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Abstract

We introduce a new problem domain for activity recog-
nition: the analysis of children’s social and communica-
tive behaviors based on video and audio data. We specif-
ically target interactions between children aged 1–2 years
and an adult. Such interactions arise naturally in the di-
agnosis and treatment of developmental disorders such as
autism. We introduce a new publicly-available dataset con-
taining over 160 sessions of a 3–5 minute child-adult inter-
action. In each session, the adult examiner followed a semi-
structured play interaction protocol which was designed to
elicit a broad range of social behaviors. We identify the key
technical challenges in analyzing these behaviors, and de-
scribe methods for decoding the interactions. We present
experimental results that demonstrate the potential of the
dataset to drive interesting research questions, and show
preliminary results for multi-modal activity recognition.

1. Introduction
There has been a long history of work in activity recog-

nition, but for the most part it has focused on single indi-

viduals engaged in task-oriented activities or short interac-

tions between multiple actors. The goal of this paper is to

introduce a novel problem domain for activity recognition,

which consists of the decoding of dyadic social interactions

between young children and adults. These child-adult in-

teractions are rich and complex, and are not defined by the

†Corresponding author, rehg@gatech.edu
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tist in the Center for Behavior Imaging at Georgia Tech.

constraints of a particular task, as in the case of cooking.

Nonetheless, these interactions have a detailed structure de-

fined by the patterning of behavior of both participants. Our

goal is to go beyond the simple classification of actions and

activities, and address the challenges of parsing an extended

interaction into its constituent elements, and producing rat-

ings of the level of engagement that characterizes the qual-

ity of the interaction. We refer to these problems collec-

tively as decoding the dyadic social interaction. We will

demonstrate that this decoding problem represents a novel

domain for research in activity analysis.

The problem of decoding dyadic social interactions

arises naturally in the diagnosis and treatment of devel-

opmental and behavioral disorders. Objective approaches

to identifying the early signs of a developmental disorder

such as autism depend heavily on the ability of a pediatri-

cian to identify a child’s risk status in a brief office visit.

Research utilizing video-based micro-coding of the behav-

ior of young children engaged in social interactions has re-

vealed a number of clear behavioral “red flags” for autism

in the first two years of life [20], specifically in the areas

of social, communication, and play skills. Currently, such

careful measurement of behavior is not possible (or practi-

cal) in the real world setting of a pediatric office or daycare.

There is much potential for activity recognition to scale

early screening and treatment efforts by bringing reliable,

rich measurement of child behavior to real-word settings.

We present an approach to decoding social interactions

in the context of a semi-structured play interaction between

a child and an adult, called the Rapid-ABC [14]. This pro-

tocol is a brief (3 to 5 minute) interactive assessment de-

signed to elicit social attention, back-and-forth interaction,
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and nonverbal communication. We have recorded and anno-

tated more than 160 Rapid-ABC sessions. The contribution

of this paper is the introduction of the Multimodal Dyadic
Behavior (MMDB) dataset which contains this interaction

data, along with an initial series of single mode and mul-

timodal analyses to segment, classify and measure relevant

behaviors across numerous play interactions. We will de-

scribe this unique dataset and the challenging analysis tasks

that it enables, and present the results of our analysis, which

can serve as a baseline for future investigations.1

2. Related Work

There is a vast literature on video-based activity and ac-

tion recognition (some examples include [6, 10, 5, 18, 12]).

However, most of these works are focused either on the ac-

tions of a single adult subject, or on relatively brief inter-

actions between a pair of subjects, such as the “hug” action

in [10] or the fighting activities in [16]. In the case of sin-

gle person activities such as meal preparation [3], or struc-

tured group activities [13], activities can be complex and

can take place over a significant temporal duration. How-

ever, the structured nature of tasks such as cooking can be

exploited to constrain the temporal sequencing of events.

In contrast to these prior works, the domain of social inter-

actions between adults and children poses significant new

challenges, since they are inherently dyadic, loosely struc-

tured, and multi-modal.

