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Abstract

An affine invariant representation is constructed with a
cascade of invariants, which preserves information for clas-
sification. A joint translation and rotation invariant repre-
sentation of image patches is calculated with a scattering
transform. It is implemented with a deep convolution net-
work, which computes successive wavelet transforms and
modulus non-linearities. Invariants to scaling, shearing
and small deformations are calculated with linear operators
in the scattering domain. State-of-the-art classification re-
sults are obtained over texture databases with uncontrolled
viewing conditions.

1. Introduction
Projections of three dimensional surfaces can locally

be approximated by affine transforms in the image plane.

These affine transformations are multidimensional sources

of variability, which may carry little information for clas-

sification. Hierarchical cascade of invariants [2, 3] have

been studied to build affine invariant image representations.

Deep neural networks provide an architecture to compute

such invariants, with a succession of linear filters and “pool-

ing” non-linearities, which are learned from data [4, 5].

Learning is not necessary to build affine invariants with

a hierarchical cascade, but its mathematical and algorith-

mic implementation raises difficulties. How can we factor-

ize affine invariants into simpler invariants computed over

smaller subgroups ? How to compute stable and informa-

tive invariants over any given group ?

This paper shows that stable and informative affine in-

variant representations can be obtained with a scattering

operator defined on the translation, rotation and scaling

groups. It is implemented by a deep convolution network

with wavelets filters and modulus non-linearities. We study

applications to the classification of image textures mapped
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on three dimensional surfaces.

Section 2 shows that within image patches, translations

and rotation invariants must be computed together to retain

joint information on spatial positions and orientations. A

joint scattering invariant on the roto-translation group re-

quires to build a wavelet transform on this non-commutative

group, which involves a different type of convolution de-

scribed in Section 3. A scaling invariant may however be

computed separately with a scale-space averaging across

image patches.

Perspective effects also produce non-affine deforma-

tions. Thanks to wavelet localizations, scattering transforms

computes invariants which are stable to deformations [9]. It

results that small shearing and deformations are linearized

in the scattering domain. Invariants to these deformations

can thus be calculated with linear projectors. Section 5 ex-

plains how to optimize such linear projectors for each image

class, with a supervised learning. For texture classification,

it is implemented with a generative PCA classifier. Section

6 shows that scattering representations give state-of-the-art

texture classification results on KTH-TIPS [17], UIUC [18]

and UMD [19] databases. All computations can be repro-

duced by a software available at www.di.ens.fr/ scattering.

2. Hierarchical Affine Invariants

Section 2.1 analyzes the construction of affine invariants

as a a cascade of separable or joint invariants on smaller

groups. The hierarchical architecture of affine invariant

scattering representations is described in Section 2.2.

2.1. Separable Versus Joint Invariants

The affine group can be written as a product of the trans-

lation, rotation, scaling and shearing groups. Affine invari-

ant representations can be computed as a separable product

of invariants on each of these smaller subgroups. However,

we show that such separable invariant products may lose

important information.

The action of an affine operator g of R
2 on an image

x(u) yields a warped image g.x(u) = x(g−1u). A repre-
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sentationR(x) of x is invariant to the action ofG if it is not

modified by the action of any g ∈ G: R(g.x) = R(x). It is

covariant to G if R(g.x) = g.R(x), where g acts on R(x)
by shifting its coefficients. A separable invariant on a group

productG = G1⋊G2 combines a first operatorR1, which is

invariant to the action of G1 and covariant to the action G2,

with a second operator R2 which is invariant to the action

of G2. Indeed for all g1.g2 ∈ G1 ⋊G2 and all images x(u):
R2(R1(g1.g2.x)) = R2(g2.R1(x)) = R2(R1(x)) .

However, such separable invariants do not capture the joint

property of the action of G2 relatively to G1, and may lose

important information. This is why two-dimensional trans-

lation invariant representations are not computed by cascad-

ing invariants to horizontal and vertical translations. It is

also important for rotations and translations. Let us consider

for example the two texture patches of Figure 1. A separa-

ble product of translation and rotation invariant operators

can represent the relative positions of the vertical patterns,

and the relative positions of the horizontal patterns, up to

global translations. However, it can not represent the po-

sitions of horizontal patterns relatively to vertical patterns,

because it is not sensitive to a relative shift between these

two sets of oriented structures. It loses the relative positions

of different orientations, which is needed to be sensitive to

curvature, crossings and corners. Such a separable invariant

thus can not discriminate the two textures of Figure 1.

