𝑉 𝑇 = 𝑇𝑆 is the SVD form of 𝑇𝑆 .
Remark The proposed method method can be viewed as a
variant of Generalized Nystrom Method. The standard Nys-
trom method is used to accelerate large-scale learning prob-
lems with symmetric positive semi-definite matrices (i.e.,
kernel matrices learning) [20], and it has been generalized
for arbitrary matrices [6]. It is worth noting that, although
our framework is based on Generalized Nystrom Method,
the involved subproblems (i.e., (5) and (6) with joint low-
rank and sparse constraints) and their corresponding theo-
retical analysis are specific to LLMP, which are different
from other work [13] using Generalized Nystrom Method.

5. Efficient Base Algorithm for Subproblems

The optimization problems (6) and (5) are essentially in
the same form:

min
𝑇,𝐸(𝑖)

∣∣𝑇 ∣∣∗ + 𝜆

𝑛∑
𝑖=1

∣∣𝐸(𝑖)∣∣1

𝑠.𝑡. 𝑇 (𝑖) = 𝑇 + 𝐸(𝑖), 𝑖 = 1, 2, ..., 𝑛,

(9)

where 𝑇, 𝑇 (𝑖), 𝐸(𝑖) ∈ ℝ
𝑚1×𝑚2 .

Algorithm 2: Base Algorithm for LLMP (LLMP-Base)
Input: {𝑇 (𝑖)}𝑛𝑖=1, 𝜆, 𝑟
Output: 𝑇, {𝐸(𝑖)}𝑛𝑖=1

1. Initialize: 𝑄1 = 0, 𝐽1 = 0, 𝐸(𝑖)
1 = 0,𝑌 (𝑖)

1 = 0,
𝜇1 = 10−3, max𝜇 = 1010, 𝜖 = 10−8, 𝜌 = 1.9, 𝑡 = 0.

2. Repeat
3. 𝑡← 𝑡+ 1
4. Fix the other terms and update 𝑄 by

𝑄𝑡+1 ← 𝑎𝑟𝑔min𝑄𝑇𝑄=𝐼

∑𝑛
𝑖=1

𝜇𝑡

2 ∣∣𝑇 (𝑖) − 𝐸
(𝑖)
𝑡

−𝑄𝐽𝑡∣∣2𝐹 +
∑𝑛

𝑖=1⟨𝑌 (𝑖)
𝑡 , 𝑇 (𝑖) − 𝐸

(𝑖)
𝑡 −𝑄𝐽𝑡⟩;

5. Fix the other terms and update 𝐽 by

𝐽𝑡+1 ← 𝑎𝑟𝑔min𝐽
∑𝑛

𝑖=1
𝜇𝑡

2 ∣∣𝑇 (𝑖) − 𝐸
(𝑖)
𝑡 −𝑄𝑡+1𝐽 ∣∣2𝐹

+∣∣𝐽 ∣∣∗ +
∑𝑛

𝑖=1⟨𝑌 (𝑖)
𝑡 , 𝑇 (𝑖) − 𝐸

(𝑖)
𝑡 −𝑄𝑡+1𝐽⟩;

6. Fix the other terms and update each 𝐸(𝑖) by
𝐸(𝑖) ← 𝑎𝑟𝑔min𝐸(𝑖)

𝜇𝑡

2 ∣∣𝑇 (𝑖) − 𝐸(𝑖) −𝑄𝑡+1𝐽𝑡+1∣∣2𝐹
+𝜆∣∣𝐸(𝑖)∣∣1 + ⟨𝑌 (𝑖)

𝑡 , 𝑇 (𝑖) − 𝐸(𝑖) −𝑄𝑡+1𝐽𝑡+1⟩;
7. update the multiplier

𝑌
(𝑖)
𝑡+1 ← 𝑌

(𝑖)
𝑡 + 𝜇𝑡(𝑇

(𝑖) − 𝐸
(𝑖)
𝑡+1 −𝑄𝑡+1𝐽𝑡+1);

8. update the parameter 𝜇𝑡+1 ← max(max𝜇, 𝜌𝜇𝑡);