Recently, several authors have addressed the problem

of recognizing social interactions between groups of peo-

ple [15, 4, 1, 9]. In particular, our earlier work on categoriz-

ing social games in YouTube videos [15] includes many ex-

amples of adult-child dyadic interactions. These works have

generally focused on coarse characterizations of group ac-

tivities, such as distinguishing monologues from dialogues.

In contrast, our goal is to produce fine-grained descriptions

of social interactions, including the assessment of gaze and

facial affect and the strength of engagement.

Our approach to analyzing dyadic social interactions is

based on the explicit identification of “mid-level” behav-

ioral cues. We extract these cues by employing a variety

of video and audio analysis modules, such as the tracking

of head pose and arm positions in RGBD video and the de-

tection of keywords in adult speech. Each of these topics

has been extensively researched by the vision and speech

communities, and it is not practical to cite all of the rele-

vant literature. In this context our contribution is twofold:

We show how existing analysis methods can be combined

to construct a layered description of an extended, structured

social interaction, and we assess the effectiveness of these

standard methods in analyzing children’s behavior.

1Instructions for obtaining the MMDB dataset can be found at www.
cbi.gatech.edu/mmdb

3. Challenges

From an activity recognition perspective, the analysis of

social interactions introduces a number of challenges which

do not commonly arise in existing datasets. First, the dyadic

nature of the interaction makes it necessary to explicitly

model the interplay between agents. This requires an analy-

sis of the timing between measurement streams, along with

their contents. Second, social behavior is inherently multi-

modal, and requires the integration of video, audio, and

other modalities in order to achieve a complete portrait of

behavior. Third, social interactions are often defined by the

strength of the engagement and the reciprocity between the

participants, not by the performance of a particular task.

Moreover, these activities are often only loosely structured

and can occur over an extended duration of time.

The analysis of adult-child interactions in the context

of assessment and therapy provides a unique opportunity

for psychologists and computer scientists to work together

to address basic questions about the early development of

young children. For example, detecting whether a child’s

gestures, affective expressions, and vocalizations are coor-

dinated with gaze to the adult’s face is critical in identify-

ing whether the child’s behaviors are socially directed and

intentional. Another important challenge is to identify the

function of a child’s communicative bid. When a child is

using vocalizations or gestures, is their intention (a) to re-

quest that their partner give them an object or perform an

action; (b) to direct the partner’s attention to an interesting

object; or simply (c) to maintain an ongoing social inter-

action. Answering these questions in a data-driven manner

will require new approaches to assessing and modeling be-

havior from video and other modalities.

Finally, advances in wearable technology have made it

possible to go beyond visible behaviors and measure the

activity of the autonomic nervous system, for example via

respiration or heart-rate. The autonomic system is closely

connected to the production and regulation of behavior,

and could be a useful source of insight. In particular, our

dataset includes continuous measures of electrodermal ac-

tivity (EDA) which are obtained using wearable sensors.

These physiological signals can be combined with audio

and video streams in order to interpret the meaning and

function of expressed behaviors [8].

4. The Multimodal Dyadic Behavior Dataset

We introduce the Multimodal Dyadic Behavior (MMDB)
dataset, a unique collection of multimodal (video, audio,

and physiological) recordings of the social and communica-

tive behavior of infants and toddlers, gathered in the context

of a semi-structured play interaction with an adult. The ses-

sions were recorded in the Child Study Lab (CSL) at Georgia

Tech, under a university-approved IRB protocol. The CSL
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Figure 1. Child and examiner camera views in the MMDB dataset

is a child-friendly 300-square foot laboratory space which

is equipped with the following sensing capabilities:

• Two Basler cameras (1920x1080 at 60 FPS) are posi-

tioned to capture frontal views of child and adult

• Eight AXIS 212 PTZ network cameras (640x480 at 30

FPS) are mounted around the perimeter of the room

• A Kinect (RGB-D) camera is mounted on the ceiling

and centered on the table.

