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Abstract

Repeated structures such as building facades, fences or
road markings often represent a significant challenge for
place recognition. Repeated structures are notoriously hard
for establishing correspondences using multi-view geome-
try. Even more importantly, they violate the feature indepen-
dence assumed in the bag-of-visual-words representation
which often leads to over-counting evidence and significant
degradation of retrieval performance. In this work we show
that repeated structures are not a nuisance but, when ap-
propriately represented, they form an important distinguish-
ing feature for many places. We describe a representation
of repeated structures suitable for scalable retrieval. It is
based on robust detection of repeated image structures and
a simple modification of weights in the bag-of-visual-word
model. Place recognition results are shown on datasets
of street-level imagery from Pittsburgh and San Francisco
demonstrating significant gains in recognition performance
compared to the standard bag-of-visual-words baseline and
more recently proposed burstiness weighting.

1. Introduction
Given a query image of a particular street or a building, we

seek to find one or more images in the geotagged database

depicting the same place. The ability to visually recognize

a place depicted in an image has a range of potential ap-

plications including automatic registration of images taken

by a mobile phone for augmented reality applications [1]

and accurate visual localization for robotics [7]. Scalable

place recognition methods [3, 7, 18, 31, 37] often build on

the efficient bag-of-visual-words representation developed

for object and image retrieval [6, 13, 15, 24, 26, 40]. In an

offline pre-processing stage, local invariant descriptors are
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Figure 1. We detect groups of repeated local features (overlaid in

colors). The detection is robust against local deformation of the

repeated element and makes only weak assumptions on the spatial

structure of the repetition. We develop a representation of repeated

structures for efficient place recognition based on a simple modi-

fication of weights in the bag-of-visual-word model.

extracted from each image in the database and quantized

into a pre-computed vocabulary of visual words. Each im-

age is represented by a sparse (weighted) frequency vector

of visual words, which can be stored in an efficient inverted

file indexing structure. At query time, after the visual words

are extracted from the query image, the retrieval proceeds

in two steps. First a short-list of ranked candidate images is

obtained from the database using the bag-of-visual-words

representation. Then, in the second verification stage, can-

didates are re-ranked based on the spatial layout of visual

words.

A number of extensions of this basic architecture have
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been proposed. Examples include: (i) learning better visual

vocabularies [21, 28]; (ii) developing quantization methods

less prone to quantization errors [14, 27, 44]; (iii) combin-

ing returns from multiple query images depicting the same

scene [4, 6]; (iv) exploiting the 3D or graph structure of the

database [11, 20, 29, 42, 43, 47]; or (v) indexing on spatial

relations between visual words [5, 12, 48].

In this work we develop a scalable representation for

large-scale matching of repeated structures. While repeated

structures often occur in man-made environments – exam-

ples include building facades, fences, or road markings –

they are usually treated as nuisance and downweighted at

the indexing stage [13, 18, 36, 39]. In contrast, we develop

a simple but efficient representation of repeated structures

and demonstrate its benefits for place recognition in urban

environments. In detail, we first robustly detect repeated

structures in images by finding spatially localized groups

of visual words with similar appearance. Next, we mod-

ify the weights of the detected repeated visual words in

the bag-of-visual-word model, where multiple occurrences

of repeated elements in the same image provide a natural
soft-assignment of features to visual words. In addition the

contribution of repetitive structures is controlled to prevent

dominating the matching score.

The rest of the paper is organized as follows. After

describing related work on finding and matching repeated

structures (Section 1), we review in detail (Section 2) the

common tf-idf visual word weighting scheme and its ex-

tensions to soft-assignment [27] and repeated structure sup-

pression [13]. In Section 3 we describe our method for

detecting repeated visual words in images. In Section 4,

we describe the proposed model for scalable matching of

repeated structures, and demonstrate its benefits for place

recognition in section 5.