9. until ∣∣𝑇 (𝑖) − 𝐸
(𝑖)
𝑡+1 −𝑄𝑡+1𝐽𝑡+1∣∣∞ ≤ 𝜖

10. Output: 𝑇𝑡+1 = 𝑄𝑡+1𝐽𝑡+1, {𝐸(𝑖)
𝑡+1}𝑛𝑖=1.

Although there exist algorithms to solve (9) (i.e., the al-
gorithm in [21]), a challenging issue arising in solving (9)
is that, when applied to subproblems with large 𝑚1 and
𝑚2, the repeated full SVD operations are still computa-
tionally expensive. To address this issue, we propose to
factorize the large comparison matrix 𝑇 ∈ ℝ

𝑚1×𝑚2 into
the product of two size-reduced matrices (i.e.,𝑚1 × 𝑟 and
𝑟 ×𝑚2, 𝑟 ≪ 𝑚𝑖𝑛(𝑚1,𝑚2)). This kind of fixed rank prior
is used in recent works [12, 11] to speed up low-rank ma-
trix learning problems such as RPCA [3] and LRR [10].
There are two advantages from the factorization: (1) the re-
sulting optimization problem only has 𝑂((𝑚1+𝑚2)𝑟) vari-
ables, and (2) only size-reduced SVD operations are needed
in each iteration, which is much cheaper than the full SVD
operations.

Our algorithm is based on the ALM framework [9]. We
assume the factorization be 𝑇 = 𝑄𝐽 where 𝑄 ∈ 𝑚1 × 𝑟
is column-orthogonal and 𝐽 ∈ 𝑟 ×𝑚2. The corresponding
Lagarange function of (9) is:

𝐿(𝑄, 𝐽,𝐸(𝑖), 𝑌 (𝑖)) = ∣∣𝑄𝐽 ∣∣∗ + 𝜆
𝑛∑

𝑖=1

∣∣𝐸(𝑖)∣∣1

+

𝑛∑
𝑖=1

𝜇

2
∣∣𝑇 (𝑖) − 𝐸(𝑖) −𝑄𝐽 ∣∣2𝐹

+

𝑛∑
𝑖=1

⟨𝑌 (𝑖), 𝑇 (𝑖) − 𝐸(𝑖) −𝑄𝐽⟩.

(10)

Algorithm 2 shows the sketch of the proposed algorithm.
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Next we investigate the update rules for each variable
(𝑄, 𝐽, 𝐸(𝑖)) when other variables being fixed.

Since 𝑄 is column-orthogonal, we have that ∣∣𝑄𝐽 ∣∣∗ =
∣∣𝐽 ∣∣∗. The optimization problem w.r.t. 𝑄 is:

min
𝑄𝑇𝑄=𝐼

𝜇

2

𝑛∑
𝑖=1

∣∣𝑇 (𝑖) − 𝐸(𝑖) −𝑄𝐽 +
𝑌 (𝑖)

𝜇
∣∣2𝐹 ,

whose solution is 𝑄 = 𝑈𝑄𝑉 𝑇
𝑄 where 𝑈𝑄Σ𝑄𝑉 𝑇

𝑄 is the SVD

form of 1
𝑛

∑𝑛
𝑖=1(𝑇

(𝑖) − 𝐸(𝑖) + 𝑌 (𝑖)

𝜇 )𝐽𝑇 .
The optimization problem w.r.t. 𝐽 is:

min
𝐽
∣∣𝐽 ∣∣∗ + 𝜇

2

𝑛∑
𝑖=1

∣∣𝑇 (𝑖) − 𝐸(𝑖) −𝑄𝐽 +
𝑌 (𝑖)

𝜇
∣∣2𝐹 .

This can be solved by singular value threshold method [2].
Its solution is 𝐽 = 𝑈𝐽𝕊 1

𝜇
(Σ𝐽 )𝑉

𝑇
𝐽 where 𝑈𝐽Σ𝐽𝑉

𝑇
𝐽 is the

SVD form of 1
𝑛

∑𝑛
𝑖=1 𝑄

𝑇 (𝑇 (𝑖)−𝐸(𝑖)+ 𝑌 (𝑖)

𝜇 ) and 𝕊𝛾(𝑋) =

max(0, 𝑋 − 𝛾) + min(0, 𝑋 + 𝛾) denote the shrinkage op-
erator [9].