• An omnidirectional microphone is located above the

table and a cardioid mic is in the corner of the room

• Dual lavalier wireless lapel omnidirectional micro-

phones, one worn by the child and one by the adult

• Four Affectiva Q-sensors for sensing electrodermal ac-

tivity and accelerometry (sampled at 32Hz), one worn

on each wrist by the adult and the child.

The interaction follows the Rapid-ABC play protocol,

which was developed in collaboration with clinical psy-

chologists who specialize in the diagnosis of developmen-

tal delay [14]. This play protocol is a brief (3–5 minute)

interactive assessment, in which a trained examiner elicits

social attention, back-and-forth interaction, and nonverbal

communication from the child. These behaviors reflect key

socio-communicative milestones in the first two years of

life, and their diminished occurrence and qualitative differ-

ence in expression have been found to represent early mark-

ers of autism spectrum disorders.

During the play interaction, the child sits in a parent’s

lap across a small table from an adult examiner. Figures 1

and 3 illustrate the set-up. The examiner engages the child

in five activities, which we refer to as the five stages of the

protocol: Greeting: she greets the child while smiling and

saying hello; Ball: she initiates a game of rolling a ball back

and forth; Book: she brings out a book and invites the child

to look through it with her; Hat: she places the book on

her head pretending it is a hat; Tickle: she engages the child

in a gentle tickling game. The behavior of the examiner

is structured both in terms of specific gestures (i.e., how

the materials are presented to the child) and the language

the examiner uses to introduce the various activities (e.g.,

“Look at my ball!”). Additional presses to elicit specific

behaviors are built into the assessment. For example, the

examiner silently holds up the ball and the book when they

are first presented to see whether the child will shift atten-

tion from the objects to her face (exhibiting joint attention).

She also introduces deliberate pauses into the interaction to

gauge whether and how the child re-establishes the interac-

tion. These presses introduce additional structure into the

interaction, in the form of substages. For example, the ball

stage consists of the substages “Ball Present,” “Ball Play,”

and “Ball Pause.”

An associated scoring sheet allows the examiner to note

whether, for each substage in the activity, the child en-

gaged in specific discrete behaviors, including initiating eye

contact and smiling during key moments, looking at the

ball/book followed by the examiner, and rolling the ball

and turning the book pages. The examiner scores seventeen

such behaviors as present or absent at the substage level,

immediately following the completion of the assessment. In

addition, for each stage of the protocol, she rates the effort

required to engage the child using a 3-point Likert scale,

with a score of 0 indicating that the child was easily en-

gaged and a score of 2 indicating that significant effort was

required. The ratings attempt to capture an overall measure

of the child’s social engagement, which relates to a core as-

pect of the behavior of children who may be at risk for an

Autism Spectrum Disorder (ASD).

In addition to the scoring sheet, the MMDB dataset

also includes frame-level, continuous annotation of relevant

child behaviors that occur during the assessment. These an-

notations were produced by research assistants who were

trained to reliability in behavior coding. These additional

annotations include precise onsets and offsets of the tar-

gets of the child’s attention (e.g., gaze to the examiner’s or

parent’s face, ball, book), vocalizations and verbalizations

(words and phrases), vocal affect (laughing and crying), and

communicative gestures (e.g., pointing, reaching, waving,

clapping, etc.).

To date, 121 children between the ages of 15 and 30

months have participated in the Rapid-ABC assessment,

and their parents have consented to share their recorded data

with the research community. 43 of these children com-
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pleted a second session 2–3 months later. The video, audio,

and physiological recordings, scoring sheet data, and par-

ent questionnaire results for these sessions are included in

the MMDB dataset and available to interested researchers

at other academic institutions.

We have explored the automatic analysis of three aspects

of the dataset: (1) Parsing into stages and substages; (2) De-
tection of discrete behaviors (gaze shifts, smiling, and play

gestures); and (3) Prediction of engagement ratings at the

stage and session level, including some preliminary find-

ings for multimodal prediction. In the following sections,

we describe our analysis methods in more detail and present

our experimental findings from an initial set of child record-

ings. Note that our findings are based entirely on the coarse

scoring provided the examiner, and do not leverage the ad-

ditional, more-detailed annotations that we have produced.

