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Abstract

We introduce the concept of relative volume constraints
in order to account for insufficient information in the recon-
struction of 3D objects from a single image. The key idea
is to formulate a variational reconstruction approach with
shape priors in form of relative depth profiles or volume
ratios relating object parts. Such shape priors can easily
be derived either from a user sketch or from the object’s
shading profile in the image. They can handle textured or
shadowed object regions by propagating information. We
propose a convex relaxation of the constrained optimization
problem which can be solved optimally in a few seconds on
graphics hardware. In contrast to existing single view re-
construction algorithms, the proposed algorithm provides
substantially more flexibility to recover shape details such
as self-occlusions, dents and holes, which are not visible in
the object silhouette.

1. Introduction

Estimating the 3D geometry from objects or scenes given

only a single image is a challenging but important problem

in computer vision. In high-level image editing such ge-

ometric information can be used to alter the lighting and

material properties in a scene. Also, new views can be

synthesized on the basis of 3D geometric information such

as depth. In addition, single view reconstruction can act

as a semi-automatic alternative to complex modeling tools:

closed surface representations of objects can be used in aug-

mented reality applications or computer games. All of these

applications do not require exact reconstructions but often

settle for qualitative 3D geometry estimates.

However, such information is often not available, and

can usually only be estimated given multiple views of the

scene. When only one view is available, the problem gets

inherently ill-posed, so additional assumptions must be im-

posed on the shape or the scene, e.g. symmetry assump-

tions [4], topological constraints [12], planarity [5], min-

imal surfaces with volume constraints [14], learned shape

priors [3] and others. All of these constraints impose

strong limitations on the 3D object shape, e.g. planarity

Figure 1. 3D reconstruction result from the single car image on

the left based on relative volume constraints. Given a 2D image

we infer the object geometry based on shape profiles and volume

ratio constraints. These are either imposed by the user or estimated

from shading information.

of all objects [5] or ball-shapedness due to the minimal

surface assumption [14]. These assumptions are usually

rather unrealistic and only yield pleasing results for very

specific objects, shapes and viewpoints. Moreover, com-

mon reconstruction methods are usually limited to surfaces

representable as height fields, which cannot model self-

occlusions [10, 15, 2]. Therefore, we suggest to impose

volumetric ratio constraints to extend the class of recon-

structable objects.

Such constraints can either be sketched by the user, or

they can be automatically inferred from shading informa-

tion in the image, which contains valuable clues on the ob-

ject’s geometry. We formulate a graph based optimization

approach, which automatically computes object shape pro-

files from the image.

By estimating shape profiles from shading information

we directly infer shape knowledge instead of computing

dense normal maps. In this way we avoid several drawbacks

of typical shape from shading methods. Firstly, the com-

putation of shape profiles is simpler than the computation

of dense normal maps and thus less error prone. Reliable

normal information can only be obtained under highly con-

trolled conditions. Instead, our estimated reflectance maps

are well suited for deriving qualitative shape characteris-

tics instead of numerically accurate ones. Secondly, our ap-

proach can deal with textured objects, color and shadows.

Since the user only indicates profile lines in untextured re-

gions without shadows, reasonable profile estimates can be

computed and then propagated to textured and shadowed
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a) Original b) Volume constraint c) Depth profile

d) Partial result e) Volume ratio f) Reconstruction

Figure 2. 3D reconstruction of the watering can using absolute and

relative volume constraints, see text for explanation.

regions. For this task, flexible scalable shape profiles are

much better suited than point-wise absolute normal infor-

mation. Finally, the volume and silhouette constraints re-

strict the reconstruction to valid, closed objects, which is not

necessarily true for shape from shading approaches. Based

on volumetric shape constraints we obtain realistic recon-

structions only from a single image as shown for the car

image in Figure 1.

To give a clear idea of the reconstruction process based

on the different volumetric constraints, we show an exam-

ple of the reconstruction of the watering can in Figure 2.

