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Abstract

We present a novel algorithm for estimating the broad 3D
geometric structure of outdoor video scenes. Leveraging
spatio-temporal video segmentation, we decompose a dy-
namic scene captured by a video into geometric classes,
based on predictions made by region-classifiers that are
trained on appearance and motion features. By examining
the homogeneity of the prediction, we combine predictions
across multiple segmentation hierarchy levels alleviating
the need to determine the granularity a priori. We built
a novel, extensive dataset on geometric context of video
to evaluate our method, consisting of over 100 ground-

truth annotated outdoor videos with over 20,000 frames.
To further scale beyond this dataset, we propose a semi-
supervised learning framework to expand the pool of la-
beled data with high confidence predictions obtained from
unlabeled data. Our system produces an accurate predic-
tion of geometric context of video achieving 96% accuracy
across main geometric classes.

1. Introduction
Holistic scene understanding requires an understanding of

the broad 3D structure of the scene with all objects present.

One important step towards this goal is to partition a scene

into regions and label them relative to each other and within

the scene geometry. Geometric classes can define the ba-

sic 3D structure of a scene with respect to the camera, and

suggest cues to identify horizontal surfaces and vertical ob-

jects in the scene. Hoeim et al. [12] showed that such ge-

ometric context can be used to obtain a probabilistic rep-

resentation of the scene layout based on geometric classes,

which in turn can be used to improve object detection. Tor-

ralba et al. [18] showed that global context plays an im-

portant role in object detection. Recently, Divala et al. [5]

showed that incorporating geometric context, not only im-

proves object detection but also makes misclassifications

more reasonable.

In this paper, we propose a novel method to provide a

high level description of a video scene by assigning geomet-

ric classes to spatio-temporal regions as shown in Figure 1.
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Figure 1: Video frames of an urban scene (left) and the predicted

geometric context of our system (right). We achieve high accu-

racy leveraging motion and appearance features while achieving

temporal consistency by relying on spatio-temporal regions across

various granularities. Please watch the accompanying video.

Building upon a hierarchical video-segmentation to achieve

temporal consistency, we compute a wide variety of appear-

ance, location, and motion features which are used to train

classifiers to predict geometric context in video. A signif-

icant challenge for developing scene understanding system

for videos is a need for an annotated video dataset available

for training and evaluation. To this end, we have collected

and annotated a video dataset with pixel level ground truth

labels for over 20,000 frames across 100 videos covering a

wide variety of scene examples.

The primary contributions of this paper are:

• A scene description for video via geometric classes (96%

accuracy across main geometric classes).

• Exploiting motion and temporal causality/redundancy

present in video by using motion features and aggregating

predictions across spatio-temporal regions.

• A semi-supervised bootstrap learning framework for ex-

panding the pool of labeled data with highly confident pre-

dictions obtained on unlabeled data.

• A novel dataset of 100 annotated videos (∼20,000 frames)

with pixel level labels, which will be made available.

• A thorough evaluation of our system by examining impor-

tance of features, benefit of temporal redundancy and in-

dependence of segmentation granularity.
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2. Related Work
Image based scene understanding methods[13, 9] can be di-

rectly applied to individual video frames to generate a de-

scription of the scene. However, these methods do not ex-

ploit temporal information across neighboring frames. Fur-

ther, lacking temporal consistency, they can result in tem-

porally inconsistent labels across frames, which can im-

pact performance, as scene labels suddenly change between

frames. In addition, frame-based methods do not exploit

temporal redundancy to process videos efficiently as pro-

cessing each segment in video independently results in a

longer processing time.

Temporal information can be incorporated using struc-

ture from motion (SfM) [16, 1], which requires substan-

tial computation and might not generalize well to dynamic

objects. SfM makes explicit assumptions about the scene,

e.g. , mostly static with limited foreground motion, and re-

quires basic camera priors. In addition, SfM reconstruc-

tion can fail due to lack of parallax, e.g. , walking forward,

and rotation around camera center. We do not make any

assumption about the scene content, amount of foreground

motion, or the camera used. Another approach to achieve

temporal consistency across frames is to use optical flow

between consecutive frames to estimate the neighborhood

of each pixel and then combine past predictions to make

a final prediction [14]. This requires labeling every pixel

in every frame in the video independently, which doesn’t

leverage the causality in video.