Figure 1: The left and right textures are not discriminated

by a separable invariant along rotations and translations, but

can be discriminated by a joint roto-translation invariant.

Several authors [6, 7, 8] have proposed to take into ac-

count the joint structure of roto-translation operators in im-

age processing, particularly to implement diffusion oper-

ators. Computing a joint invariant between rotations and

translations also means taking into account the joint rela-

tive positions and orientations of image structures, so that

the textures of Figure 1 can be discriminated. Section 3

introduces a roto-translation scattering operator, which is

computed by cascading wavelet transforms on the roto-

translation group.

Calculating joint invariants on large non-commutative

groups may however become very complex. Keeping a sep-

arable product structure is thus desirable as long as it does

not lose too much information. This is the case for scaling.

Indeed, local image structures are typically spread across

scales, with a power law decay. This is the case for con-

tours, singularities and most natural textures. As a result of

this strong correlation across scales, one can use a separa-

ble invariant along scales, with little loss of discriminative

information.

2.2. Hierarchical Architecture

We now explain how to build an affine invariant repre-

sentation, with a hierarchical architecture. We separate vari-

abilities of potentially large amplitudes such as translations,

rotations and scaling, from smaller amplitude variabilities,

but which may belong to much higher dimensional groups

such as shearing and general diffeomorphisms. These small

amplitude deformations are linearized to remove them with

linear projectors.

Image variabilities typically differ over domains of dif-

ferent sizes. Most image representations build localized in-

variants over small image patches, for example with SIFT

descriptors [15]. These invariant coefficients are then ag-

gregated into more invariant global image descriptors, for

example with bag of words [10] or multiple layers of deep

neural network [4, 5]. We follow a similar strategy by first

computing invariants over image patches and then aggregat-

ing them at the global image scale. This is illustrated by the

computational architecture of Figure 2.

x
roto-trans.

patch

scattering

log
global

space-scale

averaging

deformat.

invariant

linear proj.

Figure 2: An affine invariant scattering is computed by ap-

plying a roto-translation scattering on image patches, a log-

arithmic non-linearity and a global space-scale averaging.

Invariants to small shearing and deformations are computed

with linear projectors optimized by a supervised classifier.

Within image patches, as previously explained, one must

keep the joint information between positions and orienta-

tions. This is done by calculating a scattering invariant on

the joint roto-translation group. Scaling invariance is then

implemented with a global scale-space averaging between

patches, described in Section 4. A logarithmic non-linearity

is first applied to invariant scattering coefficients to linearize

their power law behavior across scales. This is similar to the

normalization strategies used by bag of words [10] and deep

neural networks [5].

Because of three dimensional surface curvature in the vi-

sual scene, the image patches are also deformed. A scat-

tering transform was proved to be stable to deformations

[9]. Indeed, it is computed with a cascade of wavelet trans-
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forms which are stable to deformations, because wavelets

are both regular and localized. A small image deformation

thus produces a small modification of it scattering represen-

tation. The stability of scattering transforms to deforma-

tions guarantees that small shearing and deformations can

be approximated by a linear operator in the space of scatter-

ing coefficients. Invariants to small deformations can thus

be computed with linear projectors. Enforcing invariance to

all deformations would remove too much information be-

cause deformations involve too many degrees of freedom.

To reduce this information loss, we only compute a subset

of deformation invariants, which is adapted to each signal

class. Since invariants are implemented by a linear projec-

tor, their optimization involves the optimization of a linear

operator. This can be done by an Support Vector Machine

or other supervised learning algorithms, which perform the

classification from an optimized linear combination of the

data. Section 5 provides an implementation using a genera-

tive Principal Component Analysis (PCA) classifier.

3. Roto-Translation Patch Scattering
This section introduces roto-translation scattering opera-

tors which are stable to deformations.

3.1. Invariant-Covariant Wavelet Cascade

A scattering operator [9] computes an invariant image

representation relatively to the action of a group, by apply-

ing a cascade of invariant and covariant operators calculated

with wavelet convolutions and modulus operators. Convo-

lutions on a group appear naturally because they define all

linear operators which are covariant to the action of a group.

We concentrate on the roto-translation group.