Figure 2 a) shows the original image of the watering can. If

we look for a minimal surface that is consistent with the ob-

ject silhouette and impose a constraint on the object volume

we obtain the ball shaped reconstruction with flat handle in

Figure 2 b). To improve the result we introduce a depth pro-

file constraint, which defines the rough shape of the object

along a cross section. In the example above, the profile in

Figure 2 c) is imposed along the vertical cross section of the

can indicated in red in Figure 2 a). It can either be given by

the user or estimated from shading information. By impos-

ing this profile we obtain the result with handle in Figure

2 d). The object shape now resembles a realistic watering

can instead of a ball. Yet, the handle is reconstructed as a

solid object. To further improve the reconstruction we ap-

ply a volume ratio constraint. ’Volume ratio’ means that we

restrict the object volume within the indicated pink region

to a specific ratio of the full object volume, e.g. to 0 for the

region below the handle indicated in pink in Figure 2 e). We

finally obtain the improved reconstruction in Figure 2 f).

Note that the imposed profile constraints define relative

instead of absolute depth values, i.e. the depth of one pixel

is proportional to the depth of a reference pixel within the

profile. Since the depth values are relative the profiles and

a) Input profile b) 20% volume c) 40% volume

Figure 3. Application of the shape profile in a) to a spherical 2D

shape with b) 20% and c) 40% volume. Since the depth constraints

are relative, the shape scales naturally with increasing volume.

thus the object shape automatically scale with increasing

volume. An example is shown in Figure 3.

1.1. Related Work

Over the years many works on single view reconstruction

surfaced. To cope with ill-posedness, a diverse spectrum

of assumptions, restrictions and reconstruction goals have

been formulated. One of the first approaches in the field

was given by Terzopoulos [13]. Some approaches purely

concentrate on pleasantness of the reconstruction [7]. Only

very few works compute exact reconstructions [5], but they

can only do so by assuming piecewise planarity of the re-

construction and by the help of user interaction. User input

is generally one way to reduce reconstruction ambiguities.

The transition between fully automatic (and often learn-

ing based) algorithms [6] and pure modeling tools [8] is,

however, smooth. Barron and Malik [2] reconstruct albedo,

depth, normal and illumination information from gray scale

and color images by inferring statistical priors. Their ap-

proach differs from ours since they reconstruct depth maps.

Instead we compute closed objects using semantic informa-

tion such as the object silhouette, shape profiles and object

volume.

Part of our algorithm uses shading information. Our

approach differs from other existing shape-from-shading

methods in the following points: Firstly, we do not seek

dense reconstructions but use shading information only to

extract semantic shape profiles. Secondly, user input in our

approach is not used to improve the normal inference, but

merely to estimate the reflectance function of the object.

Thirdly, we can handle color, texture and shadows.

Our approach is mostly in the line of [12] and [14] since

we reconstruct closed curved objects with the help of user

interaction. But in contrast to [14] our approach is not

restricted to reconstructions that can be represented as a

height-field. Instead we represent our surface implicitly

which enables us to model self-occlusions.

1.2. Contributions

We propose a 3D reconstruction approach from a single

image, which comes with the following advantages:

• We impose characteristic object shape by means of rel-
ative depth profiles and partial volume ratios.
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• We propose a method to automatically infer depth pro-

files from the shading information in the image. For

the locations of the depth profiles we require homo-

geneous material with constant albedo. The derived

shape information can then be propagated to textured

or shadowed regions of the object.

• The reconstructions are not limited to height maps

and allow for self-occlusions, protuberances, dents and

holes.

• We formulate a variational approach with a convex re-

laxation, which can be optimized globally and is thus

independent of the initialization. The approach is eas-

ily parallelized and can be run on graphics hardware.

2. 3D Reconstruction from a Single Image
3D reconstruction from a single image can be cast as the

following energy minimization problem. Let Ω denote the

2D image plane containing the input image and Σ ⊆ Ω
the object silhouette, i.e. the object’s projection onto the

image plane, which can be obtained by means of interactive

segmentation algorithms [9]. The objective is to compute

a 3D reconstruction of the 2D image with minimal surface

S ⊂ R
3, which is conform with the silhouette. We can

formulate the general variational approach [14]:

min

∫
S

g(s)ds s.t. π(S) = Σ. (1)

Here π : R3 → Ω is the orthographic projection onto the

image plane Ω. The function g : R3 → R
+ can be used

to relax the smoothness assumption at specific points in the

reconstruction in order to allow for user indicated creases

in the object. Following [14], we define a binary indicator

function representing the reconstruction:

u ∈ BV (R3; {0, 1}), u(x) =

{
1, x inside object

0, otherwise.

