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Abstract

We address the problem of long-term object tracking,
where the object may become occluded or leave-the-view.
In this setting, we show that an accurate appearance model
is considerably more effective than a strong motion model.
We develop simple but effective algorithms that alternate
between tracking and learning a good appearance model
given a track. We show that it is crucial to learn from the
“right” frames, and use the formalism of self-paced cur-
riculum learning to automatically select such frames. We
leverage techniques from object detection for learning ac-
curate appearance-based templates, demonstrating the im-
portance of using a large negative training set (typically
not used for tracking). We describe both an offline algo-
rithm (that processes frames in batch) and a linear-time on-
line (i.e. causal) algorithm that approaches real-time per-
formance. Our models significantly outperform prior art,
reducing the average error on benchmark videos by a fac-
tor of 4.

1. Introduction
Object tracking is a fundamental task in video process-

ing. Following much past work, we consider the scenario

where one must track an unknown object, given a known

bounding box in a single frame. We focus on long-term

tracking, where the object may become occluded, signifi-

cantly change scale, and leave/re-enter the field-of-view.

Our approach builds on two key observations made by

past work. The first is the importance of learning an ap-

pearance model. We learn adaptive discriminative models

that implicitly encode the difference in appearance between

the object and the background. Such methods allow for

the construction of highly-tuned templates that are resistant

to background clutter. However, a well-known danger of

adaptively learning a template over time is the tendency to

drift [1]. Our main contribution is an algorithm that mini-

mizes drift by carefully choosing which frames from which

to learn, using the framework of self-paced learning [2, 3].

The second observation is the importance of detection,

Figure 1. Our tracker uses self-paced learning to select reliable

frames from which to extract additional training data as it pro-

gresses (shown in red). We use such frames to define both positive

examples and a very-large set of negative examples (all windows

that do not overlap each positive). By re-learning a model with

this additional data, and re-tracking with that model, one can cor-

rect the errors shown above. We show that it is crucial to revisit

old frames when adding training data; in terms of self-paced learn-

ing, a concept (frame) that initially looks hard may become easy

in hindsight.

where an object template is globally scanned across the en-

tire frame. This allows one to re-initialize lost tracks, but

requires detectors resistant to background clutter at all spa-

tial regions, including those far away from the object. Most

prior approaches learn a detector using a small set of neg-

atives. We show that using a large set of negatives signif-

icantly improves performance, but also increases computa-

tion. We address the latter issue through the use of solvers

that can be warm-started from previous solutions [4].

Self-paced learning: Curriculum learning is an ap-

proach inspired by the teaching of students, where easy con-

cepts (say, a model learned from un-occluded frames) are

taught before complex ones (a model learned from frames

with partial occlusions) [2]. In self-paced learning, the

student learner must determine what is easy versus com-

plex [3]. One natural application of such a strategy would
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label frames as easy or complex as they are encountered by

an online tracker. One could then update appearance mod-

els after the easy frames. We show that it is crucial to revisit

old frames when learning. In terms of self-paced learning,

a student might initially think a concept is hard; however,

once that student learns other concepts, it may become easy

in retrospect.
Transductive learning: A unique aspect of our learning

problem is that it is transductive rather than inductive [5]:

when tracking a face, the learned model need not generalize

to all faces, but only separate the particular face and back-

ground in the video. In some sense, we want to “over-fit” to

the video. Following [5], we use a transductive strategy for

selecting frames; rather than choosing a frame that scores

well under the current model (as most prior work does), we

choose a frame that when selected for learning, produces a

model that well-separates the object from the background.

We demonstrate that the latter scheme performs better be-

cause it is naturally retrospective.

Evaluation: We evaluate our method on a large-scale

benchmark suite of videos. Part of our contribution is a

baseline detector that tracks by detection without any on-

line learning or temporal reasoning; the detector is learned

from the first labeled frame. Surprisingly, we demonstrate

that a simple linear template defined on HOG features out-
performs state-of-the-art trackers, including the well-known

Predator TLD-Tracker [6] and MIL-Tracker [7]. We believe

this disparity exists because detection is an undervalued as-

pect of tracking; invariant gradient descriptors and large-

scale negative training sets appear crucial for building good

object detectors [8], but are insufficiently used in tracking.

