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Abstract

In this paper, we address the challenging problem of
categorizing video sequences composed of dynamic natural
scenes. Contrarily to previous methods that rely on hand-
crafted descriptors, we propose here to represent videos us-
ing unsupervised learning of motion features. Our method
encompasses three main contributions: 1) Based on the
Slow Feature Analysis principle, we introduce a learned lo-
cal motion descriptor which represents the principal and
more stable motion components of training videos. 2)
We integrate our local motion feature into a global cod-
ing/pooling architecture in order to provide an effective sig-
nature for each video sequence. 3) We report state of the
art classification performances on two challenging natural
scenes data sets. In particular, an outstanding improvement
of 11% in classification score is reached on a data set intro-
duced in 2012.

1. Introduction
Video understanding has a wide range of applica-

tion within video indexing, robot navigation and human-
computer interaction. Designing efficient motion descrip-
tors is a key ingredient of current video analysis systems.
In the most usual context, motion features arise from the
relative motion between the different objects in the scene
and the camera.

In this paper, we are tackling the problem of categorizing
dynamic natural scenes (e.g. Fire, Rivers, Storms, Lighting,
Avalange, etc), see Figure 1. In this context, motion is of-
ten correlated with effects that may be considered as inter-
ferences or artifacts: shadows, lighting variations, specular
effects, etc. Therefore, handcrafted descriptors used in the
computer vision community, such as HoF or HoG computed
on STIP [19], that proved to be very effective for human ac-
tion recognition, are unlikely to generalize well in our con-
text. The same argument can apply for certain motion fea-
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Figure 1. Top: V1 features generate tangled up class rep-
resentations. However, SF1 (the slowest feature learned with
SFA) correctly untangles the classes. Bottom: SF1 reveals sta-
ble motion components which correlate with semantic categories:
upward/backward water motion (fountains/waterfalls), complex
flame motion (Forest Fire).

tures with good neurophysiological inspirations [25, 30]
which remain designed and not learned from the statistics
of training images. On the other hand, deep learning rep-
resentation is an important topic in both A.I. and computa-
tional neuroscience [3]. It recently received attention with
its successful application in the context of large scale image
classification, winning the Large Scale Visual Recognition
Challenge 2012 (ILSVRC2012)2. In the neuroscience com-
munity, one challenge of internal representation design or
learning is related to the class manifold untangling prob-
lem [10]: high level representations are expected to be well
separated for different semantic categories.

2http://www.image-net.org/challenges/LSVRC/2012/
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In this paper, we introduce an unsupervised method to
learn local motion features which self-adapt to the difficult
context of dynamic scenes. For this purpose, we use the
Slow Feature Analysis (SFA) principle which bears foun-
dations in neurosciences [34]. SFA extracts slowly varying
features from a quickly varying input signal. Figure 1 il-
lustrates how SFA learning can significantly improve the
untangling problem objective. The curves compare the
mean temporal signal, over each class, for V1 features3

and for learned motion features, inside the green windows
shown at the bottom. The class representation with V1 fea-
tures is tangled up and cannot separate the classes. On
the other hand, the slowest learned feature (SF1) correctly
untangles the classes by generating outputs with stable re-
sponses inside categories and yet different responses be-
tween categories. Quite impressively, one single slow fea-
ture is able to untangle 7 video classes. The bottom part of
figure 1 illustrates that the slow features learned by SFA
reveals sensible motion components correlated with the
semantic classes: upward/backward water motion (foun-
tains/waterfalls), complex flame motion (Forest Fire), etc.

The remainder of the paper is organized as follows. Sec-
tion 2 positions the paper with respect to related works and
highlights its main contributions. Section 3 gives the de-
tails of the method, introducing our SFA-based learned local
motion features and their embedding into a coding/pooling
framework. Section 4 reports classification scores on two
challenging dynamic scenes data sets, pointing out the re-
markable level of performance achieved by the described
method using learned motion features. Finally, section 5
concludes the paper and gives directions for future works.

2. Related work & Contributions
In this section, we give more details on video classifica-

tion approaches related to ours, and focus on two main as-
pects of the proposed systems: the chosen motion features,
and their use for video categorization.