Here, BV denotes the space of functions of bounded vari-

ation [1]. From this representation the object surface can

finally be obtained as the jump set of the function u. The

original 3D reconstruction problem in (1) can now be for-

mulated in terms of the indicator function u as the mini-

mization of the following energy

E(u) =

∫
g(x)|Du(x)|, s.t.u ∈ UΣ (2)

where Du denotes the distributional gradient of u and

UΣ =
{
u ∈ BV (R3; {0, 1})

∣∣∣ u(x) = 1 if x ∈ Σ,

u(x) = 0 if π(x) /∈ Σ
}

ensures that the projection of the object is conform with the

object silhouette in the image.

If no further constraints are imposed, the minimum of the

above optimization problem is the flat silhouette. For this

reason, additional constraints on the reconstruction have to

be imposed. In [14] for example the object volume V de-

fined by the user is introduced as a hard or soft constraint

Vol(S) = V . This leads to the energy

EV (u) = E(u) s.t.

∫
u(x)d3x = V. (3)

The constraint can be enforced by means of Lagrange multi-

pliers. It enables the user to interactively control the volume

of the inflated object. However, the specific shape of the ob-

ject follows the minimal surface assumption and will often

lead to spherical, ball-shaped reconstructions of the object,

whose radius depends on the local width of the silhouette.

In the following sections we show how two types of addi-

tional depth constraints on object parts can be imposed to

allow for diverse object shapes, which can be interactively

determined by the user or derived automatically from shad-

ing information in the image.

3. Introducing Shape Constraints
We impose two kinds of additional shape constraints

• user defined or shading based relative depth profiles,

which define the object shape along its cross sections,

• volume ratio constraints, which specify the volume ra-

tio of object parts with respect to the full object.

3.1. Relative Depth Profiles

Relative depth profiles indicate the shape of the object

along a given cross section. Such a profile consists of two

ingredients: 1) the line which marks the location of the pro-

file in the image plane (see the red line in Figure 2 a) ), 2)

the desired qualitative (not absolute) depth values along the

line (see the pink sketch in Figure 2 c) ). The depth profile

can either be sketched by the user or computed from shad-

ing information.

Let C ⊆ Σ denote the profile line across the object

within the image plane, which indicates the desired location

of the shape profile. Let Ry = {x ∈ R
3 |π(x) = y} denote

the ray of voxels which project onto y ∈ C. Let the depth

ratio cy ∈ R
+
0 indicate the depth of the object at pixel y with

respect to that of a reference pixel, which can be picked ar-

bitrarily from those within the profile C. We set cref = 1
for the ray Rref at the reference pixel. The relative depth

constraints are linear and convex and can be introduced into

the original energy (3)

ED(u) = (4)

EV (u) s.t.

∫
Ry

u(x)d3x = cy

∫
Rref

u(x)d3x ∀y ∈ C.
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a) b) c) d) e)
Figure 4. The different steps for extracting profiles from an input image using shading information: a) The user provides color samples of

the reflection function by marking corresponding scribbles in the input image and on a sphere. b) The color samples are used to estimate

the complete reflection function of the input object. c) The user marks horizontal lines in the input image for which the height profiles will

be estimated. d) For estimating a single profile a shortest path is computed on the graph indicated. e) Each shortest path corresponds to a

depth profile which together determine the shape of the watering can.

User Drawn Profiles For simple object shapes, rough

profile sketches can easily be outlined by the user, e.g. the

profile of the watering can in Figure 2 c).

We propose to apply the given depth profile along each

object cross section parallel to the reference cross section.

