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Abstract

We study fine-grained categorization, the task of distin-
guishing among (sub)categories of the same generic ob-
Jject class (e.g., birds), focusing on determining botanical
species (leaves and orchids) from scanned images. The
strategy is to focus attention around several vantage points,
which is the approach taken by botanists, but using features
dedicated to the individual categories. Our implementation
of the strategy is based on vantage feature frames, a novel
object representation consisting of two components: a set
of coordinate systems centered at the most discriminating
local viewpoints for the generic object class and a set of
category-dependent features computed in these frames. The
features are pooled over frames to build the classifier. Cat-
egorization then proceeds from coarse-grained (finding the
frames) to fine-grained (finding the category), and hence
the vantage feature frames must be both detectable and dis-
criminating. The proposed method outperforms state-of-the
art algorithms, in particular those using more distributed
representations, on standard databases of leaves.

1. Introduction

Research in automated object recognition is currently
very active, driven by applications as well as the intellec-
tual challenge, and there have been notable recent advances
using both discriminative learning and object modeling for
detecting and localizing instances of generic object classes
such as cars, cats and people appearing in digital images
[2, 5,7, 10, 13, 23, 26]. More recently, motivated by ap-
plications in areas such as botany, agriculture, medicine
and forestry, there has also been considerable interest in
more fine-grained discrimination, for example identifying
specific species of birds, flowers, leaves and insects; some
of this work is summarized in §2. Relative to fine-grained
categories, instances from generic object classes tend to be
rather distinct from one another, displaying gross differ-
ences that are easy for humans to identify [21]. As a re-
sult, methods designed for generic categories are usually not
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well-adapted to isolating and representing the specific in-
formation necessary for discriminating among fine-grained
visual categories such as species of leaves.

Indeed, due to large intra-class variability and inter-class
similarity, fine-grained categorization can be extremely
challenging even for experts, especially when the number
of relevant categories is very large, as in botany. Even a
single taxonomic family (e.g., orchids) may contain many
species, each highly varied, and taxonomic categories (e.g.,
species or varieties) are often determined by subtle differ-
ences in shape and texture. In fact, there can even be less
variation in appearance between two images from two dif-
ferent (sub)categories than within a single one, as illustrated
in Figure 1. Plants may exhibit different shape characteris-
tics due to local context, such as location, climatic condi-
tions and age; for example, (a),(b) and (c) in Figure 1 come
from the same species. And whereas the overall shapes may
be sufficiently different to distinguish between some species
(see e.g., Figure 1 (a) and (g)), other species may display
only subtle differences: see the instances of two different
species of orchids in Figure 1 (e) and (f) and two instances
of leaves in Figure 1 (h) and (i) from two different genera
(and hence species).

Our approach to categorizing botanical species is moti-
vated by the strategy used by botanists, in which attention
is focused on visual properties of the object in the vicin-
ity of a small number of distinguished landmarks. Whereas
these landmarks are the same for each species, it is the local
features which permit disambiguation. But both aspects are
important: where to look and what to compute. The vehicle
for translating this into a computer vision algorithm, and
our main contribution, is the notion of a vantage feature
frame; we provide algorithms for learning discriminating
ones, detecting them online and pooling the features com-
puted in these frames to identify the categories. We refer
to the origins of the frames as vantage points - special lo-
cations from which observing the leaf or flower and in a
particular direction can provide discriminating information
about the species. Besides location, scale and orientation,
each vantage feature frame is also equipped with a possi-
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Figure 1. Intra-class similarity and inter-class differences for
leaves and orchids. Top row: (a), (b) and (c) are Broussonetia
papyrifera. Middle row: (d) and (f) are ophrys funerea while (e) is

an ophrys iricolor. Bottom row: (g) and (i) are quercus ilex while
(h) is an ilex aquifolium.

| @!" \,ﬁ(_x

bly category-dependent set of features that help to discrimi-
nate that category from all others. We will demonstrate that
this type of non-distributed representation can be highly ef-
fective in distinguishing between closely-related categories,
and in particular improves upon the accuracy of existing
methods for simple leaves on standard databases.

2. Related work

There is a growing body of work investigating fine-
grained image classification of birds [8, 24, 27], insects
[15, 18], flowers [0, 19] and leaves [ 1, 6, 14].