Related work. Detecting repeated patterns in images is a

well-studied problem. Repetitions are often detected based

on an assumption of a single pattern repeated on a 2D (de-

formed) lattice [10, 19, 25]. Special attention has been paid

to detecting planar patterns [35, 38] and in particular build-

ing facades [3, 9, 45], for which highly specialized grammar

models, learnt from labelled data, were developed [23, 41].

Detecting planar repeated patterns can be useful for sin-

gle view facade rectification [3] or even single-view 3D re-

construction [46]. However, the local ambiguity of repeated

patterns often presents a significant challenge for geometric

image matching [33, 38] and image retrieval [13].

Schindler et al. [38] detect repeated patterns on build-

ing facades and then use the rectified repetition elements

together with the spatial layout of the repetition grid to es-

timate the camera pose of a query image, given a database

of building facades. Results are reported on a dataset of 5

query images and 9 building facades. In a similar spirit,

Doubek et al. [8] detect the repeated patterns in each image

and represent the pattern using a single shift-invariant de-

scriptor of the repeated element together with a simple de-

scriptor of the 2D spatial layout. Their matching method is

not scalable as they have to exhaustively compare repeated

patterns in all images. In scalable image retrieval, Jegou et
al [13] observe that repeated structures violate the feature

independence assumption in the bag-of-visual-word model

and test several schemes for down-weighting the influence

of repeated patterns.

2. Review of visual word weighting strategies
In this section we first review the basic tf-idf weighting

scheme proposed in text retrieval [32] and also commonly

used for the bag-of-visual-words retrieval and place recog-

nition [3, 6, 12, 13, 18, 24, 26, 40]. Then, we discuss the

soft-assignment weighting [27] to reduce quantization er-

rors and the ‘burstiness’ model recently proposed by Je-

gou et al. [13], which explicitly downweights repeated vi-

sual words in an image.

Term frequency–inverse document frequency weighting.
The standard ‘term frequency–inverse document frequency’

(tf–idf) weighting [32], is computed as follows. Suppose

there is a vocabulary of V visual words, then each image is

represented by a vector

vd = (t1, ..., ti, ..., tV )
� (1)

of weighted visual word frequencies with components

ti =
nid

nd
log

N

Ni
, (2)

where nid is the number of occurrences of visual word i
in image d, nd is the total number of visual words in the

image d, Ni is the number of images containing term i,
and N is the number of images in the whole database.

The weighting is a product of two terms: the visual word
frequency, nid/nd, and the inverse document (image) fre-
quency, logN/Ni. The word frequency weights words oc-

curring more often in a particular image higher (compared

to visual word present/absent), whilst the inverse document

frequency downweights visual words that appear often in

the database, and therefore do not help to discriminate be-

tween different images. At the retrieval stage, images are

ranked by the normalized scalar product (cosine of angle)

fd =
vq
�vd

‖vq‖2 ‖vd‖2 (3)

between the query vector vq and all image vectors vd in the

database, where ‖v‖2 =
√
v�v is the L2 norm of v. When

both the query and database vectors are pre-normalized to

unit L2 norm, equation (3) simplifies to the standard scalar

product, which can be implemented efficiently using in-

verted file indexing schemes.
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Soft-assignment weighting. Visual words generated

through descriptor clustering often suffer from quantiza-

tion errors, where local feature descriptors that should be

matched but lie close to the Voronoi boundary are incor-

rectly assigned to different visual words. To overcome this

issue, Philbin et al. [27] soft-assign each descriptor to sev-

eral (typically 3) closest cluster centers with weights set ac-

cording to exp− d2

2σ2 , where d is the Euclidean distance of

the descriptor from the cluster center and σ is a parameter

of the method.

Burstiness weighting. Jegou et al. [13] study the effect

of visual “burstiness”, i.e. that a visual-word is much more

likely to appear in an image, if it has appeared in the im-

age already. Burstiness has been also studied for words in

text [17]. Jegou et al. observe by counting visual word oc-

currences in a large corpus of 1M images that visual words

occurring multiple times in an image (e.g. on repeated struc-

tures) violate the assumption that visual word occurrences

in an image are independent. Further they observe that the

bursted visual words can negatively affect retrieval results.