We use this baseline as a starting point, and show that one

can reduce error by a factor of 4 with our proposed self-

paced transduction framework.

Computation: Our detection-based approach learns ap-

pearance models from large training sets with hundreds of

thousands of negative examples. Our self-paced learning

scheme requires learning putative appearance models for

each candidate image. To address these computational bur-

dens, we make use of dual coordinate descent SVM solvers

that can be “warm-started” from previous solutions. Our

solvers are efficient enough to the point where detection

(implemented as a convolution) is the computational bottle-

neck, which can further be ameliorated with parallel com-

putations. This means that our tracker is near real-time as

present, and could readily be real-time with hardware im-

plementations.

1.1. Related work

We refer the reader to the survey from [9] for a broad

description of related work. Many object trackers can be

differentiated between their choice of appearance models

and inference algorithms.

Appearance models: Because object appearance is

likely to change over time, many tracks update appearance

models through color histogram tracking [10] and online

adaption [11]. Generative subspace models of appearance

are common [12, 13], including recent work that makes use

of sparse reconstructions [14, 15]. Other methods have fo-

cused on discrimative appearance models [16], often trained

with boosting [17, 18] or SVMs [19, 20]. Our work is simi-

lar to these latter approaches, though we focus on the prob-

lem of carefully choosing a subset of frames from which to

learn a classifier.

Inference algorithms: To capture multiple hypotheses,

many trackers use sampling-based schemes such as particle

filtering [21, 22] or Markov-chain Monte-Carlo techniques

[23, 24]. Such methods may require a large number of par-

ticles to track objects in clutter. We show that a discrete

first-order dynamic model (which is straightforward to op-

timize with dynamic programming) can accurately reason

about multiple hypotheses. Moreover, our experiments sug-

gest that multiple hypotheses may not even be necessary

given a good appearance model; in such cases, tracking by

detection is a simple and effective inference strategy.

Semi-supervised tracking: Semi-supervised and trans-

ductive approaches have been previously used in track-

ing. Semi-supervised [6, 7, 25] trackers tend to proceed

in a greedy online fashion, not revisiting past decisions.

We show retrospective learning is important for correct-

ing errors in the past. Transductive approaches [26, 27]

are limited by the fact that the general transductive prob-

lem is highly non-convex and hard to solve. We show that

transduction can be effectively applied for the isolated sub-

problem of frame selection (for self-paced learning).

2. Approach

Our tracker operates by iterating over three stages. First,

it learns a detector given a training set of positives and neg-

atives. Second it tracks using that learned detector. Third,

it selects a subset of frames from which to re-learn a detec-

tor for the next iteration. After describing each stage, we

describe our final algorithms in Sec. 3.

2.1. Learning appearance with a SVM

Assume we are given a set of labeled frames, where we

are told the location of the object. Initially, this is the first

frame of a video. We would like to learn a detector to ap-

ply on the remaining unlabeled frames. We write Λ for a

set of frame-bounding box {(ti, bi)} pairs. We extract posi-

tive and negative examples from Λ, and use them to learn a
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Figure 2. We use dynamic programming to maintain multiple

track hypothesis over time. We visualize detections as boxes, the

best previous transition leading to a give detection as a solid arrow,

and non-optimal legal transitions with a dotted line. Note that the

most-likely track at frame T (in green) can be revised to an alter-

nate track hypothesis at a later frame S (in blue). We find that such

reasoning provides a modest increase in performance.

linear SVM:

LEARN(Λ) = argmin
w

λ

2
w · w+ (1)

∑
ti∈Λ

[
max(0,1− w · φti(bi)) +

∑
b�=bi

max(0, 1 + w · φti(b))
]

where φti(bi) extracts appearance (e.g., HOG) features

from bounding box bi in frame ti. For each frame ti in

Λ, we extract a single positive example at bounding box

bi and extract a large set of negative examples at all other

non-overlapping bounding boxes. We use a fixed regular-

ization parameter λ for all our experiments. We solve the

above minimization using a quadratic programming (QP)

solver [4]. For convenience, we define OBJ(Λ) to be the

min objective value corresponding to the argmin from (1).