5. Parsing Stages

A basic analysis goal is to segment the play interaction

into its constituent five stages—greeting, ball, book, hat,

and tickle. The ability to parse video and audio records

into these major stages and their substages makes it possible

to focus subsequent analysis on the appropriate intervals of

time. Our approach to parsing leverages the structure which

the adult imposes on the interaction. The examiner follows

a pre-defined language protocol in which key phrases are

used to guide the child into and through each stage. By an-

alyzing the examiner’s speech, captured by a lapel micro-

phone, we can identify the beginning of each stage by look-

ing for these key phrases (see Table 1). This is an example

of a more general property of many standard protocols for

assessment and therapy: By leveraging the statistical regu-

larities of adult speech (and other modalities), we can obtain

valuable information about the state of the dyad.

Parsing was done using commercial word- and phrase-

spotting technology developed by Nexidia. The Nexidia

tool takes as input an audio clip and a phrase of interest. It

detects instances of the phrase in the audio stream and out-

puts the time-stamp locations of the detected phrases and

their confidence scores. We first used the tool interactively

No. Search phrase Training Testing Stage
1 “Hi <name>” 60.00% 71.42% Greeting
2 “Are you ready to play with

some new toys?”
88.00% 100%

3 “Look at my ball” 80.00% 71.42% Ball
4 “Let’s play ball” 68.00% 92.86%
5 “Ready, set, go!” 92.00% 92.86%

6 “Look at my book” 76.00% 78.57% Book
7 “Where’s the yellow duck?” 76.00% 92.86%
8 “Let’s see what’s next” 84.00% 100%
9 “Can you turn the page?” 72.00% 57.14%

10 “It’s on my head! It’s a hat” 80.00% 85.71% Hat

11 “I’m gonna get you!” 92.00% 92.86% Tickle

Table 1. Search phrases belonging to each stage and the detection

accuracy across 39 sessions (25 for training and 14 for testing).

No. Stage Error (sec) Sessions
1 Greeting 0.4653 13

2 Ball 0.8307 11

3 Book 0.8302 11

4 Hat 3.8055 12

5 Tickle 9.8607 13

Table 2. Errors in seconds for predicting the stage starting times.

on a training set of 25 sessions (from our corpus of 39).

We used the pronunciation optimization feature to adjust the

phoneme sequences associated with our queries, improving

detection performance. We used the remaining 14 sessions

for testing, giving a total of 70 testing stages. Table 1 gives

the detection performance of the tool for each phrase.

If the Nexidia system successfully detects one of the

phrases in Table 1, the associated time-stamp can be taken

as an estimate of the start of that stage. Table 2 gives the

error in seconds associated with this estimate, on our test-

ing set of 14 sessions. The error measure is the average of

the absolute difference between the estimated and ground

truth starting times across the sessions. The error is largest

for Tickle because the key phrase is repeated multiple times

during the first 30 seconds of the stage.

Note that in 9 out of 70 stages, the Nexidia tool gener-

ated false positives, detecting phrases more than 5 seconds

after the true start of the stage. We removed these outliers

from the results in Table 2 so that they did not swamp the

reported performance. The last column in Table 2 gives the

number of non-outlier instances. In a second experiment,

we predicted the start times for the substages ball present

and book present, which occur within the Ball and Book

stages, respectively. For 11 sessions, our method achieved

an average absolute error of 0.253 seconds for book present

and 0.467 seconds for ball present.

These results suggest that when the Nexidia tool pro-

duces accurate detections, the time-stamps of the detected

phrases provide a reliable cue for segmentation. Since

the tool is not perfect, additional performance gains could

be obtained by incorporating other modalities, such as the

overhead Kinect view.