The literature on scene classification includes several
handcrafted motion features responding to space-time vari-
ations. These motions features are often optimally hand-
crafted for specific applications and are not learned from the
statistics of training images. For instance, in [11], optical
flow measurements are used to classify global human ac-
tions viewed from a distance using low resolution windows
(i.e 30 pixels high). Another use of optical flow applied
to natural scenes classification is presented in [19, 20, 23].
This motion feature uses Histograms of Optic Flow (HOF)
in a similar spirit to the static images features SIFT [22] or
HOG [7]. However, because it is restrained by the optical

3In our approach, each region is described using V1-like features [33],
which are effective biologically-inspired image descriptors. The untan-
gling problem illustrated here still holds for various kinds of image fea-
tures.

flow constraints [2, 13], i.e. assumes constant illumination
between subsequent frames, the performance of this type of
motion features is subject to collapse under the context of
natural video scenes. For example, shadows, lighting vari-
ations, specular effects are inherent to motions such as fire,
waterfalls, river, lighting, avalanges, etc. In this context,
the optical flow assumption does not hold. In order to ex-
plicitly model texture dynamics, linear dynamical systems
(LDS) have been proposed in [32]. Such stochastic mod-
els have been successfully applied in various contexts, from
dynamic texture classification to motion segmentation [6]
or tacking [5]. However, LDS is intrinsically limited by
the first-order markov property and linearity assumption.
Therefore, as experimentally reported in [29], these models
might be too restrictive to properly solve the complex task
of unconstrained dynamic scenes classification that we ad-
dress here. Other motion features [12, 18] presented in the
literature are based on biological inspirations. These fea-
tures can be related to neuro-physiological recordings from
the V1-V2-V4 cortical areas which are known to process
local spatio-temporal informations [25] and from the MT
area which is believed to integrate global motion patterns
[30]. These biologically inspired motion features are still
not truly learned from stimuli.

Two recent papers have introduced the problem of dy-
namic natural scene classification [9, 29]. The work in [9]
is based on spatio-temporal filters (i.e 3d Gabors), while
[29] relies on extracting dynamic invariants in chaotic sys-
tems. Although both works address the same classification
problem as we do, our approach and method are different as
we focus on unsupervised motion feature learning.

One unsupervised learning principle in neuroscience is
to minimize temporal variations created by motion in order
to learn stable representations of object undergoing motion
[27, 14, 24]. One interesting formalization of this principle,
is the Slow Feature Analysis model (SFA) [34]. The idea
behind SFA is that perceptions vary on a slower time scale
compared to the input signals from the environment. Given
a temporal input sequence (i.e. motion), the SFA model
learns to generate a “slower” and thus more invariant out-
puts signal. Recently, SFA has been investigated in [35] to
represent local motion for human action recognition. Inter-
estingly, this work, closely related to ours, consolidates the
relevance of using SFA to extract meaningful motion pat-
tern for video classification.

The next step towards classification of scene videos is
to obtain one final representation for each video. Given a
set of motion features, several possibilities are found in the
literature to create a final global representation. One pos-
sibility is to use global motion descriptors [11, 32] which
cover the entire spatial area of the scene to be classified.
However, these holistic representations are less robust than
systems based on local features. Other models extend the
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Figure 2. Our Dynamic Scene Classification Pipeline. Red: Each video is processed into local regions of V1-like features. These features
are then mapped on a set of learned slow features through the SFA principle. Blue: Temporal sequences of slow feature codes are used to
train a dictionary of motion features. Orange: Motion features from new videos are mapped on the dictionary before being pooled across
time and space into a final vector signature.

BoW framework [31, 1] of static images to video classifi-
cation [19, 20] where local motion features (HOF) are ex-
tracted at Space Time Interest Points (STIP) and coded by a
mapping function on a learned dictionary of features. The
coded features can then be pooled into a final signature used
for classification. Some models with biological inspiration
also use this coding and pooling approach [12, 18]. The
work in [35] uses the SFA principle to transforms videos
into histograms of slow feature temporal averages. With
this approach, the temporal dimension of the input signal
is reduced to a scalar value before being accumulated into
histograms with no further coding or pooling.

In this paper, we present a novel method for dynamic
scene classification. The whole pipeline is depicted in fig-
ure 2. For a given video sequence, each frame is processed
to extract V1-like features [28], so that local regions (4× 4
in our case) are represented with a vector in RD. Each re-
gion is then re-encoded by projecting the V1 features into
a set of M Slow Features, leading to a representation of
size RM . The Slow Features Analysis (SFA) is computed
offline on the whole database of regions, as explained in
section 3.1. SFA ouputs a set of elementary motion pat-
tern, in a similar manner as done in [35] for human action
recognition. However, our approach differs at many lev-
els. First, our classification context is different and more
challenging. Indeed, their data set is concerned with human
motion recorded in stable and controlled environments (i.e.
uniform background), with very little or no interference.