An element g = (v, θ) of the roto-translation group G =
R

2 ⋊ SO(2) acting on u ∈ R2 combines a translation by v
and a rotation rθ ∈ SO(2):

gu = v + rθu . (1)

The product of two roto-translations g = (v, θ) and h =(v′, θ′) is

gh = (v + rθv′, θ + θ′) , (2)

so the inverse of g is g−1u = r−θ(u − v). The action of

g on an image x(u) translates x by v and rotates it by θ:

g.x(u) = x(g−1u).
A scattering representation computes successive layers

Umx of signal coefficients, which are covariant to the ac-

tion of G. It means that Um(g.x) = g.Umx, where g.Umx
performs a “translation and rotation” of the coefficients of

Umx. Local scattering invariants of order m are computed

by averaging h.Umx for all h in the neighborhood of any

g ∈ G:

Smx(g) = ∑
h∈G

h.Umx ΦJ(h−1g) . (3)

This is a convolution on the group G. The support of the

averaging filter ΦJ defines the invariance domain. To com-

pute local roto-translation invariants on image patches of

size 2J , we choose ΦJ(u′, θ′) = (2π)−1φJ(u′), where the

spatial support of φJ is proportional to 2J . For g = (u, θ),
the convolution (3) averages h.Umx over all rotation angles,

in a spatial neighborhood of u of size proportional to 2J .

The average Smx carries the low frequencies ofUmx rel-

atively to “shifts” along the roto-translation group G, and

thus loses all high frequencies. High frequencies are cap-

tured by roto-translation convolutions with wavelets. Sec-

tions 3.2 and 3.3 introduce a wavelet modulus operator W̃m,

which transforms Umx into the average Smx and a new

layer Um+1x of wavelet amplitude coefficients:

W̃mUmx = (Smx, Um+1x) . (4)

The new layer Um+1x is computed with wavelet roto-

translation convolutions and thus remains covariant to roto-

translations. Iterating on this wavelet modulus transform

outputs multiple layers of scattering invariant coefficients.

For m = 0 we initialize U0x = x. Figure 3 illustrates the

calculation of a second order scattering vector

Sx = (S0x,S1x,S2x) , (5)

by successively applying W̃m for 1 ≤ m ≤ 3. Next sections

define stable and contractive operators W̃m, so that the re-

sulting scattering representation Sx is also contractive and

stable to deformations.

x W̃1 U1x W̃2 U2x W̃3

S0x S1x S2x

. . .

Figure 3: A scattering representation is calculated with a

cascade of wavelet-modulus operators W̃m. Each W̃m out-

puts invariant scattering coefficients Smx and a next layer

of covariant wavelet modulus coefficients Um+1x, which is

further transformed.

3.2. First Layer With Spatial Wavelets

This section defines the first wavelet modulus operator

W̃1 which computes S0x and U1x from the input image x.

Locally invariant translation and rotation coefficients are

first computed by averaging the image x with a rotation in-

variant low pass filter φJ(u) = 2−2Jφ(2−Ju):
S0x(u) = x ⋆ φJ(u) = ∑

v

x(v)φJ(u − v) . (6)

In this paper, φ is a rotationally invariant gaussian. The av-

eraged image S0x is nearly invariant to rotations and trans-

lations up to 2J pixels, but it has lost the high frequencies
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of x. These high frequencies are recovered by convolution

with high pass wavelet filters. To obtain rotation covariant

coefficients, we rotate a wavelet ψ by several angles θ and

dilate it by 2j :

ψθ,j(u) = 2−2jψ(2−jr−θu) . (7)

The resulting wavelet transform W1 computes

W1x = (x ⋆ φJ(u), x ⋆ψθ,j(u))u,θ,j . (8)

Wavelets are designed so that W1 is contractive and poten-

tially unitary [1, 9]. We use complex wavelets whose real

and imaginary parts have a quadrature phase. The complex

phase of x⋆ψj,θ then varies linearly with small translations

of x. Removing this phase with a modulus operator yields

a regular envelop which is more insensitive to translations:

U1x(p1) = ∣x ⋆ψθ1,j1(u)∣ with p1 = (u, θ1, j1) . (9)

The vector of coefficientsU1x is computed with spatial con-

volutions and is thus covariant to a translation of x. It is also

covariant to rotations rθ′x(u) = x(r−θ′u). With a change of

variable we indeed verify that

U1(rθx)(u, j1, θ1) = U1x(r−θu, j1, θ1 − θ),
which defines the action of rθ on U1x. The resulting

wavelet-modulus operator is

W̃1x = (x ⋆ φJ , {∣x ⋆ψθ,j ∣}θ,j) = (S0x,U1x). (10)

The non-linear operator W̃1 is contractive because the

wavelet transform W1 is contractive and a modulus is also

contractive. The norm of W̃1x is equal to the norm of x
if W1 is unitary. One can prove that W̃1 is stable to de-

formations because wavelets are regular localized functions

[9]. Numerical applications in this paper are calculated with

complex Morlet wavelets displayed in Figure 4. They are

equal to Gabor functions whose mean is set to zero by sub-

tracting a Gaussian.