2.2. Tracking as shortest-paths

We formulate the problem of finding the optimal track

y1:N = {y1, . . . yN} given the known location in the first

fame y1 and model w by solving a shortest path problem on

a trellis graph shown in Fig. 2. For each frame, we have a

set of nodes, or states, representing possible positions of the

object in that frame. Between each pair of frames, we have

a set of edges representing the cost of transitioning from a

particular location to another location:

TRACK(y1, w,N) = argmin
y1:N

N∑
t=2

π(yt, yt−1)− w · φ(t, yt)

(2)

Local cost: The second term defines the local cost of

placing the object at location yt in frame xt as the nega-

tive SVM score of w. We experimented with calibrating the

score to return a probability, but did not see a significant

change in performance.

Pairwise cost: We experimented with many different

definitions for the pairwise cost π. In general, we found a

thresholded motion model to work well in most scenarios
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Figure 3. Given an initial detector w, we consider different meth-

ods for selecting frames in our SELECT stage. We deem a selected

frame as a true positive if the estimated track location correctly

overlaps the ground-truth. Frames selected based on the SVM ob-

jective value in (3) greatly outperform frames selected on SVM

response.

(where the pairwise cost is 0 for transitions that are consis-

tent with measured optical flow and ∞ otherwise). Finally,

to model occlusions, we augment yt with a dummy occlu-

sion state with a fixed local cost.

We compute the best track by solving the shortest-path

problem using dynamic programming [28]. We also ex-

perimented with an uninformative prior π(yt, yt−1); in this

case, the best track is given by independently selecting the

highest scoring location in each frame (“tracking by detec-

tion”).

2.3. Selecting good frames

Our tracker operates by sequentially re-learning a model

from previously-tracked frames. To avoid template drift, we

find it crucial to select “good” frames from which to learn.

Given a set of frames used for learning Λ and an estimated

track y1:N , we estimate a new set of good frames:

SELECT (Λ, y1:N ) = Λ ∪ (t, yt) where

t = argmin
t′ �∈Λ

OBJ(Λ ∪ (t′, yt′)) (3)

where we define t �∈ Λ to refer to frames that are not in any

frame-location pair in Λ. The above select function com-

putes the frame, that when added to the training set Λ, pro-

duces the lowest SVM objective. We generalize the above

function to return a K-element set by independently finding

the (K − |Λ|) frames with the smallest increase in the SVM

objective, written as SELECTK(Λ, y1:N ).
Why use OBJ? Our approach directly follows from

strategies for data selection in self-placed learning [3] and

label assignment in transductive learning [5]. A more stan-

dard approach may be to simply select the frame with the

strongest model response w · φ(t, yt); Fig. 3 shows that this

a poorer predictor of correct frames that should be used for

learning. To build intuition as to why, consider tracking a

face that rotates from frontal to profile. A model learned on

frontal poses may score poorly on a profile face. However,

a model (retrospectively) learned from frontal and profile

faces may still produce a good discriminant boundary (and

hence a low SVM objective).
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3. Algorithm

We now describe an online and an offline algorithm that

make use of the previously-defined stages.

3.1. Online (causal) tracker

Our online algorithm is outlined in Algorithm 1. Intu-

itively, at each frame: we re-estimate the best track from

the first to the current frame using the current model. We

then select half of the observed frames to learn/update an

appearance model, which is used for the next frame. A cru-

cial aspect of our algorithm is that can select frames that

were previously rejected (unlike, for example [6]).

Input: y1
1 t← 1;

2 Λ← {(t, yt)};
3 w ← LEARN(Λ);
4 while t < N do
5 y1:t ← TRACK(y1, w, t);
6 Λ← SELECTt/2(Λ, y1:t);
7 w ← LEARN(Λ);
8 t← 2t

9 end

Algorithm 1: For each frame t, our online algorithm

outputs the best track found up until then. However,

every power-of-two frames, it learns a new model while

revisiting past frames to correct mistakes made under

previous models. This allows our tracker be linear time

O(N) while still being a “retrospective” learner.