Our video scene understanding approach takes advan-

tage of spatio-temporal information by employing hierar-

chical video segmentation[10], which segments a video into

spatio-temporal regions. Further, we leverage causality in

videos to efficiently label videos, achieving favorable com-

plexity which is linear in the number of unique spatio-
temporal segments in videos. Consequently, in contrast to

image based or independent frame labeling, our system is

not directly affected by the total number of frames. Re-

cently, Tighe et al. [17] applied their image label transfer to

the video domain leveraging[10], by applying a max heuris-

tic across frames. In contrast, our approach performs geo-

metric labeling by leveraging multiple hierarchy level while

probabilistic aggregating labels over a temporal window.

A significant hurdle in video scene understanding is the

availability of a ground truth annotated dataset for train-

ing. While several datasets exist for predicting geometric

context in the image domain [13, 9], datasets for videos

[2, 6, 19] are currently limited in their scope. (see section 3).

Our video scene analysis method builds upon Hoeim

et al. ’s [13] image based approach, extending the im-

age based approach to video. Our approach differs, in

that it is taking advantage of spatio-temporal context, ex-

tends feature set being more suitable for video, leverages

temporal redundancy while achieving temporal consistency

and broadens the pool of available data by semi-supervised

learning.

3. Dataset and Geometric Classes
Existing Datasets: In our supervised learning setting, we

require an annotated dataset supplying ground truth labels

for training and evaluation. While several datasets for ge-

ometric scene understanding exists on still images [13, 9],

our video-based scene analysis method demands an anno-

tated video dataset. However, existing datasets for video

scene understanding only provide limited ground truth data.

The CamVid dataset [2] provides pixel-level labels for 701

non-consecutive frames (about every 30th frame, sampled

at 1fps). The NYUScenes [6], and MPI-VehicleScenes [19]

dataset consists of 74 and 156 annotated frames, respec-

tively. Therefore, these datasets are not ideally suited for

comprehensive studies. To overcome this limitation, we

provide a novel, pixel-level annotated dataset for geometric

scene analysis of video, consisting of over 20,000 frames

across 100 videos.

A video dataset for geometric scene understanding:
Our dataset consists of 160 outdoor videos, with annota-

tions available for a subset of 100 videos. Some videos are

collected from YouTube and others are recorded by us while

walking or driving in an urban area. Video lengths range

from 60 to 400 frames and resolution varies from 320×480
to 600 × 800, with varying aspect ratios. We partitioned

the datasets into three sets: 63 videos are used for training

and cross-validation (13,000 frames), 40 videos for inde-

pendent testing via external-validation (7,000 frames), and

60 videos are kept unlabeled (14,000 frames) and are later

used for semi-supervised learning (Section 5.1). Videos in

the cross and external-validation sets are completely anno-

tated with ground truth labels (every frame and pixel).

Videos in our dataset contain entities such as sky,

ground, buildings, trees, and objects (cars, trains, humans).

While many different partitions can be imagined, we fol-

low [13, 11] and partition the video content into three main

geometric classes: “Sky”, “support”, and “vertical”. To

provide a more detailed description of the scene, we fur-

ther divide the vertical class into three subclasses: “Solid”,

“porous”, and “object”. The solid vertical sub-class in-

cludes solid, static objects resting on the ground, such as

buildings, boards, bridges, and rocks etc. The porous verti-

cal sub-class includes non-solid, static objects such as trees

and foliage. Finally, movable objects, like humans, cars,

boats, and trains are included in the object class. Notice,

that in contrast to [13, 11] we do not account for the ori-

entation of the vertical classes as their identity is likely

to change due to camera motion in video. Table 1 gives

an overview of the distribution of the classes in the cross-

validation dataset, by showing the pixel area of each of the

geometric classes.
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Sky 32.5%

Ground 26.4%

Vertical 40.6%

mix 0.5%

(a) Main Classes

Solid 19.7%

Porous 15.6%

Object 3.7%

(b) Sub-vertical Classes

Table 1: Average area in pixels of each geometric class in the

cross-validation dataset.