Figure 4: Quadrature phase complex Morlet wavelets ψj,θ,

dilated (along rows) and rotated (along columns). Their real

and imaginary parts are shown on the left and on the right,

respectively.

3.3. Deeper Layer With Roto-Translation Wavelets

The second wavelet modulus operator W̃2 computes the

average S1x of U1x on the roto-translation group, together

with the next layer of wavelet modulus coefficients U2x.

This is performed with convolutions on the roto-translation

group G. The convolution of two functions Y (g) and Z(g)
defined on G is:

Y ⍟Z(g) = ∑
h∈G

Y (h)Z(h−1g) . (11)

The invariant part of U1 is computed with an averaging

over the spatial and angle variables. It is implemented

for each j1 fixed, with a roto-translation convolution of

Y (h) = U1x(h, j1) along the h = (u′, θ′) variable, with an

averaging kernel ΦJ(h). For p1 = (g1, j1) and g1 = (u, θ1),
this is written

S1x(p1) = U1x(., j1) ⍟ΦJ(g1) . (12)

We choose ΦJ(u′, θ′) = (2π)−1φJ(u′) to perform an av-

eraging over all angles θ and over a spatial domain propor-

tional to 2J .

The high frequencies lost by this averaging are recov-

ered through roto-translation convolutions with separable

wavelets. Roto-translation wavelets are computed with

three separable products. Complex quadrature phase spa-

tial wavelets ψθ2,j2(u) or averaging filters φJ(u) are multi-

plied by complex 2π periodic wavelets ψk(θ) or by φ(θ) =(2π)−1:

Ψθ2,j2,k2(u, θ) = ψθ2,j2(u)ψk2
(θ) (13)

Ψ0,J,k2(u, θ) = φJ(u)ψk2
(θ) (14)

Ψθ2,j2,0(u, θ) = ψθ2,j2(u)φ(θ) . (15)

A roto-translation scattering iterates on roto-translation

wavelet-modulus operator, defined for any m ≥ 2 and any

function Y (g) by

W̃mY = (Y ⍟ΦJ(g), ∣Y ⍟Ψθ2,j2,k2(g)∣)
g,θ2,j2,k2

. (16)

This wavelet modulus operator is contractive and preserves

the norm for appropriate wavelets. It is also stable to de-

formations because roto-translation wavelets are localized.

Form = 2, we apply W̃2 to Y (g) = U1x(g, j1), for j1 fixed.

It computes W̃2U1x = (S1x,U2x), where S1x is defined in

(12) and

U2x(p2) = ∣U1x(., j1) ⍟Ψθ2,j2,k2(g1)∣ (17)

with g1 = (u, θ1), p2 = (g1, p2), and p2 = (j1, θ2 −
θ1, j2, k2). Since U2x(p2) is computed with a roto-

translation convolution, it remains covariant to the action

of the roto-translation group.
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Fast computations of roto-translation convolutions with

separable wavelet filters Ψθ2,j2,k2(u, θ) = ψθ2,j2(u)ψk2
(θ)

are performed by factorizing

Y ⍟Ψθ2,j2,k2(u, θ)
= ∑

θ′
(∑

u′
Y (u′, θ′)ψθ2,j2(r−θ′(u − u′))) ψk2

(θ − θ′) .
It is thus computed with a two-dimensional convolution of

Y (u, θ′) with ψθ2,j2(r−θu) along u = (u1, u2), followed

by a convolution of the output and a one-dimensional cir-

cular convolution of the result with ψk2
along θ. Figure 5

illustrates this convolution which rotates the spatial support

ψθ2,j2(u) by θ while multiplying its amplitude by ψk2
(θ).