Second, we show that the SFA principle gives good untan-
gling of semantic class manifolds in the context of complex
natural scene videos. Also, we apply the SFA principles on
a rich multi-dimensional V1 representation [28] as opposed
to pixels. Importantly, to incorporate temporal information
in our video representation, SFA codes are threaded along
τ frames, so that local regions over time are represented
with output sequences of size RM×τ . These spatially and
temporally localized features are then embedded into a cod-
ing/pooling framework, as detailed in section 3.2. Here, the
difference with respect to [35] is significant since we main-
tain the full temporal dimension of the input signal which
gives a richer temporal categorial information compared to
averaging method. To summarize, the paper presents the
three following main contributions:

• We introduce a local motion descriptor adapted to
complex dynamic scenes. This feature is learned in
an unsupervised way through the SFA algorithm [34].
SFA generates a low dimensional and low variational
subspace representing the embedded stable compo-
nents of motions inside the video frames. We provide
qualitative and quantitative analysis supporting the fact
that SFA significantly facilitates the class manifold un-
tangling problem.

• We propose a coding/pooling architecture in which
temporal outputs sequences of SFA generate global
video signatures. By keeping temporal dimension into
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the output signal, categorial information is not diluted
as it is when using a temporal average over the sig-
nal [35]. We experimentally report that our embedde-
ing outperforms the averaging method.

• We report above state-of-the art results on two natural
scenes data sets with in particular, 11% improvement
compared to state of the art result in the database re-
cently introduced in [9] and near 30% improvement
on the challenging set introduced in [29].

3. Methodology

3.1. Learning local motion features with SFA

The SFA principle has been introduced as a mean to learn
invariant representations from transformation sequences
[15, 34]. The invariance emerging from the SFA princi-
ple, which has been used for human action recognition [35],
makes it an excellent choice to extract stable motion fea-
tures for dynamic scene classification.

The SFA principle has the appealing property of learn-
ing instantaneous operators (i.e. operators applied to a sin-
gle video frame) which also satisfy a function of multi-
ple frames (i.e. low temporal output variation). Specifi-
cally, given a D-dimensional temporal input signal v(t) =
[v1(t)v2(t)...vD(t)]T , the SFA algorithm learns a mapping
S(v) = [S1(v), .., SM (v)] such that the new representation
y(t) = [y1(t)y2(t)...yM (t)]T where yj = Sj(v(t)) vary as
slow as possible and still retains relevant information (see
figure 3).

v(t)
y(t) = S(v(t))v

1

v
2

v
D

y
1

y
2

y
M

Time Time

S

Figure 3. Slow Feature Analysis. Temporal input signals are trans-
formed into slowly varying signals.

This is obtained by minimizing the average square of the
signal temporal derivative

min
Sj

< ẏj
2>t (1)

under the constraints:

1. < yj>t= 0 (zero mean)

2. < y2
j>t= 1 (unit variance )

3. ∀j < j′ : < yj , yj′>t= 0 (decorrelation)

where <y>t is the temporal average of y. With these con-
straints the SFA principle ensures that output signals vary
as slowly as possible without being a simple constant signal
carrying no information. Specifically, constraints 1. and 2.
normalize the outputs to a common scale and prevent the
trivial solution yj = cst which would be obtained with a
temporal low pass filter (temporal smoothing). Therefore,
the slow features Sj must be instantaneous and cannot be
averaging the signals over time. This ensures that the slow
features carry time specific information and do not simply
dilute the signals. Constraint 3. ensures that different slow
features carry different informations. The solution to equa-
tion 1, with the slow features Sj(x) ranked from the slow-
est to the fastest, can be obtained by solving the following
eigenvalue problem where the slower features are associ-
ated with the smaller eigenvalues λ1 ≤ λ2 ≤ . . . λM .

Sj : < v̇v̇T>t Sj = λjSj (2)

In our context (video classification), the SFA input signal
v(t) can be image features of many modalities (i.e colors,
gradients, SIFT, HOG). We use the biologically inspired
complex cells V1 features [8, 17] which are known to pro-
duce good image representations. These features can be
modeled 4 as done in [33] by selecting the local maxima
of Gabor filters g

σ,θ
applied to the input image with orien-

tations θ ∈ {θ1, θ2 .., θΘ} and scales σ ∈ {σ1, σ2, .., σS}.
Specifically, as illustrated on figure 2, the SFA inputs are
local V1 features of size k × k × Θ × S which we flatten
into vectors v ∈ RD as illustrated in figure 2.