6. Detecting Discrete Behaviors

We have described a procedure for parsing a continuous

interaction into its constituent stages and substages. Within

each substage, the examiner assesses whether or not the

child produced a set of key behaviors (see Section 4), in-

cluding smiling and making eye contact. We now describe

our approach to automatically detecting these two discrete

behaviors. The primary challenge stems from the fact that

the examiner produces a rating for an entire substage, based

on whether or not the behavior occurred at least once. Thus

we do not have access to frame level ground truth labels for

training purposes. Our approach is to aggregate frame-level
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scores to make substage-level predictions.

6.1. Smile Detection

Given a segmented video clip corresponding to a sub-

stage in the interaction, our goal is to predict a binary smile

label. We employed commercial software from Omron, the

OKAO Vision Library, to detect and track the child’s face,

and obtain measures of face detection confidence, smile de-

gree (the strength of the smile), and smile confidence for

each detected face. We used the joint time series of smile

degree and smile confidence in each frame as the feature

data for smile detection. Features were aggregated from all

high-confidence face detections over a single clip into a 2D

histogram. Figure 2 gives a visualization of this histogram,

averaged over all of the clips with positive (left) and nega-

tive (right) smile labels. It is clear that the joint features of

degree and confidence have discriminative value.

Figure 2. The left and right figures show the 2D histogram of the

distribution of positive and negative labels, respectively.

We constructed a temporal pyramid to capture additional

structure from the time series. We empirically selected 20×
20 bins for the 2D histogram and pyramid level as [1, 2] for

all our experiments, yielding a 1200-dimensional feature for

each substage. A linear SVM was then trained to perform

smile detection.

Experimental Results: First, we present our results given

the ground truth segmentation into substages. We used a

training set of 39 child participants and a testing set of 17

additional participants. In this ideal case, we correctly pre-

dicted 72 out of 90 substage labels, with a balanced accu-

racy of 79.5%, and a chance performance of 60%. Next, we

present the results of combining our smile detection system

with the parsing result from Section 5, which yields a fully

automated smile detection system. Using 8 sessions with

high parser confidence, we correctly detected smiles in 31
out of 40 substages, giving a balanced accuracy of 76.6%.

These results suggest that useful predictions can be made in

the absence of fine-grained training labels.

We note that children are difficult subjects for automated

face analysis, as they are more likely to move rapidly and

turn their heads away from the examiner (and therefore the

camera). Our experiments suggest that face detection meth-

ods which are trained for adult faces incur a 10-15% drop

in accuracy when applied to very young children.

6.2. Gaze Detection

Gaze is a fundamentally important element in under-

standing social interactions, and the automatic non-intrusive

measurement of children’s gaze remains a challenging un-

solved problem. When children’s eyes are viewed from sig-

nificant standoff distances, human coders can make assess-

ments of gaze direction which far exceed the accuracy of

any existing automated method. One of the challenges in

our dataset is the difficulty of ensuring a continuous view of

the child’s eyes in the Basler camera, due to occlusion and

head rotation. In previous work [21], we used a wearable

camera on the examiner to obtain a more consistent viewing

angle, but this adds additional complexity to the recording

process. Related work by Marin-Jimenez et. al. [11] an-

alyzes cinematic video footage. Our multimodal approach

exploits the structured nature of the Rapid-ABC interaction

and does not require an active camera system or the need to

wear additional hardware.

Given a particular substage within the interaction, our

goal is to predict whether the child made eye contact with

the examiner at least once. For this analysis, we made use of

both head tracking information obtained from the overhead

Kinect sensor, as well as information about the child’s eye

gaze, as measured in the child-facing camera view (see Fig-

ure 1). We followed a two-stage approach. First, we used

the Kinect to identify moments when the child’s head was

oriented towards the examiner. We performed head track-

ing (see Section 7.1 for a discussion) and in addition used

template matching to estimate the yaw of the head. Given a

within-bounds yaw estimate, the second step was to exam-

ine the Basler video to estimate the pitch of the child’s gaze.