This will result in a smooth solution due to the smoothness

regularity and the relativity of the depth profiles. An exam-

ple can be seen in Figure 3. One can also choose to soften

the shape constraints with increasing distance to the refer-

ence cross section. To this end, we suggest to put a limit on

the Lagrange multipliers for each constraint depending on

the distance to the original profile. When multiple relative

depth profiles are indicated, we blend them linearly in To

apply different profile constraints at different cross-sections

we compute their linear combination.

Shading Based Profiles Rather than drawing the depth

profiles by hand, which can be tedious, we propose to esti-

mate them directly from the input image.

We make the following assumptions: at the locations

where we estimate the profiles, the object is made of a ho-

mogeneous material with constant albedo. Furthermore, the

distances of the light sources to the object are large com-

pared to the object size. This is the case for most scenes.

These two assumptions imply that points with similar nor-

mals result in similar irradiance. In general, our framework

allows for arbitrary reflectance properties including shiny

objects with specular surfaces. If no profile information can

be estimated due to texture or shadow, shape information is

propagated from neighboring profiles during surface recon-

struction (see previous paragraph).

The proposed interactive approach for estimating the

profile consists of two steps. In the first step the reflectance

function of the target object is estimated from user given

samples. In the second step the user defines which profiles

should be estimated by marking their respective locations

in the input image. Finally, relative depth along the profiles

is computed automatically by finding the shortest path in a

graph. In the following we will detail these steps.

We will first describe the estimation of the reflectance

function illustrated in Figure 4 a) and b). For doing regres-

sion on the reflectance we need samples from the reflectance

function ρ : S2 → R
3, which maps each normal direction

to its corresponding reflected color. Samples are specified

by pairs of curves s1, s2 : [0, 1] → R
2 given by the user.

The first curve of each pair is drawn into the input image,

the second one onto the image of a sphere, whose points

represent normal directions. For each pair, the sequence of

colors from the input image described by s1 is mapped to

the normal directions given by s2. This step is illustrated

in Figure 4 a). Given the color samples, we do regression

on the reflectance function. To this end, we represent it as a

sum of spherical harmonics basis functions and obtain their

coefficients through a least squares estimate (see Figure 4

b). Each color channel is estimated separately. After draw-

ing a new curve pair, regression can be recomputed on the

fly. For our experiments we used spherical harmonics up to

degree 5.

In the second step the user marks the profile lines in the

input image for which relative depth will be estimated (Fig-

ure 4 c). The lines are arbitrary as long as they start and

end at contour points and the corresponding profiles do not

contradict. For each of the profile lines, we estimate the

corresponding depth profile by computing a shortest path in

a graph, which is described in the following.

We start by defining the set D = {n1, n2, ..., nN} ∈ R
3

of uniformly sampled normal directions and the color se-

quence along the profile line C = c1, c2, ..., cM ∈ R
3.

The graph consists of a set of M connected domes (half

spheres), one dome for each pixel in the profile line C (see

Figure 4 d) ). Each dome consists of N nodes, each repre-

senting one possible normal direction in D. Thus, the node

vij in the graph represents the j-th sampled normal direc-

tion in dome i for profile pixel i. Each node of dome i is

connected to the neighborhood of the same node in dome

i+ 1 containing all nodes of similar normal directions (see
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the neighborhood connections of node v in Figure 4 d) ).

Each path in the graph consists of M nodes (one in each

of the domes, i.e. one normal direction for each pixel in

the profile) representing one possible sequence of surface

normals from the start to the end point of the profile line.

The start and end normals are known, since the start and end

points of the profile line lie on the object contour. Hence,

their normals coincide with those of the silhouette at these

points.

We assume that the most likely path connecting the start

and end normal is the one with minimal color difference

between reflectance value and image color for each node

and minimal surface curvature in the sequence. The weight

for each edge is, therefore, defined as

w(vij , vi+1k) = λ · ‖ci+1 − ρ(nk)‖+ cos−1 < nj ,nk > .