Several shape-based approaches, including boundary
analyses, have been adapted for fine-grained categorization,
especially for leaves [1, 4, 17]. Often, performance is sen-
sitive to the quality of the contour resulting from a segmen-
tation process, which naturally complicates distinguising
between categories with very similar shapes. Other meth-
ods adapt systems for detecting instances of generic object
classes [16, 25] by encoding an image as a bag of discrete
visual codewords and basing classification on histograms of
codeword occurrences; examples include [19, 27]. Again,
however, the distinctions among fine-grained categories are
sometimes too refined (see Figure 1) to be captured by vari-
ations in bags of visual words.

To account for such distinctions, an increasing number of
studies utlize information from experts. In [24], an interac-
tive system is proposed wherein humans click on bird parts
and answer questions about attributes (e.g., “white belly”,
“red-orange beak”, ’sharp crown”). In other recent work
[9, 28] annotated training data (e.g., key points and objects
parts) are obtained from experts. In [9], classifiers based on
poselets (parts of the object from a given viewpoint) [3] are
employed to extract part and shape information for build-
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ing fine-grained models. However, this approach requires
3-D pose annotation, which is based on volumetric prim-
itives that are costly to obtain manually and present other
difficulties (see Figure 1 of [28]); instead, the authors of
[28] advocate a 2-D rather than 3-D representation in or-
der to reduce the level of annotation required to generate
the poselets. Our work on leaves and orchids is somewhat
similar in that the detection of the vantage frames primes
the identification of the botanical species; however, unlike
the work in [9, 28], our representation is based on frames
not poselets, i.e., on coordinate systems and corresponding
local features which are, by construction, invariant to vari-
ations in pose, thereby avoiding any need for global image
transforms, e.g., geometric normalization. Of course birds
and leaves present different kinds of challenges; the former
exhibit higher intra-species variation (e.g., birds may be fly-
ing, swimming or perched), whereas the latter exhibit more
inter-species similarity (e.g., in color, overall shape and in-
ternal structure).

3. Vantage Feature Frames

Let {C1,...,Cn} denote N categories. In the botani-
cal applications which motivate this work, such as assign-
ing a species to a scanned image of a leaf, there is often
useful domain knowledge, for instance named landmarks
L = {l1,...,lx} around which botanists focus in order to
separate one species from another. (See Figure 2.) Usually,
N is of order tens or hundreds and K ranges from two to
four. In fact, landmarks are more like “vantage points” in
that orientation plays a role as well, in other words, where
the landmarks are in relation to one another. Naturally,
species tend to have certain signature appearance proper-
ties and consequently what to look for in the neighborhood
of the landmarks may be species-dependent. Put differently,
the conditional distribution over any large family of generic
local features may depend strongly on the species. This
aspect of the identification process will be encoded by al-
lowing the set of features associated with each landmark to
depend on the category. We also want to ensure that the
local appearance properties are largely invariant to the ori-
entation and scale of the object. Finally, in order to identify
an unknown specimen, botanists proceed hierarchically (or
at least so describe their reasoning process) from coarse-
grained categories (i.e., higher taxa than species such as
family or genus) to the species level. Consequently, in-
formation about an underlying taxonomy can be useful in
organizing the search.

With these considerations in mind, a vantage feature
frame F has two components. One, ©, is geometric and
the other, &, is appearance-based. The geometric compo-
nent O is category-independent and simply a local coordi-
nate system centered at one of the landmarks [; the scale
and orientation are discussed below. The appearance com-



ponent is a family of pose-indexed features, one element of
the family for each category: X = {A},..., XN}, where
X, is the set of local features to compute in frame F for cat-
egory C;. Obviously, to be useful the frame must be reliably
detected and the features must be discriminating.

4. Construction

As with the representation above, we will first describe
the general process in abstract terms, providing more spe-
cific examples of frames and features in ensuing sections.

4.1. Learning the frames

Learning the most discriminating frames from scratch
would evidently be a major challenge, and we do not at-
tempt this. As indicated above, by leveraging domain
knowledge, we begin with a list of candidate origins
l1,...,lx. There will be frames associated with a subset of
these. Moreover, since we are dealing with images of sin-
gle objects (e.g., scanned images of leaves) we declare the
orientation of the frame to be determined by the centroid of
the object, that is, the landmark points to the centroid, and
the unit distance to be the approximate scale of the object.
The choice of landmarks or vantage points is performance-
based. Assume we are given a classifier for each set of van-
tage feature frames; our particular choice is described in §6.
Given |£| = K candidate landmarks, there are then 251
possible set of coordinate systems, evaluating them one-by-
one might be infeasible, in which case one might adopt a
greedy strategy: the efficiency of each candidate could be
measured by the improvement in the overall classification
rate obtained by adding the corresponding frame to the ex-
isting list of frames.