Efficiency: A naive implementation of an online al-

gorithm would be very slow because it involves solving

a shortest-path problem and learning an SVM at every

timestep. Moreover, the SELECT function requires learn-

ing (t) SVMs at each iteration (in order to evaluate OBJ for

each possible frame to add). Assuming one can train linear

SVMs in linear time, this would make computationO(N3).
We make two modifications to considerably reduce compu-

tation. First, we only apply these expensive operations on

batches of frames that double in size (Line 8). Secondly,

we re-use solutions of previously-solved SVMs to warm-

start new SVM problems. We do this by initializing the dual

coordinate descent solvers of [4] with previously-computed

dual variables. In practice, we find that evaluating OBJ for

each possible frame is constant time because only a single

convolution is required (discussed further in Sec. 4). This

means that the SELECT function scales linearly with t,
making each iteration of the main loop O(t). Because our

batch procedure requires only log2 N iterations, total com-

putation is N + N/2 + N/4 + . . . = O(N) . We also

observe a linear scaling of computation in practice.

Initial frame

Iteration 1

Iteration 2

Iteration 3

Figure 4. On the top, we show the initial labeled frame for 3

videos. In the next 3 rows, we show specific examples that are

added over 3 iterations of offline learning. Our model slowly ex-

pands to capture more difficult appearances (or “concepts” in cur-

riculum learning).

3.2. Offline tracker

Alg. 2 describes our off-line algorithm. It operates sim-

ilarly to our online algorithm, but it has access to the en-

tire set of frames in a video. We iterate between tracking

(over the whole video) and learning (from a select subset of

frames) for a fixed number of iterations K. As in curricu-

lum learning, we found it useful to learn from the easy cases

first. We exponentially grow the number of selected frames

such that at the last iteration, 50% of all frames are selected.

We found that little is gained by iterating more than K = 4
times (shown qualitatively in Fig. 4 and quantitatively in

Fig. 6).

Input: y1
1 Λ← {(1, y1)};
2 w ← LEARN(Λ);
3 for i = 1 : K do
4 y1:N ← TRACK(y1, w,N);

5 Λ← SELECTr(Λ, y1:N ) where r = N
2

i
K ;

6 w ← LEARN(Λ);

7 end
Algorithm 2: Our offline algorithm performs a fixed

number (K) of iterations. During each iteration, it up-

dates the track, selects the r “easiest” new frames of

training examples, and re-trains using these examples.

4. Implementation
We now discuss various implementation details for ap-

plying our algorithms.

Tracking: We implement the TRACK subroutine by

using dynamic programming, which requires O(s2N) time

where N is the number of frames and s is the number of

states per-frame. To reduce computational costs we limit s
to be the top 25 new detections. Thus, assuming all videos

are of some fixed resolution, the complexity of our tracking
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algorithm is O(N) given a fixed model.

Repeatedly-learning SVMs: Each call to LEARN re-

quires training a single SVM, and each call to SELECT
requires training (t) SVMs, needed to evaluate the SVM

objective OBJ for each possible frame to select. Training

each SVM from scratch would be prohibitively slow due to

our massive negative training sets. We now show how to use

the dual coordinate descent method of [4] to “warm-start”

SVM training using previous solutions.

Dual QP: We write the dual of (1) by writing a training

example as xi and its label yi ∈ {−1, 1}:

max
0≤α≤C

−1

2

∑
i,j

αiyixi · xjyjαj +
∑
i

αi (4)

KKT conditions allow us to reconstruct the primal weight

vector as w =
∑

αiyixi. We represent our models both

with a weight vector w, and implicitly through a cached col-

lection of non-zero dual variables {αi} and support vectors

{xi}. We include all positive examples in our cache (even

if they are not a support vector) because they require essen-

tially no storage, and may become support vectors during

subsequent optimizations as described below.