Now, to learn slow features from these V1 features, we
need to define the temporal covariance matrix of equation
2. To do this, we consider N training videos of duration
T on a p × p grid as illustrated in red in figure 2. We de-
fine vnxy(t)5 as the V1 feature for video n at spatial position
(x, y) and time t. We compute all possible features vnxy(t)
and compute the temporal derivatives v̇nxy(t). The temporal
covariance matrix of equation 2 is then computed by

< v̇v̇T>t =
1

p2NT

p∑
x=1
y=1

N∑
n=1

T∑
t=1

v̇nxy(t)v̇nxy(t)T (3)

The eigenvectors of this matrix associated with the M
smallest eigenvalues define our slow features S(v) =
[S1(v), .., SM (v)]. The slowest features generate the most
stable non trivial output signals. As previously shown in
figure 1, these slow features already produce an impres-
sive untangling of class manifolds and are thus excellent
candidates to define stable and relevant motion features for
classification. The next section explains how we use these

4Code available at http://webia.lip6.fr/ cord/BioVision/
5The V1 features are normalized to a unit sphere [34]
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slow features to encode local motions features which are
then pooled into a final signature for each video.

3.2. Coding and Pooling

Our motion features are defined by threading together
short temporal sequences of SFA outputs to generate a new
representation space. Specifically, we define a motion fea-
ture m(t) at position (x, y) and across time t = [t..t+τ ] by
a short temporal SFA output sequence from τ consecutive
V1 features using the matrix product

m(t)=[zxy(t).. zxy(t+τ)] = ST [vxy(t)..vxy(t+τ)] (4)

If we use M slow features, then S ∈ RM×D and equa-
tion 4 defines motion features m(t) ∈ RM×τ . As illus-
trated in figure 2, these motion features m(t) can be inter-
preted as spatio-temporal atoms describing the stable mo-
tion components inside a small space-time window of di-
mension k × k × τ .

Inside this new representation space, we use a cod-
ing/pooling strategy to represent each video by a vector
signature of fixed size. In order to do this, we define a
spatio-temporal dictionary P = {p1,p2, ..,pN} of motion
features. We chose a simple unsupervised sampling proce-
dure [28] in which we sample N motion features on train-
ing videos at random positions and times. More sophisti-
cated learning procedure could be applied, e.g. K-Means
or sparse dictionary learning. However, as shown in [4],
such random sampling gives very competitive performances
when used in conjunction to effective coding schemes such
as soft assignment or sparse coding [16].

Once the dictionary is learned, we can compute a vec-
tor signature for each new video. To do this, we first en-
code m(t) onto P by computing the following dot product
ci = m(t)Tpi, i ∈ {1, .., N}. The generated temporal
codes ci are computed by soft assigning each m(t) on each
pi at each position (x, y) and time t. To obtain a fixed size
vector for each video, the codes ci are pooled inside the sub-
regions of a spatio-temporal pyramid (space×space×time).
This spatio-temporal pyramid matching (STPM) extends
the SPM pooling principles of [21] to videos. We use a
three level pyramid with partitions 4× 4× 1 , 2× 2× 1 and
1× 1× 1 as illustrated in figure 2. The maximum mapping
value [28] is pooled inside each 21 subregions such that

si = max
x,y,t

ci(x, y, t) = max
x,y,t

m(t)Tpi (5)

After pooling, the resulting vector signature can be used
to feed a classifier (i.e. SVM). The next section reports clas-
sification results using this procedure.

4. Quantitative and Qualitative Evaluation
We evaluate the proposed method for dynamic scene

classification in two challenging data sets: the Maryland

“in-the-wild” data set [29] and the recently introduced Yu-
penn Stabilized Dynamic data set [9]. The later is composed
of 14 natural scene categories containing 30 videos each
with 145 frames on average. The former is composed of
13 natural scene categories containing 10 videos each with
617 frames on average. One stunning outcome of our exper-
iments is the large increase in classification performances
compared to other state-of-the-art methods.