However, for simple leaves and orchids only three “uni-
versal” landmarks £ = {ly, 2,13} have been suggested by
botanists; they are described in §6.1 and illustrated in Figure
2. For each of the 23 — 1 = 7 combinations of frames, we
estimated the classification accuracy using cross-validation.
Feature extraction and classification are described in §4.3
and §5 respectively. It should be noted that for this learning
process the locations of the landmarks were determined by
manually annotating the training data. As a result, the er-
rors that are inevitably made in automatically detecting the
landmarks (see Section §6.3) are not taken into account in
choosing the best set of frames. One might expect that the
more frames the better the performance, and hence using
all three would be optimal. However, this was not the case;
Table | shows the recognition rates for the seven possible
combinations of frames used for simple leaves. The best
performance is obtained with two frames corresponding to
apex and base of the leaf.
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Figure 2. Candidate frames for orchids and leaves.

4.2. Detecting the frames

The first step in classifying an image is to estimate the
location, orientation and scale of each frame. As indicated
above, the orientation is determined by the centroid, which
is directly computed from the raw image data after a seg-
mentation process using the Otsu algorithm [20]. The scale
is taken to be the radius of the bounding circle as illus-
trated for leaves in Figure 5. The landmarks are detected by
dedicated classifiers trained on manually annotated images.
Since we are only using landmarks on the object boundaries
(as determined by the segmentation process), we restrict the
search to a sample of boundary points to minimize the com-
putation. In addition, after detecting each landmark, we ex-
clude the boundary points in its neighborhood from the list
of candidates.

In order to detect each vantage point, a classifier (see
§5) based on SVM scores is built from positive and neg-
ative training examples. Positive images are annotated by
the landmark considered and negative images are randomly
annotated. The features for SVM learning are defined in
the local coordinate system centered on the candidate land-
marks (i.e., the x-axis is directed towards the centroid as de-
scribed above). Invariant focusing of this nature is enabled
by the type of "pose-indexed” (or ’frame-indexed”) features
X introduced in [13] for detecting cats. Basically, given a
frame consisting of two distinguished points and a distin-
guished scale, there is a candidate feature X = X (w, j) for
each (local) window w in frame coordinates and for each
local image property j: the feature X is just the property
histogram in w. We refer to [13] for details. We use color,
shape and texture as properties; specifically, we used HSV,
Hough, EOH and Fourier histograms as base features (more
details can be found in [12]).

4.3. Learning the features

The appearance-based component 1is category-
dependent. Whereas we use the same class of features to
learn landmark detectors, we construct a separate binary
classifier for each category C; for distinguishing that
category from all others and which employs a learned
subset of features X;. The reason for dedicated features
is that there is so much variability in the presentation



| Set of coordinate systems | [; |

lo [ Is [l [ Ils [ 1ol [ 1l |

| Recognition rate

10750721073 076 | 0.8 | 0.77 |

0.78 |

Table 1. Cross-validated recognition rates for leaves (from the Smithsonian database) for each of seven possible sets of frames sets with
centers l1, l2, [3. The best result (in bold) is obtained with two frames centered at the base /1 and apex 3.

of leaves in the neighborhood of landmarks that some
features are far more discriminating than others, and the
discriminating ones can depend as well on the vantage
point. For example, the discriminating features around
the leaf base for estimating the genera might be different
from those around the apex for estimating either the genera
or the species; and the best features in any given frame
may be genus- and species-dependent. Hence, we select a
category-dependent subset of features X; and only these
are used to train SVM classifiers.