Sub Classifier

Hierarchical Segmentation

Main Classifier

Input Video
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Location
Perspective
Motion

Feature Extraction

Labeled Video

Figure 2: Overview of our approach. First, input videos are

segmented into a hierarchy of spatio-temporal regions using [10].

Then, features are extracted for each segment to train a main and

sub-classifier to predict geometric context in videos.

4. Geometric Context From Videos
Our algorithm for determining geometric context from

video consists of 3 main steps (Figure 2). First, we apply

hierarchical video segmentation, obtaining spatio-temporal

regions at different hierarchy levels. We rely on video seg-

mentation to achieve (a) temporal coherence without having

to explicitly enforce it in our framework and (b) by labeling

regions as opposed to individual pixels we greatly reduce

computational complexity. Second, we extract several fea-

tures from each segment. Third, we train a classifier to dis-

criminate segments into sky, ground, and vertical classes.

Additionally, a sub-classifier is trained to discriminate the

vertical class further into solid, porous, and object. In par-

ticular, we employ a boosted decision tree classifier with a

logistic version of Adaboost [3]. We will describe each of

the above steps in more detail below.

4.1. Video Segmentation

Video segmentation aims to group similar pixels into spatio-

temporal regions that are coherent in both appearance and

motion. We use the hierarchical graph-based video segmen-

tation algorithm proposed by Grundmann et al. [10, 20],

which is automatic and achieves long-term coherence. For

completeness, we give a brief overview of their algo-

rithm. Their spatio-temporal hierarchical video segmen-

tation builds upon the graph-based image segmentation of

Felzenszwalb et al. [8] by constructing a graph over the 3-

d space-time neighbors of a voxel. This approach gener-

Figure 3: Video segmentation results by applying [10]. From left

to right: Hierarchy levels in increasing order; region area increases

as segments from lower hierarchy levels are grouped together.

ates an over-segmented video volume, which is further seg-

mented into a hierarchy of super-regions of varying granu-

larity. After computing region descriptors based on appear-

ance and motion, a graph is constructed where each region

from the over-segmentation forms a node and is connected

to its incident regions by an edge with a weight equal to

the χ2-difference of their local descriptors. This so-called

region graph is used to group the over-segmented regions

into super-regions by applying [8] to the graph. Successive

application of this algorithm yields a segmentation hierar-

chy of the video as shown in Figure 3 for one of our sample

videos.

4.2. Video Annotation

To obtain the ground truth for training and evaluation, we

manually annotate over 100 videos. To greatly speed up

the labeling process, we assign labels to individual spatio-

temporal regions as opposed to pixels. In particular, we

leverage the over-segmentation (Section 4.1) to assign the

appropriate label to each supervoxel. Though errors in the

over-segmentation are limited due to the fine granularity, we

need to address potential under-segmentation errors, i.e. a

supervoxel contains more than one class. This is particu-

larly of concern for the vertical class which contains a wide

variety of potentially overlapping surfaces, e.g. , buildings

and trees, or several moving objects as cars, boats, trains,

etc. To address this problem, we introduce a new label

“mix” to label a super-voxel, which is a mixture of two or

more classes or if its identity is changing over time across

geometric classes. Figure 4 shows the labels and their hier-

archical relationship.

Spatio-temporal Segment

Mix
Sky Ground Vertical

Solid Porous Object

Main

Sub-vertical

Figure 4: Annotation hierarchy of spatio-temporal segments:

Segments are either labeled as either as a mixture of classes (mix)

or assigned a main geometric class label. The vertical geometric

class is further discriminated into solid, porous, and object.

To obtain a ground truth labeling for every level of the

segmentation hierarchy, we leverage the ground truth la-

bels of the over-segmented super-voxels, by pooling their
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Figure 5: Video annotation for obtaining ground truth: Over-

segmented super-voxels are annotated manually. Supervoxel la-

bels are then combined to generate ground truth for each level of

segmentation hierarchy (see Section 4.2).