Maryland "in-the-wild"

Stabilized Yupenn

Figure 4. Top: samples from the Maryland “in-the-wild” data set.
Bottom: samples from the Yupenn Stabilized data set

4.1. Classification results

All classification scores are obtained with a linear SVM
classifier and computed using the leave-one-out procedure
as in [29, 9]. All videos are converted to gray scale and
resized such that the shortest side has a length of 140 pixels.
We used V1 features with S = 2 and Θ = 4 and p = 7 such
that vxy(t) is of dimension 7× 7× 2× 4. The dimensions
our motion features in equation 4 are setup to M = 30
and τ = 16. We learn 1 dictionary element for every 128
training frames such that the dictionary sizes are N = 192
andN = 240 for the Yupenn data set and the Maryland data
set respectively.

The detailed results 6 are presented in tables 1 and 2.
Similar conclusions can be drawn from both datasets. First,
the scores obtained are remarkably above all state-of-the-art
methods using handcrafted descriptors. Our score of 85%
(resp. 74.6%) in the Yuppen (resp. Maryland) data set out-
performs by more than 10 pt (resp. 30 pt) the recently spa-
tial temporal filters (SOE) proposed in [9], and many other
state-of-the art image and motion features used in the com-
puter vision community7: HoF [23], GIST [26] and Chaotic
invariants [29].

The motivation for using a linear SVM classifier is to
highlight the untangling ability of our SFA based represen-
tation. To compare our performances with the highest re-
ported score on the Yupenn data set, we also ran classifica-

6Confusion matrices can be found in the supplementary material
7re-implemented in [9]
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tion using the same k-nn classifier as in [9]. We obtained
a score of 82% which is close to our SVM score and still
well above the results in [9], validating the advantage of our
learned representation.

Another experimental result common to both data sets
is the favorable impact of our two main contributions, i.e.
SFA for learning motion descriptors and their embedding in
a coding-pooling framework. Column ”No SFA” isolates
the effect of SFA learning: although the absolute scores re-
main competitive (57.3% and 55.3% in Yupen and Mary-
land), the improvement of learning motion descriptors with
SFA is outstanding : ∼ 30% ↗ in Yupen, ∼ 20% ↗ in
Maryland. This clearly validates the relevance of learning
motion descriptors which self-adapt to the statistics of train-
ing videos. To isolate the impact of the proposed coding-
pooling framework, we carry out experiments by replacing
it by the simple embedding proposed in [35]. For a fair
comparison, we reimplemented their basic method with a
similar signature size (i.e. 200 × 21). In both databases,
the performances significantly drops: ∼ 18% ↘ in Yupen,
∼ 10% ↘ in Maryland. This illustrates the importance
of keeping temporal information and not diluting the signal
using a temporal average.

The next section shows how fine-tuning the training pa-
rameters can generate even higher classification scores and
illustrates the robustness of our results with respect to pa-
rameter variations.

State of the art results Our re-implementations

Scenes
HOF

[23, 9]
GIST
[26, 9]

Chaos
[29]

SOE
[9]

[35] SFA
Embedding No SFA Our Model

Beach 37 90 27 87 93 73 96
Eleva. 83 50 40 67 93 46 86
F.Fire 93 53 50 83 76 76 90
Fount. 67 50 7 47 63 56 63

Highway 30 40 17 77 80 33 70
L.Storm 33 47 37 90 53 60 80
Ocean 47 57 43 100 60 76 96
Rail. 60 93 3 87 40 56 83

R.River 83 50 3 93 40 50 83
S.Clouds 37 63 33 90 60 100 100

Snow 83 90 17 33 46 43 73
Street 57 20 17 83 86 26 90
W.Fall 60 33 10 43 70 30 86
W.mill 53 47 17 57 83 73 90

Avg 59 56 20 74 67.6 57.3 85

Table 1. Classifications results in average accuracy for the Yupenn
Data set

4.2. Parameter evaluation

Figure 5 shows the effect of the temporal parameter τ .
An increase of 8% in classification scores is reached when
using dictionary elements with a temporal depth of τ = 16.
This suggests that more categorial temporal information is
captured when using features which span multiple frames.
This is one major difference with the approach used in [35]

State of the art results Our re-implementations

Scenes
HOF

[23, 9]
GIST
[26, 9]

Chaos
[29]

SOE
[9]

[35] SFA
Embedding No SFA Our Model

Avalange 0 10 30 10 80 90 90
Boiling.W 40 60 30 60 70 60 80
Chaotic.T 20 70 50 80 50 30 60
Forest.F 0 10 30 40 60 30 80
Fountain 10 30 20 10 60 70 50
Iceberg.C 10 10 10 20 30 40 70
LandSlide 20 20 10 50 70 20 80
Smooth.T 30 40 20 60 50 30 70
Tornado 0 40 60 60 70 50 80

Volcano.E 0 30 70 10 60 60 60
WaterFall 20 50 30 10 60 70 70

Waves 40 80 80 80 100 100 100
Whirlpool 30 40 30 40 80 70 80

Avg 17 38 36 41 64.6 55.3 74.6

Table 2. Classifications results in average accuracy for the Mary-
land Data set

in which the slow feature temporal dimension is reduced to
a single scalar statistic (i.e. average).