Specifically, we first estimate the probability distribution
of each feature X under both hypotheses I € Cy and I ¢ C}
(where I is the image be classified) from the positive and
negative examples. For each distinct (taxonomic) category,
images belonging to that category are positive and all oth-
ers negative. For feature X (w, j), denote the two distri-
butions by p;j and p,, ; and let d,,,; = |p$7j — Py ;| be
the difference in the L1 norm. Then X; consists of the fea-
tures with the M largest differences, and M is chosen by
cross-validation. Figure 3 illustrates the recognition rate for
leaf genera for various M. Selecting category-dependent
features increases recognition performance and decreases
computation. For instance, we achieve over 75% recogni-
tion rate of leaf genus while considering only the first genus
returned and using between about 500 and 2500 category-
dependent features against only 67% without any selection
i.e, M = 5808 (see Figure 3).
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Figure 3. Recognition rates for leaf genera from the Smithsonian
data (see §6.2) while considering only the first genus returned and

using M selected features.

5. Fine-grained categorization

As indicated above, the category identification is also hi-
erarchical, coarse-grained to fine-grained, which is another
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way of exploiting domain knowledge. In our experiments
we consider two-levels, the first for genera and second for
the species, the ultimate target.

Let T' denote the full tree-structured graph. Associated
with every node ¢ € T, a one-vs-all classifier f; = fi(I)
is designed to separate images in C}; from images in the
complement of C} (i.e., all other taxonomic categories).
The framework is largely classifier-independent in that any
learning algorithm could be chosen to induce f; from the
training data at node ¢t. We have chosen to use SVM scores
for test statistics and a likelihood framework. The SVM
score Fy is trained using the feature set X; defined in §4.3,
and the corresponding classifier f; is based on the likelihood
ratio:

P(F; = Fy(I)|I € CY)
P(F, = F(I)|I ¢ Cy)

Li(I) =
Several detected genera may be considered for species iden-
tification. If C; corresponds to a genus, we define

Lo

Here, p is a threshold used to control the false negative
genus rate, that is to allow only a very small number of in-
stances in which I € C but f,(I) = 0 (missed detections).
This can be accomplished at the expense of (temporary) low
specificity (i.e., a high false positive rate), but this is a fa-
vorable tradeoff in our context.

The hierarchy is processed breadth-first coarse-to-fine:
at each level, all the children of a positive node t (i.e., one
for which f;(I) = 1) are retained and tested at the next
level. Whereas false positives can be successively pruned,
if the true hypothesis is rejected at a node containing it then
it cannot be recovered. Hence only the classifiers for species
which belong to the retained genera are performed. Finally,
those species for which f;(I) = 1 ( where ¢ is the node for
the genus of the species) are then sorted according to their
likelihood ratios.

The advantage of mapping the SVM score to a likelihood
ratio is that it takes into account the distribution under both
hypotheses. In particular, this mapping is not monotone, i.e,
does not preserve the ordering of SVM scores across a level,
which might naturally occur on different scales. This is il-
lustrated in Figure 4, which shows two pairs of distributions
for two classes of leaf species C; and Cs. The dashed (re-
spectively, solid) red and blue lines correspond respectively

if log(Lo(I)) > p
else

fi(D)



probability distribution

Figure 4. Comparison between the SVM score distributions of
two different genera from the Smithsonian database (see §6.2).
Both distributions are approximated by Gaussian densitites with
the estimated means and variances.

to the SVM score distribution of images in C (resp., C2)
and in the complement of C (resp., C3). Also shown are
the scores achieved by an image which would be classified
as (1 if we only considered the raw SVM scores (black for
C1 and green for C5) but in fact is classified as C5 based on
likelihoods.

Note that the same framework was used to learn the
vantage point detectors i.e., likelihood framework based on
SVM scores. However, for those points only a single esti-
mate is retained, namely the one corresponding to the can-
didate at which the likelihood ratio is maximized and thus a
single classifier (and thus a single SVM) is learned to detect
each vantage point.

6. Experiments

In this section we describe the landmarks for leaves and
orchids, the datasets we have used to evaluate our approach,
and compare our results with those previously obtained.