Warm-start: Given a model w and its dual variables αi

and support vectors xi, we can quickly learn a new model

and estimate the increase in OBJ due to adding an additional

frame t. We perform one pass of coordinate descent on ex-

amples from this new frame as follows: we run the model

w on frame t and cache examples with a non-zero gradient

in the dual objective (4). One can show this is equivalent to

finding margin violations; e.g. negative examples that score

greater than −1 and positive examples that score less than

1 [4]. This can be done with a single convolution that eval-

uates the current model w on frame t. In practice, we find

that our dual QP converges after a small fixed number of co-

ordinate descent passes over the cache, making the overall

training time dominated by the single convolution.

5. Results
Benchmark evaluation: We define a test suite of videos

and ground truth labelings by merging the test videos of

[7, 6]. We show a sampling of frames in Fig. 5. Previous

approaches evaluate mean displacement in pixels or thresh-

olded detection accuracy. In our experience, displacement

error can be ambiguous because it is not scale-invariant and

can be somewhat arbitrary once an algorithm looses track.

Furthermore, pixel displacement is undefined for frames

where the object is occluded or leaves the camera view

(common in long-scale tracking). Instead, we use follow [6]

and define an estimated object location as correct if it suf-

ficiently overlaps the ground-truth. We then compute true

positive and missed detections, producing a final F1 score.

To further spur innovation, we have released our combined

benchmark dataset, along with all our source code (avail-

able through the author’s website).

Overall performance: We evaluate our performance

against state-of-the-art trackers with published source (TLD

and MIL Track) code in Fig. 7 and Table 1. TLD re-

quires a minimum window size for the learned model; the

default value (of 24 × 24 pixels) was too large for many

of the benchmark videos. We manually tuned this to 16

pixels, but this reduced performance on other videos (be-

cause this increases the number of possible candidate lo-

cations). We show results for both parameter settings, in-

cluding results for tuning this parameter on a per-video ba-

sis. On two videos, MILTrack loses track by frame 500 and

so we only report accuracy over those initial 500 frames.

Even when giving past work these unfair advantages, our fi-

nal system (without any per-video tuning) significantly out-

performs past work 93% vs 76%. Our online algorithm

slightly underperforms our offline variant, with an average

F1 of 91%. For completeness, we also include results for

mean displacement error (for the subset of videos with no

occlusion or field-of-view exits) in Table 3. In terms of dis-

placement error, our method compares favorably to much

recent work, but does not quite match the recent perfor-

mance of [24]. We hypothesize this gap exists because we

resolve object location up to a HOG cell and not an individ-

ual pixel. We posit that overlapping cells or post-processing

temporal smoothing would likely reduce our displacement

error.

Speed: Our final algorithm runs at about 1
20

th
real-time.

In the next diagnostic section, we describe variants, many of

which are real-time while still outperforming prior art. The

current bottleneck of our algorithm is the repeated evalua-

tion of detectors on image frames. Because this convolution

operation is straightforward to parallelize, we believe our

full system could also operate at real-time given additional

optimizations.

5.1. Diagnostics

In Table 2, we analyze various aspects of our system that

are important for good results. We point out those obser-

vations that seem inconsistent with the accepted wisdom in

the tracking literature. We refer to specific rows in the table

using its label in the first column (e.g., “D1”).

Detection: We begin with a “naive” tracking-by-

detection baseline. Our baseline LEARNs a detector from

the initial labeled frame, and simply returns the highest

scoring location at each subsequent frame. Surprisingly,

even without additional learning or tracking, our baseline

(D1) produces a F1 score of 73%, outperforming MILTrack

and comparable to TLD. Most prior work on learning for

detection uses a small set of negatives, usually extracted

from windows near the object. We compare to such an ap-

proach (D2), and show that using a large set of negatives
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Partial Occlusion Illumination Changes Object Deformation Out of Plane Rotation

Figure 5. Our test videos present numerous challenges, including (from left to right): partial occlusion, illumination changes, object

deformation, and out of plane rotation. Ground Truth is Green . TLD is Yellow ; MIL Track is Red ; Our Tracker is Blue . If there is

no rectangle for a tracker, then that tracker signaled occlusion for the frame. In general, our system is able to track correctly through such

challenging scenarios. Our large negative training sets and retrospective learning greatly reduce the probability of false positives.
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Figure 6. Offline learning in action. As we increase the number

of latently labeled training frames (from 1 to 50%), performance

generally increases. For many videos, the initial model learned on

the first frame is already quite accurate. We discuss this somewhat

surprising observation at length in the text.

is crucial for good performance. We see this observation

as emphasizing an under-appreciated connection between

tracking and detection; it is well-known in the object de-

tection community that large training sets of negatives are

crucial for good performance [8].