Sky 2.5%

Ground 15.9%

Vertical 81.2%

Mix 0.4%

(a) Main Classes

Solid 47.5%

Porous 26.1%

Object 7.7%

(b) Sub-vertical Classes

Table 2: Percentage of segments annotated for each geometric

class (∼ 2.5M in total at over segmented base hierarchy level).

labels across a super-region via majority voting (a super-

region is composed of several super-voxels). Specifically, if

more than 95% of a super-region’s area is assigned the same

ground truth label L (based on the over-segmented super-

voxels it is comprised of), the super-region is assigned la-

bel L, otherwise it is labeled as “mix”, as shown in Fig-

ure 5. We manually annotated over 20,000 frames at the

over-segmentation level and then combined their labels via

the above approach across the hierarchy to generate labels

at higher levels. Table 2 gives an overview of the percentage

of segments annotated for each geometric class.

4.3. Features

We estimate the class-dependent probability of each geo-

metric label for a segment in a frame using a wide variety

of features. By segments, we refer to 2D per frame regions

of the 3D spatio-temporal voxels. Specifically, we compute

appearance (color, texture, location, perspective) and mo-

tion features across each segment in a frame. For comput-

ing appearance features, we follow Hoeim et al. [13] and

apply the publicly available code on a per-frame basis. For

details please refer to [13].

In videos, an additional feature not found in images is

motion across frames. For motion features, we compute

a histogram of dense optical flow (using OpenCV’s imple-

mentation of Farneback’s algorithm [7]) as well as the mean

motion of a segment. To capture the motion and changes in

velocity and acceleration of objects across time, we com-

pute flow histograms and mean flow for each frame Ij w.r.t.

to 3 previous frames: Ij−1, Ij−3, Ij−5. In particular, a seg-

ment Sk we compute a 16-bin histogram of oriented flow

vectors weighted by their corresponding magnitude. His-

tograms are normalized by the region area of the segment

in current frame. In addition, we compute histograms for

spatial flow differentials in x and y, i.e. for the dense op-

tical flow field O = [Ox, Oy], we compute [∂xOx, ∂xOy]
and [∂yOx, ∂yOy]. To account for different scales, the flow

differentials are computed for different kernel size of the

Sobel filter (3, 5 and 7). As with the flow histograms, the

spatial flow differentials are computed w.r.t. to 3 previous

frames: Ij−1, Ij−3, Ij−5. This is similar to the approach of

[4], which has been shown to to be helpful to the task of ob-

ject detection in videos. Table 3 lists all of our motion based

features used for estimating geometric context of video.

Motion based Features
Dimensions Description

16× 3 Histogram of dense optical flow O of

reference frame Ij w.r.t. Ij−1, Ij−3, Ij−5.

16× 2× 3× 3 Histogram of differential of dense

optical flow O in x and y,

i.e. [∂xOx, ∂xOy] and [∂yOx, ∂yOy], across

3 kernel sizes of differential (3, 5, and 7)

for reference frame Ij w.r.t. Ij−1, Ij−3, Ij−5.

2× 3 Mean flow of a segment minus min. mean

flow across all segments of current frame.

2× 3 Mean location change in x and y

for reference frame Ij w.r.t. Ij−1, Ij−3, Ij−5.

2× 2× 3 10th and 90th percentile of location change

in x and y for frame Ij w.r.t. Ij−3, Ij−5.

1× 3 Magnitude of location change of mean,

10th and 90th percentile.

Table 3: List of flow and motion based features computed per

frame Ij and per segment Sk. See text for details. Appearance

features are adopted using the approach of Hoeim et al. [13].

4.4. Multiple Segmentations

As the appropriate granularity of the segmentation is not

known a priori, we make use of multiple segmentations

across several hierarchy levels, utilizing the increased spa-

tial support of the segments at higher levels to compute fea-

tures. In particular, we combine the individually predicted

labels based on homogeneity of the segments. Homogene-

ity is defined in our case as the probability of the segment

not being a mixture of several classes, i.e. not having the

label mix (for details, see Section 4.5). We generate multi-

ple segmentations of the scene at various granularity levels

ranging from 10% to 50% of the hierarchy height using [10]

in increments of 10% (5 hierarchy levels in total).