The intuition is that the contribution of visual words with

a high number of occurrences towards the scalar product in

equation (3) is too high. In the voting interpretation of the

bag-of-visual-words model [12], bursted visual words vote

multiple times for the same image. To see this, consider an

example where a particular visual word occurs twice in the

query and five times in a database image. Ignoring the nor-

malization of the visual word vectors for simplicity, multi-

plying the number of occurrences as in (3) would result in

10 votes, whereas in practice only up to two matches (cor-

respondences) can exist.

To address this problem Jegou et al. propose to down-

weight the contribution of visual words occurring mul-

tiple times in an image, which is referred to as intra-

image burrstiness. They experiment with different weight-

ing strategies and empirically observe that down-weighting

repeated visual words by multiplying the term frequency in

equation (3) by factor 1√
nid

, where nid is the number of

occurrences, performs best. Similar strategies to discount

repeated structures when matching images were also used

in [36, 39].

Note that Jegou et al. also consider a more precise de-

scription of local invariant regions quantized into visual

words using an additional binary signature [12] more pre-

cisely localizing the descriptor in the visual word Voronoi

cell. For simplicity, we do not consider this representation

here.

In contrast to downweighting repeated structures based

on globally counting feature repetitions across the entire

image, we (i) explicitly detect localized image areas with

repetitive structures, and (ii) use the detected local repe-

titions to adaptively adjust the visual word weights in the

soft-assigned bag-of-visual words model. The two steps are

described next.

3. Detection of repetitive structures

The goal is to segment local invariant features detected in

an image into localized groups of repetitive patterns and a

layer of non-repeated features. Examples include detecting

repeated patterns of windows on different building facades,

as well as fences, road markings or trees in an image (see

figure 2). We will operate directly on the extracted local fea-

tures (rather than using specially designed features [9]) as

the detected groups will be used to adjust feature weights in

the bag-of-visual-words model for efficient indexing. The

feature segmentation problem is posed as finding connected

components in a graph.

In detail, we build an (undirected) feature graph G =
(V,E) with N vertices V = {(xi, si,di)}Ni=1 consisting of

local invariant features at locations xi, scales si and with

corresponding SIFT descriptors di. Each SIFT descriptor

is further assigned to the top K = 50 nearest visual words

from a pre-computed visual vocabulary (see section 5 for

details). Two vertices (features) are connected by an edge

if they have close-by image position as well as similar scale

and appearance. More formally, a pair of vertices Vi and

Vj is connected by an edge if the following three conditions

are satisfied:

1. The spatial L2 distance ‖xi − xj‖ between features

satisfies ‖xi − xj‖ < c (si + sj) where c is a constant

(we set c = 10 throughout experiments);

2. The ratio σ of scales of the two features is in 0.5 <
σ < 1.5;

3. The features share at least one common visual word in

their individual top K visual word assignments. Note

that this condition avoids directly thresholding the dis-

tance between the SIFT descriptors of the two features,

which we found unreliable.

Having built the graph, we group the vertices (image fea-

tures) into disjoint groups by finding connected components

of the graph [30]. These connected components group to-

gether features that are spatially close, and are also simi-

lar in appearance as well as in scale. In the following, we

will call the detected feature groups “repttiles” for “tiles (re-

gions) of repetitive features”.

Figures 1 and 2 show a variety of examples of detected

patterns of repeated features. Only connected components

with more than 20 image features are shown as colored dots.

Note that the proposed method makes only weak assump-

tions on the type and spatial structure of repetitions, not re-

quiring or attempting to detect, for example, feature sym-

metry or an underlying spatial lattice.
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Figure 2. Examples of detected repetitive patterns of local invariant features (“repttiles”) in images from the INRIA Holidays dataset [13].