Our goal was to differentiate gaze directed up at the exam-

iner’s face from gaze directed down at hands or objects on

the table. We used the Omron OKAO software to estimate

the vertical gaze pitch. If the estimated pitch was above

threshold, we predicted eye contact. If at least 10 frames in

the clip received a positive vote, then we predicted a posi-

tive label for the clip overall.

Experimental Results: We performed our analysis on 20

hand-picked sessions in which the child remained at the

table throughout and the tracker worked successfully. We

used five sessions for parameter tuning and 15 for testing.

Table 3 gives the percent agreement between the predicted

gaze scores and the ground truth for select substages. The

algorithm performs better on longer sequences, where there

are increased opportunities to observe eye contact. The two

main sources of error arise when the child’s head pitches

down, making it more difficult to estimate yaw, and when

the child’s eyes are not visible (e.g. when turned away from

the examiner). It would be interesting to extend this ap-

proach to detect moments when the child is looking at tar-

gets other than faces, such as the objects used in the inter-

action.
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Activity Agreement (%)
Greeting 78.57

Ball Pause 64.28

Book Pause 61.53

Hat Present 85.71

Tickle Play 92.85

Tickle Pause 15.38

Table 3. Accuracy in predicting eye contact

7. Predicting Child Engagement

For each of the five stages of the play protocol, the exam-

iner assessed the difficulty of engaging the child on a scale

from 0 (easily engaged) to 2 (very difficult to engage). In

this section, we describe methods for predicting the engage-

ment score based on video and audio features. To simplify

the task we collapse the categories 1 and 2 together across

all five stages, giving a binary prediction problem.

7.1. Engagement Prediction in Ball and Book Play

In this vision-based approach to predicting engagement,

we designed engagement features and trained a binary clas-

sifier to estimate if the child was easy to engage or not.

The features were extracted through analysis of the object

and head trajectories, and they leverage the events “ball is

shown” and “ball is touched” that may be subsequently de-

tected.

Object Detection and Tracking: We track the objects (ball

and book) and the heads of the child and of the examiner

using the overhead Kinect camera view. The tracker we

adopted does not need human intervention or manual ini-

tialization. We detect the heads by searching for local max-

ima in the depth image. To detect the ball and the book,

we use region covariance templates [19] over the RGB-D

channels. To deal with detection failures and maintain con-

sistent labeling, we use the tracking-by-detection method

proposed in [22], following depth-based background sup-

pression. The tracker keeps an ensemble of appearance

templates for each target and uses the tracker hierarchy to

automatically handle tracker initialization, termination and

tracking failure. Figure 3 shows the output of the tracker for

the Ball stage on a sample image.

Event Detection: For the Ball stage, we developed detec-

tors for the events “ball is shown” and “ball is touched”.

The examiner shows the ball to the child by holding it high

and near her head. We detect this event by measuring the

relative position of the ball with respect to the head. In

order to detect moments during the ball game when the

partners touch the ball, we collected a training set of ex-

ample templates in which the ball is touched and partially

occluded. We then computed a rotation-invariant region co-

variance descriptor for each template, and identified the two

that were the most discriminative. During tracking, we de-

tect the ball region, extract its descriptor, and compare it

Figure 3. Tracking results for heads and ball

to the top two template descriptors using the Affine Invari-

ance Riemann Metric (AIRM) distance [19]. If the match-

ing score for both templates is below a pre-learned thresh-

old, we predict “ball is touched.” We can further classify

into “touched by child” and “touched by examiner” by ex-

amining the ball location.

Feature Extraction and Engagement Prediction: To esti-

mate the engagement level, we designed and extracted fea-

tures that intuitively reflect the effort of the examiner to get

the attention of the child, and the degree to which the child

is participating in the interaction. If the child is easy to en-

gage, we can expect that the examiner will spend less time

in prompting the child, and the child will quickly respond

to the examiner’s initiating behaviors while interacting with

the objects.