θ

u1
u2

ψθ2,j2(u1, u2)

ψk2
(θ)

Figure 5: A three dimensional roto-translation convolution

with a wavelet Ψθ2,j2,k2(u1, u2, θ) can be factorized into a

two dimensional convolution with ψθ2,j2(u1, u2) rotated by

θ and a one dimensional convolution with ψk2
(θ) .

Applying W̃3 = W̃2 to U2x computes second order scat-

tering coefficients as a convolution of Y (g) = U2x(g, p2)
with ΦJ(g), for p2 fixed:

S2x(p2) = U2(., p2)x⍟ΦJ(g) . (18)

It also computes the next layer of coefficients U3x with

a roto-translation convolution of U2x(g, p2) with the

wavelets (13,14,15). In practice, we stop at the second or-

der because the coefficients of U3x carry a small amount of

energy, and have little impact on classification. One can in-

deed verify that the energy of Umx decreases exponentially

to zero as m increases.

The output roto-translation of a second order scattering

representation is a vector of coefficients:

Sx = (S0x(u) , S1x(p1) , S2x(p2)) , (19)

with p1 = (u, θ1, j1) and p2 = (u, θ1, j1, θ2, j2, k2). The

spatial variable u is sampled at intervals 2J which corre-

sponds to the patch size. If x is an image of N2 pixels,

there are thus 2−2JN2 coefficients in S0x and 2−2JN2J
coefficients in S1x. Second order coefficients have a negli-

gible amplitude if j2 ≤ j1. If the wavelet are rotated along

K angles θ then one can verify that S2x has approxima-

tively 2−2JN2J(J − 1)K log2K/2 coefficients. The to-

tal roto-translatation patch scattering Sx is of dimension

341N2/1024 for J = 5 and K = 8. The overall complexity

to compute this roto-translation scattering representation is

O(K2N2 logN).
4. Scaling Invariance of Log Scattering

Roto-translation scattering is computed over image

patches of size 2J . Above this size, perspective effects pro-

duce important scaling variations for different patches. A

joint scale-rotation-translation invariant must therefore be

applied to the scattering representation of each patch vector.

This is done with an averaging along the scale and transla-

tion variables, with a filter which is rotationally symmetric.

One could recover the high frequencies lost by this averag-

ing and compute a new layer of invariant through convo-

lutions on the joint scale-rotation-translation group. How-

ever, adding this supplementary information does not im-

prove texture classification, so this last invariant is limited

to a global scale-space averaging.

The roto-translation scattering representations of all

patches at a scale 2J is given by

Sx = (x ⋆ φJ(u) , U1x⍟ΦJ(p1) , U2x⍟ΦJ(p2)) ,
with p1 = (u, θ1, j1) and p2 = (u, θ1, j1, θ2, j2, k2). This

scattering vector Sx is not covariant to scaling. If xi(u) =
x(2iu) then

Sxi = (x ⋆ φJ+i(2iu) , U1x⍟ΦJ+i(2i.p1)
U2x⍟ΦJ+i(2i.p2)) .

with 2i.p1 = (2iu, θ1, j1 + i) and 2i.p2 = (2iu, θ1, j1 +
i, θ2, j2+ i, k2). A covariant representation to scaling stores

the minimal subset of coefficients needed to recover all Sxi.
It thus require to compute the scattering coefficients for all

scales j1+i and j2+i for all averaging kernels φJ+i or ΦJ+i,

similarly to spatial pyramid [16].

One can show that scattering coefficient amplitudes have

a power law decay as a function of the scales 2j1 and 2j2 .

To estimate an accurate average from a uniform sampling of

the variables j1 and j2, it is necessary to bound uniformly

the variations of scattering coefficient as a function of j1 and

j2. This is done by applying a logarithm to each coefficient

of Sx, which nearly linearizes the dependency upon j1 and

j2. This logarithm plays a role which is similar to renor-

malizations used in bag of words [10] and deep convolution

networks [5].
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A joint scaling, rotation and translation invariant is com-

puted with a scale-space averaging of logSxi along the

scale and spatial indices (i, u):
Sx = ∑

i,u

log(Sxi(u, .))φI(i) . (20)

The precision of this averaging is improved by sampling i
at half integers. It require to compute twice more scatter-

ing coefficients at scales 2j1/2 and 2j2/2. If 2I is the length

of the averaging kernel φI(i) then 2J+2I must be smaller

than the image size. In texture applications, these averages

can only be computed on a small range of scales 2I = 2.