4.5. Classification

We evaluate our method using boosted decision trees based

on a logistic regression version of Adaboost [3] that outputs

the class probability for each segment in a frame and per-

form 5-fold cross validation. We train two multi-class clas-

sifiers to predict the geometric labels, first to discriminate
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      Input            Label             Sky            Ground          Vertical          Solid            Porous          Object 

Figure 6: Input video image, predicted labels and confidence for each geometric class. Notice, that trees are correctly assigned high

probability for porous class, walls for solid class, and humans and cars have high confidence for the object class.

among the main classes (sky, ground, and vertical), and sec-

ond for further sub-classification of vertical class (buildings,

porous, and objects). In addition to the two multi-class clas-

sifiers, we independently train a homogeneity classifier that

estimates the probability of the segment being a single label

segment or part of the class “mix”. We refer to this proba-

bility as the homogeneity of a segment. This will enables us

to take advantage of multiple segmentations, by combining

the label confidence of segments based on their homogene-

ity. We combine the predictions of all three classifiers prob-

abilistically to estimate the final label as described below.

Training: We extract the features described in Section 4.3

from each segment of a training video. As the segments

vary across time, we opt to extract features for each frame

for the same segment to provide discriminating information

over time (e.g. appearance, motion, and pose of objects) as

opposed to sampling features from unique spatio-temporal

regions only. In addition, features are extracted indepen-

dently for different hierarchical segmentation levels to pro-

vide instances with more spatial support. We extract fea-

tures from 5 segmentation hierarchical levels ranging from

10% to 50% of the hierarchy height. Segments with a sin-

gle ground truth label are used to train main and sub-vertical

classifiers. We train the homogeneity classifier by provid-

ing examples of a single label and “mix” label segments as

positive and negative instances.

Prediction: To predict the labels for a test video, features

are extracted from each segment. A spatio-temporal region

is labeled on a per-frame basis with the final classification

being obtained by averaging the predicted class-posteriors

across frames. We label main and sub-vertical geometri-

cal classes independently, i.e. we compute the sub-vertical

labels for all the segments in a frame but only apply it to

segments labeled as vertical by main classifier.

When using multiple segmentations across different hi-

erarchies, a super-pixel is part of different segments at each

level of segmentation hierarchy. To determine the label yi
of super-pixel i, class-posteriors from all segments in the

hierarchy sj , containing the super-pixel are combined using

a weighted average based on their homogeneity likelihoods

P (sj |xj) [13, 11], where xj is the corresponding feature

vector. The likelihood of a segment label is then given as:

P (yi = k|xi) =
ns∑

j

P (yj = k|xj , sj)P (sj |xj),

where, k denotes the possible geometric labels and ns

are number of hierarchical segmentations. This technique

yields a final classification of super-pixels at the over-

segmentation level by combining the individual predictions

across hierarchy levels. These weighted posterior probabili-

ties of super-pixels, for main and sub-vertical class, are then

averaged across frames in a temporal window to give final

predictions for each super-voxel.

5. Results

We report the accuracy of our method using the number of

pixels correctly labeled on the testing videos, i.e. a 90%

class accuracy indicates that 90% of the pixels of that class

were labeled correctly. In our experiments, leveraging mul-

tiple hierarchy levels and temporal redundancy, we achieve

an overall classification accuracy of 96.0% for main and

77.4% for the sub-vertical classes. After classification, each

super-pixel is assigned the probability for each geometric

class, as shown in Figure 6. Qualitative results are shown in

Figure 7; we encourage the reader to watch the supplemen-

tary video.

Sky Ground Vertical

Sky 99.4 0.0 0.6

Ground 1.2 96.3 2.5

Vertical 2.9 5.1 92.0

(a) Main Classes

Solid Porous Object

Solid 73.8 13.0 13.2

Porous 3.4 89.2 7.4

Object 11.3 19.5 69.2

(b) Sub-vertical Classes

Table 4: Confusion matrices for main and sub-vertical classfica-

tion.

It is insightful to quantify to which extent temporal re-

dundancy improves classification accuracy. To this end,

we evaluate classification accuracy across different size of
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Figure 7: Qualitative results: From left to right: Input video frames, ground truth labels and predicted geometric labels. Our system

performs well in challenging settings accurately predicting crowds, objects and foliage.

0 10 20 30 40 50 60

65

70

75

80

85

90

95

100

Temporal Window Size

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

 

 
Main

Sub

Obj

(a) Accuracy for different temporal windows.
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(b) Classification results for various hierarchy levels.