For the Ball stage, based on the detected ball shown and

ball touched events, we extracted the raw features in Ta-

ble 4, and split them in groups of no more than three. We

applied PCA and trained linear SVMs on the coefficients of

the projected vectors for each group of features. Finally, the

margin from each SVM was treated as a mid-level feature

and used to train a decision tree to predict whether the child

was easy to engage or not. In our experiments, the groups of

features retained by the decision tree for the Ball stage were

{Visibility, Near Examiner}, {Shown, Touched Examiner}
and {Touched Child}. For the Book stage, we used a linear

SVM trained on the raw book features described in Table 4.

Stage Feature Name Explanation

Visibility num. of frames the book is detected
Book Touched changes in presence of skin-color on the book

Motion Mag. of sparse set of corners on the book
HOF of a sparse set of corners on the book

Visibility num. of frames the ball is detected
Touched num. of “ball is touched” events
Touched Child num. of “ball is touched by the child” events

Ball Touched Examiner num. of “ball is touched by the examiner” events
Shown num. of “ball is shown to the child” events
Near Child num. of frames the ball is near the child
Near Examiner num. of frames the ball is near the examiner
Effort Examiner Ball Shown + Ball Touched by Examiner

Table 4. Raw features for the Ball and Book stages

Experimental Results: The training set comprises 16 dif-

ferent sequences, while the test set comprises 15 sequences.
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During testing, the ball tracker failed in one sequence, and

we omitted it from the ball results. The overall accuracy

in predicting engagement for the Ball and Book stages was

92.86% and 73.33%, respectively. In all cases, stages with

the label “difficult to engage” were predicted perfectly. For

the easy to engage cases, we had a false negative rate of

8.3% for the Ball stage and 33.3% for the Book stage. The

book interaction involved a deformable object and more

complex patterns of occlusion, and was therefore more dif-

ficult to analyze.

7.2. Audio-Visual Prediction of Engagement

We have demonstrated that visual features can be used

to accurately predict engagement in the Ball and Book

stages. In this section, we develop a complementary ap-

proach based on acoustic features, and present some initial

experimental results for audio-visual prediction.

The first step in our approach is to automatically seg-

ment the speech portions of the audio input. We developed a

Voice Activity Detector (VAD) which utilized energy-based

features, zero-crossing rates, voiced/unvoiced rates, pitch-

related statistics, and noise adaptation processing. The VAD

was applied to both the child and the examiner’s lapel-

mounted wireless microphones, thereby identifying the start

and end of speech segments and extracting them. Table 5

gives the statistics for the duration and number of extracted

speech segments for the examiner (E) and child (C).

Greet Ball Book Hat Tickle

Duration (min) 7 51 81 10 30

Dur-Sp-E (min) 4 26 35 9 25

Num-Seg-E 149 880 1338 225 402

Dur-Sp-C (min) 2 8 13 2 5

Num-Seg-C 65 325 553 69 265

Table 5. Speech segmentation results

After obtaining the speech segments, we extracted

acoustic features from each one using the openSMILE

toolkit [2]. The acoustic features consisted of prosodic,

spectral, formant, and energy analyses along with their

statistics, regression coefficients, and local minima/maxima

[7, 17]. A total of 2265 features were extracted. In ad-

dition to acoustic features, we added event-based features

such as the duration of cross-talk between child and exam-

iner, the number of turns taken (C-to-E and E-to-C), and the

number of speech segments. The features were normalized

over duration of stage, durations of segments, and number

of segments.

In order to reduce the dimensionality of the feature set,

the average accuracy of each individual feature was first

calculated using three-fold cross-validation with a Gaus-

sian Mixture Model (GMM) classifier of two mixtures. The

features were ranked by the unweighted accuracy, which is

equivalent to 1
2 (

TP
TP+FP + TN

TN+FN ), where TP stands for

true positive, FN for false negative, TN for true negative,

and FP for false positive. This measure is an appropriate

choice for unbalanced problems like ours, where the distri-

bution of scores is highly unequal.