One could recover the information lost by the scale-space

averaging (20) through convolutions with wavelets defined

on the joint scale-rotation-translation group, and define a

new scattering cascade. This is needed to characterize very

large scale texture structures, which is not done in this pa-

per. The invariant image representation Sx is of dimension

536 if computed over image patches of size 2J = 25 = 32

with K = 8 wavelet orientations. This relatively small fea-

ture vector does not depend upon the image size, which is

usually larger than 105 pixels.

5. Deformation Invariant Projectors
Shearing and image deformations are typically of

smaller amplitudes than translations, rotations and scal-

ing. A scattering transform is stable and hence linearizes

small deformations. A set of small image deformations thus

produces scattering coefficients which belong to an affine

space. Linear projectors which are orthogonal to this affine

space are invariant to these small deformations. These in-

variants can be adapted to each signal class by optimizing

a linear kernel at the supervised classification stage. This

may be done by an SVM but we shall rather use a gener-

ative PCA classifier as in [1]. Such classifiers can indeed

perform better when the training set is small.

Each signal class is represented by a random vector xc
for 1 ≤ c ≤ C, whose realizations are images in the class

c. The scattering transform Sxc is a random vector. It’s

expected value is written E(Sxc). A PCA diagonalizes

the covariance matrix of Sxc. Let Vc be the linear space

generated by the D eigenvectors of the covariance matrix

of largest eigenvalues. Approximating Sxc − E(Sxc) by

its projection in Vc gives a minimum mean-square error,

among all projections in linear spaces of dimension D. The

space Vc includes the variability directions produced by de-

formations of textures in the class. Let V⊥
c be its orthogonal

complement. The orthogonal projection PV⊥c is an invariant

operator which filters out these main intra-class variability.

If x is in the class c then ∥PV⊥c(Sx − ESxc)∥ is typically

small because most of the energy of Sx −E(Sxc) is in Vc.

As in [1], we use a simple quadratic classifier which as-

sociates to each signal x the class index ĉ which minimizes

Figure 6: Each row shows images from the same texture

class in the UIUC database [10], with important rotation,

scaling and deformation variability.

the projected distance to the class centroid:

ĉ(x) = arg min
1≤c≤C

∥PV⊥c(Sx −ESxc)∥2 . (21)

It finds the class centroid E(Sxc)which is the closest to Sx,

after eliminating the first D principal variability directions.

6. Texture Classification Experiments
This section gives scattering classification results on

KTH-TIPS [17], UIUC [10, 18] and UMD [19] texture

datasets, and comparison with state of the art algorithms.

We first review state of the art approaches based on differ-

ent types of invariants.

Most state of the art algorithms use separable invariants

to define a translation and rotation invariant algorithms, and

thus lose joint information on positions and orientations.

This is the case of [10] where rotation invariance is ob-

tained through histograms along concentric circles, as well

as Log Gaussian Cox processes (COX) [11] and Basic Im-

age Features (BIF) [12] which use rotation invariant patch

descriptors calculated from small filter responses. Sorted

Random Projection (SRP) [14] replaces histogram with a

similar sorting algorithm and adds fine scale joint informa-

tion between orientations and spatial positions by calculat-

ing radial and angular differences before sorting. Wavelet

Multifractal Spectrum (WMFS) [13] computes wavelet de-

scriptors which are averaged in space and rotations, and are

similar to first order scattering coefficients S1x.

We compare the best published results [10, 11, 12, 13,

14] and scattering invariants on KTH-TIPS (table 1), UIUC

(table 2) and UMD (table 3) texture databases. For each

database, Tables 1,2,3 give the mean classification rate and
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standard deviation over 200 random splits between training

and testing for different training sizes. Classification rates

are computed with scattering representations implemented

with progressively more invariants, and with the PCA clas-

sifier of Section 5. As the training sets are small for each

class c, the dimension D of the high variability space Vc is

set to the training size. The space Vc is thus generated by

the D scattering vectors of the training set. For larger train-

ing databases, it must be adjusted with a cross validation as

in [1].