The different repetitive patterns detected in each image are shown in different colors. The color indicates the number of features in each

group (red indicates large and blue indicates small groups). Note the variety of detected repetitive structures such as different building

facades, trees, indoor objects, window tiles or floor patterns.

4. Representing repetitive structures for scal-
able retrieval

In this section we describe our image representation for ef-

ficient indexing taking into account the repetitive patterns.

The proposed representation is built on two ideas. First,

we aim at representing the presence of a repetition, rather

than measuring the actual number of matching repeated el-

ements. Second, we note that different occurrences of the

same visual element (such as a facade window) are often

quantized to different visual words naturally representing

the noise in the description and quantization process as well

as other non-modeled effects such as complex illumination

(shadows) or perspective deformation. We take advantage

of this fact and design a descriptor quantization procedure

that adaptively soft-assigns local features with more repe-

titions in the image to fewer nearest cluster centers. The

intuition is that the multiple examples of a repeated feature

provide a natural and accurate soft-assignment to multiple

visual words.

Formally, an image d is represented by a bag-of-visual-

words vector

rd = (r1, ..., ri, ..., rV )
� (4)

where the i-th visual word weight

ri =

{
wid if 0 ≤ wid < T

T if T ≤ wid

(5)

is obtained by thresholding weights wid by a threshold T .

Note that the weighting described in equation (5) is similar

to burstiness weighting, which down-weights repeating vi-

sual words. Here, however, we represent highly weighted

(repeating) visual words with a constant T as the goal is

to represent the occurrence (presence/absence) of the visual

word, rather than measuring the actual number of occur-

rences (matches).

Weight wid of the i-th visual word in image d is obtained

by aggregating weights from adaptively soft-assigned fea-

tures across the image taking into account the repeated im-

age patterns. In particular, each feature f from the set Fd

of all features detected in image d is assigned to a kf -tuple

Vf of indices of the kf nearest (in the feature space) visual

words. Thus, Vf (k) for 1 ≤ k ≤ kf is the index of the

k-th nearest visual word to f . The number kf , which varies

between 1 and kmax, will be defined below. Weight wid is

computed as

wid =
∑
f∈Fd

kf∑
k=1

1[Vf (k) = i]
1

2k−1
(6)

where the indicator function 1[Vf (k) = i] is equal to 1 if vi-

sual word i is present at the k-th position in Vf . This means

that weight wid is obtained as the sum of contributions from

all assignments of visual word i over all features in Fd. The

contribution of an individual assignment depends on the or-

der k of the assignment in Vf by the weight 1/(2k−1). The

number kf is computed by the following formula

kf =

⌈
kmax

log(nd+1
mf

)

maxf∈Fd
log(nd+1

mf
)

⌉
(7)

where kmax is the maximum number of assignments

(kmax = 3 in all our experiments), and mf is the number

of features in the repttile of f . We use �a� = ceiling(a),
i.e. �a� is the smallest integer greater than or equal to a.

Note that image features belonging to relatively larger rept-

tiles are soft-assigned to fewer visual words as image rep-

etitions provide a natural soft-assignment of the particular
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(a) Query (b) Top match (ours) (c) Top match [13]
Figure 3. Examples of place recognition results on the Pittsburgh dataset. Each row shows the query image (a), the best matching

database image (b) correctly matched by the proposed method, and the best matching image (incorrect) using the baseline burstiness

method [13] (c). The detected groups of repetitive features (“repttiles”) are overlaid over the image and color-coded according to the

number of visual word assignments kf (red kf = 2, green kf = 1). Non-repetitive features (kf = 3) are not plotted for the clarity. Note

that the number of soft-assignments for each feature is adapted to the size of the repttile, where features in bigger repttiles are assigned to

a smaller number of nearest visual words.

repeating scene element to multiple visual words. This nat-

ural soft-assignment is more precise and less ambiguous

than the standard soft-assignment to multiple nearest visual

words [27] as will be demonstrated in the next section.

5. Experiments
In this section we describe the experimental validation of

our approach. First, we describe the experimental set-up

and give the implementation details. Then we compare the

place recognition performance of the proposed method with

several baseline methods.