Motion: Adding a motion model to our baseline detec-

tor improves performance from 73% (D1) to 76% (D5,D6).

However, a standard first-order motion model (that favors

stationary objects) is not particularly effective, improving

performance to only 74% (D4). Our optical-flow-based mo-

tion model works much better. A single-hypothesis greedy

tracker – that greedily enforces the dynamic model in (2)

given the best location in the previous frame – improves

performance to 76% (D3). This suggests that multiple hy-

pothesis tracking may not be crucial for good performance.

Furthermore, the improvement due to motion in our final

system with learning is even lower; without any motion

model, we still perform at 89% (D8). We find that the bet-
ter the detector, the less advantage can be gained from a
motion model.

Learning: Learning is the most crucial aspect of our sys-

tem, improving performance from 76% (D5) to 91% (C6)

for our online algorithm (and even more for our off-line).

We construct a restricted version of our online algorithm

that does not require revisiting previous frames. We do this

by not allowing SELECT to accept a previously-rejected

frame, and not allowing TRACK to edit a previously-

estimated location. This restriction virtually eliminates all

benefits of learning, producing a F1 of 77% (D7). This sug-

gests that its vital to edit previous tracks to produce bet-

ter examples for retrospective learning. Secondly, naively

SELECT ing all previously-seen frames for learning also

significantly decreases performance to 84% (D9). This sug-

gests that selecting a good subset of reliable frames is also

important. Finally, our OBJ-based criteria for frame selec-

tion outperforms the traditional SVM response, 91% (C6)

vs 89% (D10). The performance increase is largest (up to

10%) for difficult videos such as Panda and Motocross.
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Benchmark video comparison (F1 score)
# Coke David Face1 Face2 Girl Moto-x Sylvester Tiger1 Tiger2 VW Panda Pedestrian Mean

C1 LK-FB [29] 40.00 100.0 99.43 99.43 100.0 00.04 72.38 28.16 27.39 04.00 05.13 10.71 42.09
C2 MIL Track[7] 55.00 95.00 99.44 100.0 93.00 01.00† 97.00 82.00 85.00 58.00† 36.27 63.76 72.12 †
C3 TLD (min=24) [6] ERR 96.77 41.96 99.43 88.29 ERR 94.40 62.85 48.64 ERR ERR ERR ERR
C4 TLD (min=16) 90.26 95.45 100.0 60.81 85.08 48.58 92.50 44.06 50.48 95.24 69.68 11.04 70.26
C5 TLD (min=better) 90.26 96.77 100.0 99.43 88.29 48.58 94.40 62.85 50.48 95.24 69.68 11.04 75.59
C6 Us [On-line] 98.21 90.32 99.71 93.25 98.02 79.08 91.01 91.01 95.83 95.46 62.09 95.71 90.81
C7 Us [Off-line] 97.39 94.62 99.71 98.16 100.0 82.95 93.65 98.59 98.63 96.48 63.05 95.00 93.18

Table 1. Comparison of methods (F1, higher is better). ERR indicates a tracker did not run given the size of the initial object bounding box.

† indicates a tracker was evaluated only on the initial (500) frames before it lost track. Our trackers place special emphasis on long term

tracking and can thus recover from such failures. Both online and offline versions of our algorithm significantly outperform prior work,

including various versions of TLD tuned with different hyper-parameters.