6.1. Botanical landmarks

To analyze leaves, experts usually focus on the apex, the
base and the leaf margin, whereas an orchid specialist fo-
cuses on the sepals, petals and the labellum. These are il-
lustrated in Figure 2. Let [; denote the leaf apex (respec-
tively, the central sepal for orchids), s the first intersec-
tion point between the perpendicular to the apex-base line
throughout the centroid of the blade and the leaf boundary
(resp., the petal on the right of /; for orchids) and [3 the leaf
base (resp., the bottom of the orchid labellum) as shown in
Figure 2. Note that for leaves, the centroid corresponds to
the center of mass of the blade; the leaf petiole is removed
before computing the centroid (see Figure 5). As for the
segmentation process, it is important to note that we are not
concerned by imperfect contours or incomplete petiole re-
moval since our method is robust to such problems. Figure
5 illustrates the vantage point detection process for a leaf
image, namely the leaf base and the leaf apex detection.
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Figure 5. A test leaf image is first segmented. Then the petiole is
removed in order to compute the centroid (green point) as well as
the approximate bounding circle of the leaf blade (red dashed cir-
cle). The base (blue point) and the apex (red point) are estimated
using learned classifiers ( f1, f2). The proposed locations for both
landmarks are restricted to the boundary points. The neighborhood
of the first landmark detected is excluded from the list of candidate
points for the next detection (blue dashed circle).

6.2. Datasets

We considered three challenging simple-leaf datasets
from different geographical areas as well as a dataset
of Mediterranean rare orchids. Each image represents a
scanned object on a white background.

Smithsonian: This dataset has 5466 simple-leaf images
containing 148 different species from the Northeastern U.S
area. The number of exemplars per species varies from 2 to
63. These images were provided by the Smithsonian botan-
ical institution within the framework of the US National
Herbarium. One particularity of these data is that the im-
ages present various poses and orientations of leaves as well
as different structures of basal and apical parts as shown in
Figure 6. Thus, good performance on such a dataset sug-
gests robust and effective landmark detection.
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Figure 6. Random sample from the SmithSonian dataset.

Swedish: This is the subset of simple leaf images of the
first publicly available leaf data for research, introduced by
the authors of [22]. It has 975 images containing 75 im-
ages from each of 13 different Swedish simple species (af-



ter removing the two compound species from the original
dataset[?]

ImageCLEF2011: This dataset is the subset of the Im-
ageCLEF2011! data containing all the scanned simple Im-
ageCLEF leaves. It is composed of 46 species from the
French Mediterranean and was constructed through a citi-
zen science initiative conducted by Telabotanica?, a French
social network of amateur and expert botanists. As a re-
sult, the task it represents is quite close to the conditions
encountered in a real-world application. We refer to [14]
for details.

Orchids® : There are 1610 images representing 23
species of a relatively rare orchid flower family pro-
vided by the “Mediterranean Orchid Society” (Société
Meéditerranéenne d’Orchidologie).

A
-
'

o o of

¥ ¢ o o
+ 0 % ¢
+ 4 o o

+ oo

Figure 7. Samples from the Orchids dataset. One image from
each species is shown. Note that the color is not a discriminative
feature; many differently colored orchids could belong to the same
genus or species.

We organized each dataset into its proper taxonomic hi-
erarchy (genus, species) and annotated it with landmarks.
These annotations, together with taxonomic labels, will be
made available to other researchers. To evaluate the perfor-
mance of our approach, we used two-thirds of the images
for training and one-third for testing.

6.3. Detection results

First, we present the results of the vantage point detec-
tion for all the data introduced in the previous section in Ta-
ble 2, achieving over 90% accuracy in each case and thereby
confirming reasonable invariance to shape and structure.
Figure 8 shows vantage point detection results for orchids
and different type of leaves (e.g., toothed, lobed, concave,
convex, symmetric, asymmetric).

6.4. Identification results

To evaluate the performance of species identification, we
provide the rate on the holdout test data at which the true
species appears among our top n estimates forn = 1,...,5

'http://www.imageclef.org/2011/Plants
’http://www.tela-botanica.org
3Courtesy of Roland Martin and Errol Vela
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Figure 8. Random sample of test images with the estimated van-
tage points for both Smithsonian leaves and orchids. False detec-
tions are framed with a red box. Note that the entire detection pro-
cess is considered erroneous if any vantage point is not accurately
detected.

| Dataset | Detection Rate |
Smithsonian leaves 92%
Swedish leaves 96%
ImageCLEF leaves 93%
Orchids 95%

Table 2. Rate of well detected vantage points

n | 1 [ 2 [ 3 ] 4] 5 |
Smithsonian data | 79% | 86% | 89% | 90% | 91%
Orchid data 81% | 92% | 94% | 96% | 97%