Experimental set-up. The geotagged image database is

formed by 254, 064 perspective images generated from

10, 586 Google Street View panoramas of the Pittsburgh

area downloaded from the the Internet. From each

panorama of 6, 656×3, 328 pixels, we generate 24 perspec-

tive images of 640×480 pixels (corresponding to 60 degrees

of horizontal FOV) with two yaw directions [4, 26.5] and

12 pitch [0, 30, ..., 360] directions. This is a similar setup

to [3]. As testing query images, we use 24, 000 perspec-

tive images generated from 1, 000 panoramas randomly se-

lected from 8, 999 panoramas of the Google Pittsburgh Re-

search Data Set1. The datasets are visualized on a map in

figure 5(a). This is a very challenging place recognition set-

1Provided and copyrighted by Google.

up as the query images were captured in a different session

than the database images and depict the same places from

different viewpoints, under very different illumination con-

ditions and, in some cases, in a different season. But at the

same time the ground truth GPS positions for the query test

images are known. Note also the high number of test query

images compared to other existing datasets [3, 18].

Implementation details. We build a visual vocabulary

of 100,000 visual words by approximate k-means cluster-

ing [22, 26]. The vocabulary is built from features detected

in a subset of 10, 000 randomly selected database images.

We use the SIFT descriptors with estimated orientation for

each feature (not assuming the upright image gravity vec-

tor) followed by the RootSIFT normalization [2].

Place recognition performance. We compare results of

the proposed adaptive (soft-)assignment approach (Adap-

tive weights) with several baselines: the standard tf-idf

weighting (tf-idf) [26], burstiness weights (brst-idf) [13],

standard soft-assignment weights [27] (SA) and Fisher vec-

tor matching (FV) [16]. Following [16], we constructed

Fisher vectors from SIFT descriptors reduced to 64 dimen-

sions by PCA, and used 512 Gaussian mixture compo-

nents. The Gaussian mixture models were trained on the

same dataset, which was used to build the visual vocabu-

lary. As in [16], resulting 512x64 dimensional descriptors
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(a) Query (b) Top match (ours) (c) Top match [3]
Figure 4. Examples of place recognition results on the San Francisco dataset. Each row shows the query image (a), the best matching

database image (b) correctly matched by the proposed method, and the best matching image (incorrect) using [3] (c). See the caption of

figure 3 for details of feature coloring.
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Figure 5. Evaluation on the Pittsburgh dataset. (a) Locations of query (yellow dots) and database (gray dots) images. (b-c) The fraction

of correctly recognized queries (Recall, y-axis) vs. the number of top N retrieved database images (x-axis) for the proposed method

(Adaptive weights) compared to several baselines.

are then reduced to 2048 (FV2048) or 8192 (FV8192) di-

mensions using PCA. For each method, we measure the per-

centage of correctly recognized queries (Recall) similarly

to, e.g. [3, 18, 34]. The query is correctly localized if at

least one of the top N retrieved database images is within

m meters from the ground truth position of the query.

The ground truth is derived from the (known) GPS po-

sitions of the query images. We have observed that GPS

positions of Street View panoramas are often snapped to

the middle of the street. The accuracy of the GPS positions

hence seems to be somewhere between 7 and 15 meters.

Results for different methods for m = 25 meters and vary-

ing value of N are shown in figure 5 (b). Figure 3 shows

examples of place recognition results.

Sensitivity to parameters. The weight threshold T in

eq. (5) is an important parameter of the method and its set-

ting may depend on the dataset and size of the visual vocab-

ulary. In the Pittsburgh database, since 97 % of wid are less

or equal to 1, T = 1 effectively downweights unnecessary

bursted visual words. Figure 5 (c) shows the evaluation of

place recognition performance for different values of T . In

the following we use T = 1 (unless stated otherwise).