Diagnostic analysis (without learning)
# Version Coke David Face1 Face2 Girl Moto-x Sylvester Tiger1 Tiger2 VW Panda Pedestrian Mean

D1 Tracking by Detection 88.69 33.33 99.71 96.31 95.05 25.41 88.80 90.14 83.56 67.43 31.97 75.71 73.01
D2 TBD with sub-sampling 73.04 17.20 37.08 38.65 35.64 33.80 81.72 50.70 47.95 70.99 7.89 12.86 42.29
D3 Single track hypothesis 78.00 24.24 99.71 96.31 96.04 37.26 90.67 92.95 86.30 82.95 28.79 95.00 75.68
D4 On-line w/o flow 85.21 36.55 96.31 99.71 96.04 26.26 89.92 92.95 80.28 83.22 30.29 69.74 73.87
D5 On-line 85.96 33.51 99.71 96.93 91.08 34.60 89.55 92.95 84.72 83.11 29.63 91.75 76.12
D6 Off-line 85.21 36.55 99.71 96.93 96.04 39.76 89.17 92.95 80.82 83.94 26.52 92.85 76.70

Diagnostic analysis (with learning)
D7 Fix TRACK & SELECT 91.43 35.03 99.72 93.25 95.05 29.76 91.15 91.18 80.00 89.71 40.79 89.61 77.22
D8 On-line w/o motion 97.39 88.17 99.72 93.87 99.01 64.04 92.16 94.37 93.15 95.66 53.06 95.71 88.86
D9 On-line w/ SelectAll 97.39 91.40 99.72 88.34 100.00 73.35 80.46 97.87 73.38 70.18 43.74 90.97 83.90

D10 On-line w/ RespSelect 98.21 89.24 99.71 95.70 94.05 72.06 88.67 98.57 93.70 92.07 52.64 93.57 89.02
Table 2. Diagnostic analysis of our system (F1, higher is better), with and without learning. Please see Sec. 5.1 for a detailed discussion.

Mean Center Displacement Error (MCDE)
Tracker Us[C6] Us[C7] ART[24] LRSVT[25] TLD MIL[7] Frag[30] PROST[31] NN[32] OAB1[33]

Code Yes Yes No No Yes Yes Yes No Yes Yes

Sylv. 12 12 6 9 14 11 11 - - 25
Girl 17 29 11 - 21 32 27 19 18 48

David 10 7 3 7 7 23 46 15 16 49
Face1 10 11 8 12 18 27 6 7 7 44
Face2 14 13 6 10 17 20 45 17 17 21
Tiger1 4 4 5 8 15 15 40 - - 35
Tiger2 7 5 5 13 30 17 38 - - 34
Coke 7 7 - 12 9 21 63 - - 25
Mean 10 11 6* 10* 16 21 35 15* 15* 35

Table 3. Mean Center Displacement Error (MCDE), where lower is better. * indicates a given tracker did not report results on all videos.

Though we believe the F1 score (see Table 1) is a more accurate measure, we report MCDE for completeness. Our trackers generally

compare favorably to other state of the art algorithms. We conjecture that our pixel displacement error would decrease if we resolved

object locations up to pixels and not just HOG cells. See Sec. 5 for more discussion.

5.2. Conclusion

We have a described a simple but effective system for

tracking based on the selection of trustworthy frames for

learning appearance. We have performed an extensive di-

agnostic analysis across a large set of benchmark videos

that reveals a number of surprising results. We find the task

of learning good appearance models to be crucial, as com-

pared to say, maintaining multiple hypothesis for tracking.

To learn good appearance models, we find it important to

use large sets of negative training examples, and to retro-
spectively edit and select previous frames for learning. To

do so in a principled and efficient manner, we use the for-

malism of self-paced learning and online solvers for SVMs.

Our tracker handles long videos with periods of occlu-

sion/absence and large scale changes. Our benchmark anal-

ysis suggests we do so with significantly better accuracy

than prior art. Our algorithms are linear time and so asymp-

totically efficient. We believe that a parallelized implemen-

tation could easily lead to real-time performance with sig-

nificant real world applications.
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Figure 7. We compare F1 scores, accumulated across 12 bench-

mark test videos. The maximum accumulated score is 12. Our

trackers significantly reduce error, compared to prior work. Most

of the improvement comes from a few “challenging” videos

containing significant occlusions and scale challenges, including

Pedestrian, Panda, and Motorcross. See Table 1 for additional nu-

meric analysis.
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