Figure 5. Effect of the temporal length of our motion features on
classification scores.

As reported in figure 6, good classification scores are
reached using a only a small set of slow features. By keep-
ing only the most stable slow features (i.e. dim y <<
dim v) we obtain a compact encoding of the V1 features
and still obtain high classification scores, making this rep-
resentation very efficient. Another important parameter to
consider is the dictionary size. Figure 7 shows the effect of
dictionary size on classification scores. The scores on both
data sets are stable under a wide range of dictionary sizes,
highlighting the robustness of our motion feature represen-
tation.

4.3. Motion feature space

The SFA algorithm is based on computation of tempo-
ral derivatives and therefore assumes a smooth (i.e differ-
entiable) motion pattern. The stable SFA components are
therefore expected to be smooth in both time and space. The
smooth spatial structure of learned slow features is illus-
trated by mapping our motion features into V1 space. Fig-
ure 8 displays the V1 projection of the 10 slowest features
learned from the Yupenn data set (top) and the Maryland
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Figure 6. Effect of the number of slow features on classification
scores

Figure 7. Effect of the dictionary size on classification scores.

data set (bottom). Figure 9 illustrates the smooth tempo-
ral output signal from the first slow feature learned on the
Yupenn data set in response to a wave pattern. As shown,
the output signal of the instantaneous V1 feature (no SFA)
does not give smooth motion information compared to the
slow feature signal (with SFA). In addition, The SFA signal
correlates with semantic motion pattern (the wave), whereas
the raw V1 curve has a more random behavior.

Figure 8. The 10 slowest features, mapped on V1 space, from the
Yupenn data set (top) and the Maryland data set (bottom).

As defined in section 3, our motion features are the result
of M slow features varying over time. While our full sys-
tem, using M = 30 slow features, reaches a score of 86.9
on the Yupenn data set, one single slow feature (the slow-
est) still reaches a score of 73.57. This remarkable result
is first introduced in figure 1 which illustrates the perfect
separation achieved by a single slow feature on 7 classes of
the Yupenn data set. Figure 10 complements the results of
figure 1 and illustrates the semantic untangling achieved by
individual slow features on all 14 classes of the Yupenn data
set. As shown, one single slow feature cannot untangle all
the classes but still achieved impressive separation using a
single dimension. This efficient representantion expresses

0.0125

0.0105

0.009

0.34

0.28

0.22

With SFA

No SFA

Figure 9. Temporal output signal of the first slow feature learned
on the Yupenn data set (top) and the instantaneous V1 feature (bot-
tom) in response to a wave pattern.

its full potential when using multiple dimensions (i.e. sev-
eral slow features) as our classification scores confirms it.

Beach  Elevator Forest.F  Fountain  Highway  L.Storm  Ocean  Railway  R.River  S.Clouds  Snow  Street  W.Fall  W.Mill

Time

Figure 10. Semantic untangling of all 14 classes of the Yupenn
data set achieved independently by three individual dimensions of
our motion features. The curves shown are averaged in time over
all videos for each category.

5. Conclusions and summary
This paper presented motion features for video scenes

classification learned in a unsupervised manner. These mo-
tion features are the result of mapping temporal sequences
of instantaneous image features into a low dimensional
subspace where temporal variations are minimized. This
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learned low dimensional representation provides stable de-
scriptions of video scenes which can be used to obtain state-
of-the art classification on two challenging dynamic scenes
data sets. One possibility unevaluated in this paper would
be to learn stable features from spatio-temporal filters in-
stead of from instantaneous spatial filters. The outstanding
classification results reported in this paper also suggest that
temporal output signals provide more categorical informa-
tion compared to instantaneous outputs.

As many classes studied in the paper consist of dynam-
ical textures, one interesting direction for future work is to
use the classification pipeline for motion segmentation and
action recognition.
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