The optimization problem w.r.t. 𝐸(𝑖) is

min
𝐸(𝑖)

𝜇

2
∣∣𝑇 (𝑖) − 𝐸(𝑖) −𝑄𝐽 +

𝑌 (𝑖)

𝜇
∣∣2𝐹 + 𝜆∣∣𝐸(𝑖)∣∣1,

whose solution is 𝐸(𝑖) = 𝕊𝜆/𝜇(𝑇
(𝑖) −𝑄𝐽 + 𝑌 (𝑖)

𝜇 ).

6. Theoretical Analysis

A natural question arising here is whether there is any
theoretical guarantee on the recovery errors of the proposed
divide-and-conquer method compared to the errors of the
base algorithm. The answer is yes as we will show in the
following theorems. Our analysis is based on the stan-
dard matrix coherence assumption. We refer the reader
to Section 3.1.1 in [13] for detailed definitions of (𝜇, 𝑟)-
coherence.

We first rewrite (9) to a more general form:

min
𝑇,𝐸(𝑖)

∣∣𝑇 ∣∣∗ + 𝜆

𝑛∑
𝑖=1

∣∣𝐸(𝑖)∣∣1

𝑠.𝑡. ∣∣𝑇 (𝑖) − 𝑇 − 𝐸(𝑖)∣∣𝐹 ≤ Δ, 𝑖 = 1, 2, ..., 𝑛.

(11)

Obviously, (11) reduces to (9) when Δ→ 0.
The first theorem establishes that, under certain condi-

tions, the solution to (11) guarantees low recovery errors
with high probability.

Theorem 1. Let (𝑇0, 𝐸
(𝑖)
0 ) be the ground truth of the joint

low-rank and sparse decomposition of 𝑇 (𝑖). Let (𝑇,𝐸(𝑖))
be the minimizer of (11). Suppose that 𝑇0 is (𝜇0, 𝑟0)-
coherent and 𝑇 is (𝜇𝑇 , 𝑟𝑇 )-coherent. Suppose that ∀𝑖, the

support set of 𝐸(𝑖)
0 is uniformly distributed among all sets

with cardinality 𝑠0,𝑖, and the support set of 𝐸(𝑖) is uniformly
distributed among all sets with cardinality 𝑠𝑇,𝑖. Then if

𝑚1 ≤ 𝑚2 and ∀𝑖, ∣∣𝑇 (𝑖) − 𝑇0 − 𝐸
(𝑖)
0 ∣∣𝐹 ≤ Δ, there is a

constant 𝑐𝑝 such that with probability at least 1−2𝑛𝑐𝑝𝑚
−𝛽
2 ,

the minimizer (𝑇,𝐸(𝑖)) of (11) with 𝜆 = 1/
√
𝑚2 satisfies

∣∣𝑇 − 𝑇0∣∣2𝐹 +
1

𝑛

𝑛∑
𝑖=1

∣∣𝐸(𝑖) − 𝐸
(𝑖)
0 ∣∣2𝐹 ≤ 2𝑐2𝜖𝑚1𝑚2Δ

2

provided that 𝑟0 ≤ 𝑝𝑟𝑚1𝜇
−1𝑙𝑜𝑔−2(𝑚2), 𝑟𝑇 ≤

𝑝𝑟𝑚1𝜇
−1𝑙𝑜𝑔−2(𝑚2), ∀𝑖, 𝑠0,𝑖 ≤ (1 − 𝑝𝑠𝛽)𝑚1𝑚2 and

𝑠𝑇,𝑖 ≤ (1 − 𝑝𝑠𝛽)𝑚1𝑚2 for 𝛽 ≥ 2 and some positive con-
stants 𝑝𝑟, 𝑝𝑠, 𝑐𝜖.

The proof is provided in the supplementary material.
The second theorem shows that, with fixed probabil-

ity, the recovery errors of the proposed divide-and-conquer
method is bounded by the errors of the solution to (11).