Figure 8: (a) Temporal consistency improves accuracy for main and sub-vertical classifcation. The temporal window starts at the very

first frame a segment appears in the video. (b) Classification accuracy estimated over 5-fold cross validation: (left) Single segmentation

hierarchy level, (right) Multiple segmentation hierarchy levels. A temporal window size of one is used in both experiments.

temporal windows. Specifically, we compute the class-

posteriors of a segment independently for each frame, ob-

taining the final probability by taking the average of the per-

frame probabilities across the temporal window. Figure 8a

shows the result for different lengths of temporal windows.

It shows that accuracy reaches a stationary point for tempo-

ral windows of size 25 or greater. Using temporal window

for labeling improves classification accuracy from 92.3%

for a single frame to 96% for 25 frames for main classes,

and from 67% to 77.4% for sub-vertical classes. However,

accuracy for objects is virtually unchanged which we be-

lieve is due to the difficulty of segmenting these objects.

Figure 8b demonstrates the variation in classification ac-

curacy when using a single versus multiple segmentation

hierarchy levels. When using a single segmentation, the

classification accuracy decreases with increasing hierarchy

level from 0.1 to 0.5 (here 0.1 denotes the level at 10% of the

overall hierarchy height). This decrease in accuracy is due

to segments of different classes being increasingly mixed

at higher hierarchy level as regions tend to get under seg-

mented. Using multiple segmentations by combining dif-

ferent segmentation hierarchy levels provides a much more

consistent accuracy, in particular it mitigates the problem of

determining the correct granularity for a segment. In our

experiments, combining predictions for geometric context

at hierarchy levels 0.1 and 0.2 yields the best results.

Table 4 shows the row normalized confusion matrices.

Notice, that we are able to achieve highly accurate classi-

fication results for main classes. For vertical sub-classes

accuracy is lower, due to the vertical class containing huge

intra-class variations and regions tend to be more affected

by segmentation errors than the other classes. Finally, some

qualitative miss-classifications are illustrated in Figure 10.

Importance of Features: We are using a wide variety of

features covering appearance and motion. Here, we provide

some insight into the importance of each individual feature

type. To estimate the importance of a feature set, we only

use the particular feature set across our cross-validation

dataset to train and test our system. Table 5 shows the dif-

ference in accuracy when using only a particular feature set,

here for a temporal window size of 1 frame. It can be seen,

that the use of motion and appearance features yields the

best accuracy, where motion features are primarily benefi-

cial across the sub-vertical classifier (accuracy improves by

308430843086



5% compared to appearance features alone). Table 5 also

shows the benefit of temporal redundancy by using spatio-

temporal regions. Compared to limiting features to only the

very first frame for each region (last 2 rows in table),i.e. a

setting similar to the image case, accuracy increases greatly

(by a mean of 9% on the sub-vertical, and by 69.5% for

the object class, in particular). This change is even more

dramatic when comparing using all frames to using only

the very first frame if limited to only appearance features

(275%). Qualitative results are shown in Figure 9.

Features Main Sub-Vertical Object
Motion & Appearance 92.3 67.0 67.8

Appearance only 92.3 64.0 64.7

Motion only 87.3 52.7 57.1

Motion & Appearance

(first frame of segment only) 91.1 61.4 40.0

Appearance (first frame) 89.6 57.8 23.5

Table 5: Feature importance. We list the mean accuracy for the

main and sub-vertical classifier and the individual accuracy of the

object classifier. Using motion and appearance features yields the

best accuracy (top row). Temporal redundancy is significant to our

results, as shown by the reduced accuracy when limiting features

to only the very first frame of each segment (last 2 rows).

         Input             Ground Truth   Motion&Appearance    Appearance                  

Sky

Ground

Solid

Porous

Object

Mix

Figure 9: Qualitative comparison of importance of features.

Overall, motion and appearance features achieve highest accuracy.

Input                Ground Truth              Labels           

Figure 10: Misclassification examples: Scattered clouds are la-

beled as vertical class, a mix region of object / solid is labeled as

car (top). Some ground is mistakenly labeled as object (bottom).