A sequential forward feature selection algorithm was

then applied to the 50 highest ranked features, examining

them one-by-one in rank order. Starting with the highest

ranked feature, any feature xi that did not result in an im-

provement in the error rate was discarded. Otherwise, it was

added to the working set. At each iteration, the error rate

was tested with three-fold cross validation using the GMM

classifier. After the sequential forward selection algorithm,

11 features were retained, which included 4 event-based, 3

spectral, 1 energy, 2 formant, and 1 prosodic related fea-

tures, as shown in Table 6. All analyses utilized 46 sessions

for training and another 14 for testing.

Order Feature Type

1 Number of Child Speech Segments Event

2 Number of E-to-C Event

3 audSpec-Rfilt-sma-de[3]-upleveltime90 Spectral

4 mfcc-sma-de[7]-qregc1 Spectral

5 pcm-RMSenergy-sma-de-percentile1.0 Energy

6 Duration of cross-talk Event

7 F3-percentile50 Formant

8 Number E-to-C / (number of E segments) Event

9 mfcc-sma[2]-linregc1 Spectral

10 Bandwidth2-percentile25 Formant

11 F0-sma-qregc2 Prosodic

Table 6. Selected features

Experimental Results, Audio Only: Using the feature set

identified in the previous section, the training set was used

to train two Gaussian mixtures in 11 feature dimensions,

and then testing was performed with a Bayesian Classifier.

Table 7 shows the overall results on the test set, which con-

sists of 14 sessions. Our classifier was less effective on the

Greeting stage, due to its short duration relative to the other

stages.

Experimental Results, Audio-Visual: In addition, we ob-

tained initial experimental results in combining our audio

features with the visual features from Section 7.1. We em-

ployed a late-fusion approach to combining modalities, and

worked directly with the previously-trained audio and video

classifiers. Using data from the Book stage, we combined

the estimated confidence scores from the two classifiers and

made decisions based on the combined score. The audio-

based classifier used normalized log-likelihood scores, and

the vision-based classifier used a SVM output converted to a

probability via a sigmoid mapping. The class with a higher

combined confidence score was then selected. Using the

14 overlapping play interaction sessions in the test set, the

joint classifier resulted in 10 true positives, 3 true negatives

and 1 false positive. This result is an improvement over the

previous classification peformance (with the caveat that the

sample size is small).
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True 60% 83% 91% 86% 91%

Positive (6/10) (10/12) (10/11) (12/14) (10/11)

True 25% 50% 67% - 33%

Negative (1/4) (1/2) (2/3) - (1/3)

Unweighted 43% 67% 79% - 62%

Accuracy

Weighted 50% 79% 86% 86% 79%

Accuracy (7/14) (11/14) (12/14) (12/14) (11/14)

Table 7. Accuracy of engagement predictions using audio

8. Conclusion
We introduced a new and challenging domain for activ-

ity recognition—the analysis of dyadic social interactions

between children and adults. We created a new Multi-
modal Dyadic Behavior (MMDB) dataset containing more

than 160 examples of structured adult-child social interac-

tions, which were captured using multiple sensor modalities

and contain rich annotation. We presented baseline analy-

ses which are a first attempt to decode children’s social be-

havior by determining whether they produce key behaviors,

such as looks to their partner, smiles, and gestures, during

specific moments of an interaction, and by assessing the de-

gree of engagement.

Our long-term goal is to develop a rich, fine-grained

computational understanding of child behavior in these set-

tings. To achieve this goal, we will need to go beyond the

detection of discrete behaviors and the prediction of high-

level ratings. We must consider many other aspects of these

behaviors, such as their coordination (e.g., is the child com-

bining affect, vocalizations, and gestures with looks to the

examiner’s face), timing (e.g., how does the child time their

response to the examiner’s social bids), and function (e.g.,

is the child directing the examiner’s attention to an object to

share their interest in the object, or only to request it). This

endeavor will require new capabilities for face and gesture

analysis and new computational models for behavioral co-

ordination. We are making our MMDB database available

to the research community to facilitate these advances (see

www.cbi.gatech.edu/mmdb for details).
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