Theorem 2. Let 𝑇0 be the ground truth of the rank-
𝑟0 latent matrix, and 𝑇 be the output of Algorithm 1.
𝑇 is partitioned as in (4), and correspondingly 𝑇0 is
partitioned into (𝑇0,𝑆 , 𝑇0,𝐴, 𝑇0,𝐵 , 𝑇0,𝐶). Choose 𝑘 ≥
𝑐𝜇𝑟𝑙𝑜𝑔(𝑚2)𝑙𝑜𝑔(1/𝛿)/𝜖

2, with 𝑐 being a fixed positive con-
stant, under the notations of Algorithm 1, with probability
at least (1 − 𝛿)(1 − 𝛿 − 0.2), both 𝐶0 = [𝑇0,𝑆 𝑇0,𝐴] and

𝑅0 = [𝑇𝑇
0,𝑆 𝑇𝑇

0,𝐵 ]
𝑇 are ( 𝑟0𝜇

2
0

1−𝜖/2 , 𝑟0)-coherent and 𝑇 satisfies

∣∣𝑇−𝑇0∣∣𝐹 ≤ (2+3𝜖)
√
∣∣𝑇𝑆 − 𝑇0,𝑆 ∣∣2𝐹 + 2∣∣𝑇𝐴 − 𝑇0,𝐴∣∣2𝐹 .

The proof is provided in the supplementary material.

7. Experimental Evaluation

In this section, we evaluate the accuracy and running
time of the proposed divide-and-conquer method on various
real world and simulated datasets. We compare the perfor-
mance of three algorithms for the LLMP problem, includ-
ing the proposed base algorithm LLMP-Base, the proposed
divide-and-conquer algorithm DC-LLMP, and the state-of-
the-art RLF-ALM1 algorithm [21]. All the experiments
were conducted with Matlab R2010b on an Apple PC with
8G memory and 2.5Ghz i5-2400S CPU.

1Since the code of the algorithm in [21] is not publicly available, we
carefully implemented RLF-ALM. Note that the original RLF-ALM algo-
rithm in [21] enforces the learned low-rank matrix to be rank-2 as a con-
vergence condition. As explained in Section 3, in practice, the matrix 𝑇
might have an unknown rank higher than 2 due to large variation in scores.
Hence, in our implementation of RLF-ALM, we relax the algorithm by re-
moving the rank-2 constraint from the convergence conditions. We found
in experiments that with or without the rank-2 constraint, RLF-ALM has
nearly the same accuracy. In addition, removing such a convergence con-
dition would not slow down the algorithm because it would only be more
easy to reach the convergence conditions.
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7.1. Experiments on real world datasets

We evaluate the proposed method on object categoriza-
tion and video event detection tasks. For a fair comparison,
we follow the settings in [21]. We use one-vs-all SVM to
generate the output score lists from different kinds of fea-
tures. We use Mean Average Precision (MAP) over all cat-
egories in the dataset as the evaluation metric. For SVM,
we use 𝜒2 kernel which is calculated by 𝑒𝑥𝑝(− 1

𝜎𝑑𝜒2(𝑥, 𝑦))
where 𝜎 is set as the average value of all pairwise dis-
tances on the training set. The tradeoff parameter 𝐶 in
SVM and the regularization parameter 𝜆 in LLMP are cho-
sen from {10−3, 10−2, ..., 103} by cross validation2. For
the algorithms (RLF-ALM, LLMP-Base and DC-LLMP)
based on the ALM framework, we initialize the parameters
𝜇1 = 10−3 and set 𝜌 = 1.9. In all the experiments, the
running time results of DC-LLMP is the average of 5 trials.

To compare MAP, we include the results of three addi-
tional early and late fusion baselines: (1) kernel average,
an early method which averages multiple kernel matrices to
a single kernel matrix for learning; (2) SimpleMKL [16],
a representative of Multiple Kernel Learning; (3) average
late fusion, which obtains the final model by directly aver-
aging the intermediate output scores from different models.
For convenience, some results of these baselines are directly
cited from [21].

Table 1. MAP and running time comparison results on Oxford
Flower 17 dataset.

Method MAP Time (seconds)
Kernel Average 0.860± 0.0017 -
SimpleMKL 0.863± 0.0021 -
Average Late Fusion 0.869± 0.0021 -
RLF-ALM 0.903± 0.0019 8.75
Our LLMP-Base 0.903± 0.0017 4.02
Our DC-LLMP 0.902± 0.0024 0.92

Results on object categorization In this section, we
present the results on object categorization. We use the Ox-
ford Flower17 dataset [15] which has various flower im-
ages from 17 categories. Each category has 80 samples. In
our experiments, we directly use the pre-defined three splits
in the dataset (with 680/340/340 training/validation/test ex-
amples, respectively) and the corresponding pre-computed
distance matrices. These distance matrices are computed
from seven kinds of features: HOG, color, shape, texture,
clustered HSV values, SIFT on the foreground internal re-
gion (SIFTint) and on the foreground boundary (SIFTbdy)
(see [15] for details).