The first term ensures that the color reflected in normal di-

rection nk is similar to the observed pixel color ci+1. The

second term penalizes large deviations of neighboring nor-

mals along the profile. We compute the shortest path in this

graph with Dijkstra’s algorithm to obtain the most likely se-

quence of normals (j1, .., jM ) ∈ DM by minimizing the

energy

E(v1j1 , .., vMjM ) =
M−1∑
i=1

w(viji , vi+1ji+1
). (5)

In the case of symmetric profiles we can increase the stabil-

ity and accuracy of the algorithm by adding the constraint

that each normal in the first half of the sequence must be the

mirrored version of its corresponding normal in the second

half. Integrating the computed sequence of normals will fi-

nally give us the depth values along the profile.

3.2. Relative Volume Ratios

The second type of constraint we propose are relative

volume ratios. A volume ratio constraint defines a fixed vol-

ume ratio for an object part with respect to the whole object,

e.g. we can define that the wings of the plane in Figure 7

should contain 25% of the volume of the whole plane. Such

relative volume constraints allow for protuberances, dents,

self-occlusions and holes in the reconstruction

To indicate the part of the object, where the volume ratio

constraint should be imposed, the user draws a region into

an arbitrary 3D view of the reconstruction as shown by the

pink region in Figure 2 e). Then he specifies a volume ratio

rp relative to the overall object volume V . Each voxel in the

reconstruction volume is then projected onto the viewing

plane of the camera. All voxels in R
3 which project into the

user drawn region constitute the constraint set T ⊂ R
3 on

which the volume ratio constraint is imposed. We introduce

this constraint into the depth profile energy ED

ER(u) = ED(u) s.t.

∫
T

u(x)d3x = rp

∫
u(x)d3x.

(6)

Constraints on volume ratios can either be imposed as an

additional constraint from the beginning or as a subse-

quent optimization problem after convergence of the orig-

inal problem. In the latter case holes can be created which

are not generated automatically by the silhouette constraint,

e.g. the upper handle of the watering can in Figure 2 e).

4. Implementation
We will now derive the final energy minimization prob-

lem in terms of the indicator functions ui. The size of the

object surface S in (2) can be written as the total variation∫
g(x)|∇u| d3x = sup

ξ:|ξ(x)|≤g(x)

(
−
∫

u(x) div ξ(x) d3x

)
,

where ξ ∈ C1
c (R

3,R3) denotes the dual variables and C1
c

the space of smooth functions with compact support. The

energy minimization problem (6) is defined for binary indi-

cator functions u. To obtain a convex optimization problem,

which can be solved globally optimally, we relax the set UΣ

to its convex hull, i.e. u : R
3 → [0, 1]. The constraints

for the global volume, the depth profiles and the volume ra-

tios are all linear constraints and thus convex. We introduce

them by means of Lagrange multipliers ν, μ, and γy . We

finally obtain the following saddle point problem:

max
|ξ(x)|≤g(x)

ν,γy,μ∈R
min
u∈UΣ

∫
−u div ξ d3x+ ν

(∫
u d3x− V

)
+

∑
y∈C

γy

(∫
Ry

u d3x− cy

∫
Rref

u d3x

)
+

μ

(∫
T

u d3x− vp

∫
u d3x

)
. (7)

Such problems can be solved with a fast and provably con-

vergent primal-dual scheme [11]. It consists of alternating

a gradient descent with respect to the function u and a gra-

dient ascent for the dual variables ξ, ν, γy and μ interlaced

with an over-relaxation step on the primal variable.

The texture is added to the reconstructions by an orthog-

onal projection. Since the reconstructions are silhouette-

consistent each surface point will be mapped to an image

point inside the object.

5. Experiments
In this section, we show 3D reconstruction results with

imposed relative volume constraints, i.e. profile constraints

and volume ratios. The relative depth profiles are hand
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a) Image b) Toeppe et al. [14] c) Reconstructions with depth profile constraints

Figure 5. 3D reconstruction result b) without additional constraints [14] and c) with relative depth profile constraints. The profile locations

in the 2D image plane are marked in red, the corresponding depth curves in pink.

drawn or were computed from shading information where

indicated. We also compare our results to previous single

view reconstruction approaches.

5.1. 3D Reconstruction with Volume Constraints

If no shape constraints such as depth profiles or volume

ratios are applied the reconstruction fails in many situations.