Table 3. Recognition rates using vantage feature frames on both
Smithsonian leaves and Orchids

for the Smithsonian, Swedish and orchid subsets. How-
ever, for ImageCLEF2011 data we adopt the evaluation
metric' used for the ImageCLEF2011 plant identification
task, which allows us to compare our performance with that
of all the task participants. We used cross-validation on the
training images in order to fix the number of the selected
features (|X;|) for each t € T. We typically select about
1000 features for estimating the genera and about 1500 fea-
tures for the species. We also fixed the threshold p = —4;
the negative value promotes a low missed detection rate.
Smithsonian Data: The first row of Table 3 reports the
recognition rates for different values of n. We achieve 79%
accuracy for the top-ranked species (n = 1) and 91% for
n = 5. The results on a random sample of test images is
shown in Figure 9. Of particular note is the similarity be-
tween the appearance of the true and estimated species in
the misclassified cases and the impact of poor vantage point
estimation; for example, note the errors in estimating both
the base and the apex for the third test leaf in Figure 9.

In [1], the IDSC was used with a KNN classifier to
identify the species within two subsets of the Smithso-
nian database, achieving a recognition rate of 60% — 70%



Test image

Images from the top 3 answers

Figure 9. A sample of test leaf images with the estimated vantage
points and the top three species returned by our algorithm. For
each test image, the red point refers to the estimated leaf apex and
the blue point to the estimated leaf base. The examples framed in
green come from the same species as the test image.

(n = 1). We tried to get those subsets but they were not
available. Consequently, we applied the IDSC method to
our subset of simple leaves from the Smithsonian dataset
using the same parameters as in [I, 17]. However, due to
the sensitivity of the IDSC method to boundary resolution
and noise (see §4 of [1]), the result (around 20%) is not rep-
resentative. In particular, our binary images are obtained
from Otsu algorithm [20] rather than the finer method of
segmentation used in [ 1], which avoids variations in light-
ing across the image and shadows cast by other leaves.
Swedish Data: We also compare our results with the IDSC
on the Swedish leaves [22] since the IDSC achieved bet-
ter results than other methods on this dataset according to
[17]. In this case, the binarized images were provided by
the authors of [17], which substantially improved the per-
formance of the IDSC method. Table 4 reports both our
results ("VFF”) and the IDSC results. Both methods reach
over 90% classification rate. We achieve the best result with
95% accuracy for n 1. We were not able to perform
a direct comparison with other methods, e.g., [1 1], which
report good results on the whole Swedish dataset (which
contains both simple and compound leaves) since the algo-
rithms were not publicly available. However, it should be
noted that compound leaves have very different character-
istics than simple leaves. In particular, they exhibit greater
inter-species variation, and thus identifying the species of
compound leaves is easier. For this reason we focus here on
only simple leaves.

ImageCLEF2011 Data: Finally, we compare our method
with the entries to the ImageCLEF2011 plant identification
task on the scanned simple leaves (46 species). All the
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Ln [t [ 2 [ 3 [ 4]5]
VFF 95% | 98% | 99% | 99% | 99%
IDSC[17] | 94% | 97% | 98% | 98% | 98%

Table 4. Recognition rates on the Swedish data
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Figure 10. Classification scores on the scanned simple leaves of
the ImageCLEF2011 dataset.

scores, including ours, are provided by the administrators
of the competition. In this task, each entry was assigned
a normalized classification score s '. Figure 10 shows the
scores of all the submitted runs of the eight participants; de-
tails about the participants can be found in [14]. We achieve
the best score: s = 0.67.

Orchid Data: To the best of our knowledge, there is no
previous work on this family of flowers. We applied the
vantage feature frame approach on this data to demonstrate
how it could be readily applied to a different type of closely-
related botanical species. We achieve 81% accuracy for the
top-ranked species (n = 1) and 97% for n = 5 as shown in
the second row of Table 3.

7. Conclusion

We have introduced a novel approach for fine-grained
categorization using the concept of vantage feature frames.
The different characteristics of these frames, namely, the
geometric and the appearance-based components, combine
to provide the cues needed to distinguish between closely-
related categories such as botanical species. Our recogni-
tion rates outperform the state-of-art on several challeng-
ing datasets. Future work is aimed at applications involv-
ing cluttered backgrounds and at automatically determin-
ing candidate landmarks for constructing the vantage fea-
ture frames.
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