Classification rates in Tables 1,2,3 are given for different

scattering representations. The rows “trans. scatt” corre-

spond to a translation invariant scattering as in [1]. It is

computed on image patches of size 2J , with a final spa-

tial averaging of all the patch scattering vector. The rows

“roto-trans. scatt” replace the translation invariant scatter-

ing by the roto-translation scattering of Section 3. The rows

“+ log” show that the error is reduced by adding a loga-

rithmic non-linearity before the spatial averaging. The rows

“+ scale avg” also reduce the error by computing a separa-

ble invariant along scales, with the averaging described in

Section 4. The rows “+ multiscale train” are obtained by

augmenting the training set of the PCA. A “scaling” by 2i

of each scattering vector Sx is obtained by shifting the scale

indices (j1, j2) of Sx by i: (j1 + i, j2 + i). This “scaling”

is done on the scattering vectors of all training images for

multiple values of i. The averaging along the scale vari-

able is not implemented on training samples. It is left to the

PCA to choose which projector is best adapted to optimize

the classification.

Train size 5 20 40

COX [11] 80.2 ± 2.2 92.4 ± 1.1 95.7 ± 0.5
BIF [12] - - 98.5
SRP [14] - - 99.3
trans scatt 69.1 ± 3.5 94.8 ± 1.3 98.0 ± 0.8
roto-trans scatt 69.5 ± 3.6 94.9 ± 1.4 98.3 ± 0.9
+ log 76.2 ± 3.3 96.0 ± 1.1 98.8 ± 0.7
+ scale avg 77.8 ± 3.6 97.4 ± 1.0 99.2 ± 0.6
+ multiscal train 84.3±3.1 98.3±0.9 99.4±0.4

Table 1: Classification rates with standard deviations on

KTH-TIPS [17] database. Columns correspond to differ-

ent training sizes per class. The first few rows give the best

published results. The last five rows give results obtained

with progressively refined scattering invariants. Best results

are bolded.

KTH-TIPS contains 10 classes of 81 samples with con-

trolled scaling, shear and illumination variations but no ro-

tation. The roto-translation scattering does not degrade re-

sults but each scale processing step provides significant im-

provements. UIUC (Figure 6) and UMD both contain 25

classes of 40 samples with uncontrolled full affine and il-

lumination variation as well as large elastic deformations.

For both these databases, the roto-translation scattering pro-

vides a considerable improvement (from 50% to 77% for

UIUC with 5 training) and scale processing steps also im-

prove results. The overall approach achieves and often ex-

ceeds state-of-the-art results on all these databases. For

these three databases, we have used the same filters and op-

tions except for the patch size 2J , which is proportional to

the image size. It results that J = 4 for KTH-TIPS images

which are 200 × 200, J = 5 for UIUC images which are

640×480 and J = 6 for UMD images which are 1280×960.

Training size 5 10 20

Lazebnik [10] - 92.6 96.0
WMFS [13] 93.4 97.0 98.6
BIF [12] - - 98.8 ± 0.5
trans scatt 50.0 ± 2.1 65.2 ± 1.9 79.8 ± 1.8
roto-trans scatt 77.1 ± 2.7 90.2 ± 1.4 96.7 ± 0.8
+ log 84.3 ± 2.1 94.5 ± 1.1 98.2 ± 0.6
+ scale avg 86.6 ± 2.0 95.4 ± 1.0 98.6 ± 0.6
+ multiscal train 93.3 ± 1.4 97.8±0.6 99.4±0.4

Table 2: Classification rates on UIUCTex [10, 18] database.

Training size 5 10 20

WMFS [13] 93.4 97.0 98.7
SRP [14] - - 99.3
trans scatt 80.2 ± 1.9 91.8 ± 1.4 97.4 ± 0.9
roto-trans scatt 87.5 ± 2.2 96.5 ± 1.1 99.2 ± 0.5
+ log 91.9 ± 1.7 97.6 ± 0.8 99.3 ± 0.4
+ scale avg 91.6 ± 1.6 97.7 ± 0.9 99.6 ± 0.4
+ multiscal train 96.6±1.0 98.9±0.6 99.7±0.3

Table 3: Classification rates on UMD [19] database.

7. Conclusion
This paper introduces a general scattering architecture

which computes invariants to translations, rotations, scal-

ing and deformations, while keeping enough discriminative

information. It can be interpreted as a deep convolution

network, where convolutions are performed along spatial,

rotation and scaling variables. As opposed to standard con-

volution networks, the filters are not learned but are scaled

and rotated wavelets.

State-of-the-art texture discrimination results are ob-

tained on all tested texture databases, including the most

difficult ones such as UIUC and UMD, which include im-

portant deformations. This paper concentrates on texture

applications, but the invariance properties of this scattering

image patch representation can also replace SIFT type fea-

tures for more complex classification problems.
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