This is illustrated in the left-most reconstruction in Figures

5 and 7 for the approach by Toeppe et al. [14]. The re-

constructions fail due to self-occlusions such as the handle

of the watering can or the tires of the car. Especially for

the pyramid image, additional shape constraints are indis-

pensable to obtain a good reconstruction. To improve on

these failed reconstructions, in the following we will im-

pose depth profiles and volume ratio constraints.

5.1.1 Relative Depth Profiles

User Drawn Profiles Relative depth profiles determine

the basic shape of the object along an arbitrary cross sec-

tion. Figure 5 shows several reconstruction results based on

user drawn depth profiles. Since the profiles scale with the

volume, it suffices to indicate the profile line on the image

plane (here in red) together with a rough sketch of the cor-

responding depth (here in pink). The profile of the shoe,

for example, indicates that the shoe is wider at the front and

back and narrow in the middle. The profile imposed on the

vase makes it slimmer and a little more bulgy at the top.

For the pyramid we first reduced the value of the function

g in (2) at the base line of the pyramid so that it gets ex-

truded. However, as the result by [14] on the left shows this

extrusion is not sufficient to obtain a good reconstruction.

To model the pyramid’s triangular shape we imposed the

shape profile indicating a linear depth increase from the top

to the bottom. For the watering can we first imposed a user

drawn vertical profile as shown in Figure 2. We attenuated

the depth profile constraint with increasing distance from

the reference profile.

Shading Based Profiles Figure 6 shows reconstruction

examples based on depth profiles which were estimated

from shading information in the input image. To this end,

we used the semi-automatic procedure described in section

3.1. No further constraints have been manually applied.

Note that we can estimate the depth profile equally well on

shiny (mug) and diffuse (watering can) materials since we

estimate the reflectance function of the target object prior to

the shape. The estimated depth profiles for the watering can

are shown in Figure 4 e).

5.1.2 Relative Volume Ratio Constraints

Volume ratio constraints can be imposed to obtain protuber-

ances, dents, self-occlusions and holes. Figure 7 shows the

reconstruction of a tuba with a zero volume ratio constraint

for modeling the opening and a 30% volume constraint for
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Figure 6. 3D reconstruction results with automatically estimated depth profiles based on shading information.

inflating the thin tubes. For the airplane example, without

relative volume constraints [14] after reducing the weight g
along the wings we obtain the result in the left image with

rectangular wings, since the self-occlusions of the wings

cannot be modeled. By adding volume ratio constraints for

the wings requiring the side wings to contain 25% and the

tail wing 5% of the object volume we obtain the results with

self-occluding wings on the right. In the car example the

reconstruction without additional volume constraints yields

two very long tires instead of four normal ones, since the

empty space between the parallel tires cannot be inferred

without prior knowledge. By adding a volume ratio con-

straint with fraction zero we obtain four separate tires. For

the watering can we increased the thickness of the spout by

adding a 4% volume ratio constraint.

5.2. Previous Reconstruction Approaches

In this section we compare our results to state-of-the-art

single view reconstruction methods proposed by Prasad et

al. [12], Toeppe et al. [14] and Zhang et al. [15]. Figure

8 shows that the proposed method compares well to pre-

vious approaches, e.g. some reconstructions are less ball

shaped and thus look more realistic than for other methods.

In addition, the approaches by Zhang et al. and Prasad et al.

require substantially more user input.

6. Conclusion
In this paper we proposed to introduce relative volume

constraints into 3D reconstruction from a single image. Two

types of such constraints, relative depth profiles and volume

ratios, allow to impose shape on the object. We showed

that shape profiles can be automatically derived from the

shading information in the image. Shape profiles along

cross sections as well as protuberances, dents, occlusions

and holes can be easily introduced by means of a linearly

constrained variational approach with runtimes of several

seconds only.

a) b) c) d)
Figure 8. Different 3D Reconstruction results obtained with the

methods by a) Prasad et al. [12], b) Toeppe et al. [14], c) Zhang et

al. [15] and d) the proposed approach
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