Next, we evaluate separately the benefits of the two com-

ponents of the proposed method with respect to the baseline

burstiness weights: (i) thresholding using eq. (5) results

in +8.92% and (ii) adaptive soft-assignment using eq. (6)

and (7) results in +10.30%. When the two are combined

the improvement is +11.97%. This is measured for the dis-
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Figure 6. Evaluation on the San Francisco [3] dataset. The frac-

tion of correctly recognized queries (Recall, y-axis) vs. the num-

ber of top N retrieved database images (x-axis) for the proposed

method (Adaptive weights) compared to several baselines.

Table 1. mAP on INRIA Holidays and Oxford Building datasets.

Here we use 200K visual vocabulary built from RootSIFT [2] fea-

tures and T = 5 (different choices of T had small effect on the

result).

tf-idf [26] brst-idf [13] SA [27] Proposed

INRIA 0.7364 0.7199 0.74838 0.7495
Oxford 0.6128 0.6031 0.6336 0.6565

tance threshold m = 25 meters and for the top N = 10 but

we have observed that the improvements are consistent over

a range of N (not shown).

Finally, we have also tested different parameters of the

adaptive soft-assignment (eq. (6) and (7)). The method is

fairly insensitive to the choice of the maximum number of

assignments kmax, where values of 2 to 5 result in a similar

performance. We use kmax = 3 following [27]. The base of

the exponential in eq. (6) is chosen so that weights decrease

with increasing k and we found 1/2 work well. In general,

this value needs to be set experimentally, similarly to the

sigma parameter in the standard soft-assignment [27].

Scalability. Our adaptive soft-assignment can be indexed

using standard inverted files and in terms of memory re-

quirements compares favorably with respect to the standard

soft-assignment and Fisher vector representation. Our tf-idf

vectors are about 7.2% sparser than for [27] and the mem-

ory footprint is about 6.2% smaller than for the FV2048

representation while achieving better place recognition per-

formance.

Evaluation on different datasets. We have also evalu-

ated the proposed method on the San Francisco visual place

recognition benchmark [3]. We have built a vocabulary of

100,000 visual words from upright RootSIFT [2] features

extracted from 10,000 images randomly sampled from the

San Francisco 1M image database [3]. We have not used

the histogram equalization suggested by [3] as it did not im-

prove results using our visual word setup. Performance is

measured by the recall versus the number of top N database

candidates in the shortlist as in figure 7(a) in [3]. Results

for the different methods are shown in figure 6. The results

of [3] were obtained directly from the authors but to remove

the effect of geometric verification we ignored the threshold

on the minimum number of inliers by setting TPCI = 0.

Note also that the GPS position of the query image was not

used for any of the compared methods. The pattern of re-

sults is similar to the Pittsburgh data with our adaptive soft-

assignment method (Adaptive weights) performing best and

significantly better than the method of [3] underlying the

importance of handling repetitive structures for place recog-

nition in urban environments. Example place recognition

results demonstrating benefits of the proposed approach are

shown in figure 4.

We have also evaluated the proposed method for retrieval

on the standard INRIA Holidays [13] and Oxford Buildings

datasets [26], where performance is measured by the mean

Average Precision (mAP). Results are summarized in ta-

ble 1 and demonstrate the benefits of the proposed approach

over the baseline methods.

6. Conclusion

In this work we have demonstrated that repeated struc-

tures in images are not a nuisance but can form a distin-

guishing feature for many places. We treat repeated vi-

sual words as significant visual events, which can be de-

tected and matched. This is achieved by robustly detect-

ing repeated patterns of visual words in images, and adjust-

ing their weights in the bag-of-visual-word representation.

Multiple occurrences of repeated elements are used to pro-

vide a natural soft-assignment of features to visual words.

The contribution of repetitive structures is controlled to pre-

vent dominating the matching score. We have shown that

the proposed representation achieves consistent improve-

ments in place recognition performance in an urban envi-

ronment. In addition, the proposed method is simple and

can be easily incorporated into existing large scale place

recognition architectures.
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