5.1. Semi-supervised Learning

Machine learning systems tend to improve performance

with more training data available as intra-class variation

is better accounted for. To verify this assumption for our

dataset, we randomly pick 12, 24, 36, and 48 videos from

the cross-validation dataset and restrict training to this set.

Table 6a shows that accuracy indeed improves with increas-

ing training data size, verifying our assumption.

Obtaining large amounts of training data requires man-

ual annotation of videos, which is time consuming and re-

quires crowd-based approaches [15] to scale. Alternatively,

No. of videos Main Sub-Vertical Object
12 91.7 54.9 32.6

24 92.4 62.1 59.3

36 92.3 66.0 65.5

48 92.3 67.0 67.4

(a) Data-size dependency in supervised learning

Iteration Main Sub-Vertical Object
0 85.1 74.7 73.0

5 85.2 74.2 75.0

10 86.2 77.2 79.9

(b) Semi-supervised bootstrap learning

Table 6: (a) Accuracy improves with larger training set size in su-

pervised learning setting. (b) Leveraging semi-supervised learning

(Figure 11) accuracy improves with successive iterations.

utilizing a large quantity of unlabeled data, we propose to

adapt semi-supervised bootstrap learning. We iteratively

train classifiers in a self-training manner, as shown in Fig-

ure 11. First classifiers (main, sub-vertical, and homogene-

ity) are trained using the annotated ground-truth data (1).

Then, these classifiers are used to predict geometric con-

text on unlabeled data (2). Segments with most confident

labels (maximum class posterior ≥ 80%) are selected (3)

and added to the training data with their predicted labels

(4). In addition, we make use of multiple segmentations at

different hierarchy levels, by including all high-confidence

segments from the hierarchy that have high homogeneity

(probability of being a single class ≥ 80%). Finally, the

classifiers are re-trained on the expanded pool of labeled

data and the process is iterated over. We expect accuracy on

the added data to improve over several iterations. To avoid

adding low quality segments to the labeled set, we perform

introspection every 5th iteration, discarding added segments

whose confidence (maximum class posterior) dropped be-

low 80%.

Table 6 demonstrates the effectiveness of our mutli-

segmentation semi-supervised bootstrap learning. Our ini-

tial classifier is trained on a dataset of 63 videos (all videos

in cross-valiation set, ∼ 200, 000 segments). At each itera-

tion, we add 5,000 high confidence segments of each geo-

metric class from unlabeled dataset, extending the training

data. After 10 iterations, we are able to improve the perfor-

mance by 1% for main, 3% for subvertical, and 9.5% for ob-

jects. In particular, we evaluate our bootstrap approach on

a separate video dataset of 40 videos (7,000 frames). Com-

paring Table 6a and Table 6b shows that after 10 iterations

we are able to achieve an improvement by semi-supervised

bootstrap learning comparable to that of supervised learn-

ing.

6. Conclusion and Future Work
In this paper, we propose a novel algorithm for estimating

geometric context in video, achieving highly accurate re-
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Figure 11: Overview of semi-supervised bootstrap learning for geometric context in video (see Section 5.1). For segment selection,

columns illustrate: (Left) confidence for main-classifier via color intenstiy (vertical: green, sky: red, ground: blue), (2nd) confidence for

sub-vertical classifier (solid: red, porous: green, object: blue), (3rd and 4th) Segments across hierarchy levels (randomly colored).

sults. We thoroughly evaluate the contribution of motion

features and demonstrated the benefit of utilizing temporal

redundancy across frames. To measure accuracy of our ap-

proach, we collected a comprehensive dataset of annotated

video which we plan to make available to the research com-

munity. We further showed how semi-supervised learning

can broaden the pool of annotated data. To the best of our

knowledge we demonstrate the first temporally consistent

results for geometric context on video.

In the future, we plan to increase accuracy for the sub-

vertical classifier. One reason for its lower accuracy is, that

objects tend to be under-segmented even at the superpixel

level, merging with porous or solid classes at higher hi-

erarchy levels. We believe that improved segmentation of

foreground objects will lead to enhanced accuracy of our

method. Finally, we plan on leveraging geometric context to

improve object detection and activity recognition in video.
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