We simply set 𝑟 = 20 in LLMP-Base and DC-LLMP,
𝑘 = 50 in DC-LLMP. The running time and MAP are first

2Although we can simply set 𝜆 = 1/
√
𝑚2 by Theorem 1, we found

that choosing 𝜆 by cross validation leads to better performance.

averaged across all 17 categories and then averaged over the
three splits.

As shown in Table 1, three observations can be made
from the comparison results: (1) The proposed DC-LLMP
and LLMP-Base have comparable MAP to RLF-ALM. And
all the three robust late fusion methods have superior per-
formance on MAP over the other three early and late fu-
sion baselines. In particular, the proposed DC-LLMP out-
performs Kernel Average, SimpleMKL, Average Late Fu-
sion by 4.5%, 4.9% and 3.8% relatively. (2) The proposed
LLMP-Base shows near-linear speed-up (i.e. more than 2
times) over RLF-ALM. (3) The proposed DC-LLMP per-
forms almost an order of magnitude (i.e., 9.51 times) faster
than RLF-ALM.
Results on video event detection We evaluate the proposed
method on video event detection using the Columbia Con-
sumer Video dataset [7] which contains 9,317 video over
20 classes of semantic events. The dataset is divided into
a training set with 4,659 videos and a test set with 4,658
videos. The dataset also provides three kinds of Bag-of-
Words (BOW) features, including 5,000 dimensional SIFT
BOW features, 4,000 dimensional Mel-frequency cepstral
coefficients BOW features and 5,000 spatial-temporal in-
terest points BOW features. We directly use the provided
features to construct the 𝜒2 kernels.

Table 2 shows the comparison results on the CCV
dataset. The results indicate that: (1) The proposed LLMP-
Base and DC-LLMP have comparable performance to RLF-
ALM in terms of MAP. And the three methods for RLF
outperforms the other three baselines. For instance, the pro-
posed DC-LLMP has relatively 4.4%, 3.9% and 4.8% per-
formance gain over Kernel Average, SimpleMKL and Av-
erage Late Fusion. These results are consistent with those
on object categorization. (2) Under comparable MAP, DC-
LLMP performs more than 30 times faster than its base al-
gorithm LLMP-Base, and it performs more than 180 times
faster than the state-of-the-art RLF-ALM. We can conclude
that DC-LLMP has superior running time performance in
real world vision tasks which usually have thousands of test
examples, and it is a practical and scalable method for large-
scale low-rank latent matrix pursuit.

Table 2. MAP and running time comparison results on Columbia
Consumer Video dataset.

Method MAP Time (seconds)
Kernel average 0.597 -
SimpleMKL 0.603 -
Average late fusion 0.595 -
RLF-ALM 0.6249 8447
Our LLMP-Base 0.6241 1386
Our DC-LLMP 0.6235 46

Effects of the parameters 𝑟 and 𝑘 are two important pa-
rameters in LLMP-Base and DC-LLMP. An implicit as-
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Figure 2. Effects of parameters on CCV dataset. (a) effects on MAP w.r.t. 𝑟. (b) effects on MAP w.r.t. 𝑘.

sumption in the design of LLMP-Base and DC-LLMP is
that the parameters 𝑟 and 𝑘 should be much smaller than
the corresponding input size (i.e., 𝑟 ≪ min(𝑚1,𝑚2) and
𝑘 ≪ 𝑚), which is a key factor to speed up the algorithms.
Hence, in practice, we need to set 𝑟 and 𝑘 to be relatively
small values. A natural question arising here is whether
these relatively small 𝑟 and 𝑘 would degrade the perfor-
mance of LLMP-Base and DC-LLMP. To answer this ques-
tion, We conducted experiments on the CCV dataset to ob-
serve the effects of different 𝑟 and 𝑘.

Figure 2(a) shows the MAP results of DC-LLMP and
LLMP-Base with different values of 𝑟 when fixing 𝑘 = 200
and 𝜆 being the corresponding best value of each category
(chosen from cross validation). The results in Figure 2(b)
indicate that when 𝑟 ≥ 10, DC-LLMP and its base algo-
rithm LLMP-Base have comparable MAP values to those
of RLF-ALM. Moreover, DC-LLMP and LLMP-Base seem
to be insensitive to 𝑟 as long as 𝑟 is in a suitable range (i.e.
10 ≤ 𝑟 ≤ 50).

Figure 2(b) shows the MAP results of DC-LLMP with
different values of 𝑘 when fixing 𝑟 = 20 and 𝜆 being the
corresponding best value of each category (chosen from
cross validation). We can observe from Figure 2(a) that
when 𝑘 is not too small (i.e.,𝑘 > 200 ≈ 𝑚/20), the MAP of
DC-LLMP is nearly the same as its base algorithm LLMP-
Base and the RLF-ALM baseline. This justifies that DC-
LLMP has comparable performance with the algorithms di-
rectly working on full matrices under relative small values
of 𝑘, which is a key factor that leads to the speed-ups of
DC-LLMP.

7.2. Simulation results

To further investigate the characteristics of the proposed
algorithms, we conduct simulated experiments to observe
the effects on the running time and MAP with (1) different
input data size (i.e., different values of 𝑚 and 𝑛), and (2)
different proportions of corrupted data entries.

In our simulation, we firstly generate 𝑛 score lists
𝑓1, 𝑓2, ..., 𝑓𝑛, each of which contains 𝑚 scores randomly
sampled from 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1). Then we add random noise

(sampled uniformly from [−100, 100]) to 𝑠% entries of each
score list. We set the top 20% examples with largest average
scores as positive examples and the rest as negative. After
that, we use each score list to construct the corresponding
input matrix 𝑇 (𝑖). In all simulations, we fix 𝜆 = 100.
Effects of different input data size The first simulation is
to explore the effects on the running time w.r.t. different
number of test examples (𝑚) and different number of mod-
els (𝑛). In practice, we usually assume matrix 𝑇 have small
rank 𝑟0, and set 𝑘 to be 𝑟0 + 𝑝 with a small constant 𝑝.
Hence, in this simulation, we fix 𝑟0 = 10 and 𝑘 = 20

Figure 4(a) shows the comparison results on running
time with different values of 𝑚 when other parameters be-
ing fixed. We set 𝑛 = 5. Two observation can be made
from the results: (1) LLMP-Base has nearly linear speed-up
compared to RLF-ALM. As 𝑚 increases, the speed-up also
increases. (2) When 𝑚 is relative small, DC-LLMP shows
linear speed-up compared to LLMP-Base and RLF-ALM.
When 𝑚 is large, DC-LLMP shows super-linear speed-up
compared to LLMP-Base and RLF-ALM.

Figure 4(b) shows the comparison results on running
time with different values of 𝑛. We set 𝑚 = 1000. The
results indicate that: (1) The running time of all the three
algorithms slowly increase with 𝑛 increasing. (2) For the
speed of time increasing, we have RLF-ADM > LLMP-
Base > DC-LLMP.
Effects of different proportion of corruptions Figure 4(c)
show the comparison results on MAP with different propor-
tion of corrupted entries in each score list, assuming other
parameters being fixed. We set 𝑚 = 1000, 𝑛 = 5. The re-
sults show that, under different percentage of noisy entries,
DC-LLMP has similar performance compared to LLMP-
Base and RLF-ALM.

8. Conclusions

In this paper, we developed DC-LLMP, a scalable divide-
and-conquer method for large low-rank latent matrix pur-
suit. DC-LLMP divides the original low-rank latent matrix
learning problem into size-reduced subproblems which can
be solved cheaply by a base algorithm, and obtains the fi-
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Figure 3. Comparison results on simulated data. (a) effects on running time w.r.t. 𝑚. (b) effects on running time w.r.t. 𝑛. (c) effects on
MAP w.r.t. different percentage of noise.

nal results by combining the results from the subproblems.
The theoretical analysis showed that the recovery errors of
DC-LLMP are bounded by the recovery errors of the base
algorithm with fixed probability. Furthermore, we devel-
oped an efficient base algorithm to solve the corresponding
subproblems. Extensive empirical evaluations showed the
superior efficiency of LLMP over the state-of-the-art base-
lines.
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