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Abstract

Recent work in computer vision has addressed zero-shot

learning or unseen class detection, which involves cate-
gorizing objects without observing any training examples.
However, these problems assume that attributes or defin-
ing characteristics of these unobserved classes are known,
leveraging this information at test time to detect an unseen
class. We address the more realistic problem of detecting
categories that do not appear in the dataset in any form. We
denote such a category as an unfamiliar class; it is neither
observed at train time, nor do we possess any knowledge
regarding its relationships to attributes. This problem is
one that has received limited attention within the computer
vision community. In this work, we propose a novel ap-
proach to the unfamiliar class detection task that builds on
attribute-based classification methods, and we empirically
demonstrate how classification accuracy is impacted by at-
tribute noise and dataset “difficulty,” as quantified by the
separation of classes in the attribute space. We also present
a method for incorporating human users to overcome defi-
ciencies in attribute detection. We demonstrate results supe-
rior to existing methods on the challenging CUB-200-2011
dataset.

1. Introduction
A recent trend in the computer vision community is the

use of high-level visual features or attributes as semantic

cues in addressing various problems. Attributes can be used

to describe and differentiate classes [18, 12, 16], and in-

formation about attributes and their values can be exploited

in order to perform unseen class detection, where the goal

is to categorize objects into classes for which we have no

training examples (i.e. the train and test sets are disjoint).

For example, a visual recognition system for North

American bird species that has not been trained on images

of Indigo Buntings can still maintain a database listing the

species’ distinguishing attributes, such as having blue bel-

lies and black legs. Should the system then detect the pres-

Long�bill Can’t�fly In�forest Near water

Unfamiliar�or�not?

Q
U

E
R

Y
�I

M
A

G
E

(S
ee
n�
cl
as
se
s)

(U
ns
ee
n)

Class�attribute�matrix
K

N
O

W
N

�D
A

T
A

UNFAMILIAR

Match�class?�NO
Not�in�training

Match�class?�YES
Not�in�training

FAMILIAR

Match�class?�YES
Images�in�training

FAMILIAR

Training� images

Figure 1: We address unfamiliar class detection, in which

the goal is to predict if an input image belongs to an

unfamiliar class (right query), defined by its lack of ob-

served training examples and unknown class-attribute re-

lationships. We contrast this with unseen classes (middle

query), which do not occur in training but have entries in

the class-attribute matrix. Seen classes (left query) will oc-

cur both in training as well as the class-attribute matrix. Un-

familiar class detection is a challenging problem, given that

the system must be able to distinguish between a difficult

example of a known class and a truly unfamiliar class.

ence of these attributes in a test example, it can predict

with high confidence that the bird in question is an Indigo

Bunting without ever having seen examples of that species.

These applications typically assume that sufficient

knowledge of the characteristics of unseen classes is pro-

vided or can be extracted prior to test time [18, 12, 16, 11,

25, 31]. In this work, we study the related and more chal-

lenging problem of detecting unfamiliar classes. The dis-

tinction between an unfamiliar class and an unseen class

lies in the amount of knowledge regarding the category that

is available to the system. While examples belonging to

unfamiliar and unseen classes are both unobserved during
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training, unfamiliar classes lack entries in the matrix defin-

ing class-attribute associations; in contrast, an unseen class’

relationship to attributes is known. In the North American

bird recognition system example, this would be akin to sub-

mitting an image of a Kiwi (a bird species native to New

Zealand) and asking the system to recognize it. The sys-

tem has no prior knowledge about what attributes describe

a Kiwi and has never seen an image of one before (see right

query image in Figure 1).

The problem of unfamiliar class detection marks a de-

parture from the predominant closed-set approach to visual

categorization, in which the goal is to classify test examples

as one of a fixed set of possible classes. While this closed-

set approach has enabled scientific progress within the field,

the datasets used may suffer from biases and restrictions

that can be exploited by certain algorithms [30, 35].

This focus on closed-set problems is in part because they

are more feasible to address. Standard recognition algo-

rithms have been trained on datasets [13, 14, 32, 10] of up to

hundreds of basic-level visual categories; however, the set

of human-recognizable basic-level categories has been esti-

mated to be roughly 30, 000 [4], and these datasets cover

only a small portion of this variety. Large-scale catego-

rization datasets such as ImageNet [7] provide significantly

more coverage of the visual category space; nevertheless, it

is in reality very challenging, if not impossible, to inventory

all visual objects with category labels, and there will always

exist classes that are unfamiliar to any given dataset.

As such, detecting unfamiliar classes becomes a signif-

icant problem as recognition systems improve and are de-

ployed in the wild. This issue is especially relevant for fine-

grained categorization systems [24, 17, 23, 6, 37], as these

systems are often of limited scope (e.g. North American

birds, plants of the Northeast U.S.). Moreover, human users

will not necessarily have the domain knowledge to perform

verification or identify if the true class is in the dataset, as

the distinctions between fine-grained categories (e.g. Mal-

lard, Cardinal), which comprise a basic-level category (e.g.

bird), can be subtle.

While unseen class detection is similar in spirit, unfamil-

iar class detection is a more salient problem in practice, yet

also one that has been widely overlooked in the computer

vision community. Our goals in this paper are to study this

problem by means of an attribute-based approach and ana-

lyze the specific challenges associated with it. Attributes are

a powerful high-level representation of visual features, ca-

pable of describing an exponential number of classes. Fur-

thermore, they are often semantically meaningful to human

users. In a problem as challenging as detecting unfamiliar

classes, it is important to have a means of incorporating hu-

mans into the loop, as human users can be engaged at test

time to bring performance up to a desired level.

However, the use of attributes contributes to various
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Figure 2: Bird-Families Dataset. From CUB-200-
2011 [38], we created a 40-class dataset of 20 manually

identified taxonomic families. One class is kept as a seen

class and the other class is deemed unfamiliar. Refer to Fig-

ure 4 for additional pairs.

challenges in unfamiliar class detection. First, there is an

indeterminate amount of error in attribute values that can

arise from either attribute detectors or user labels. Second,

the number of differing attributes between classes quantifies

how distinct the classes are; if the classes have low separa-

tion in the attribute space, the dataset will be more “diffi-

cult” and less robust to attribute noise.

Our contribution is three-fold: (1) we present a novel

attribute-based algorithm for unfamiliar class detection; (2)

we empirically demonstrate how accuracy in detecting un-

familiar classes is affected by the aforementioned chal-

lenges; and (3) we support the addition of humans into the

loop in the form of attribute responses. We demonstrate re-

sults on the CUB-200-2011 [38] dataset.

The paper is organized as follows. In Section 2, we dis-

cuss related work. In Section 3, we formalize the unfamiliar

class detection problem and describe our approach. We re-

view implementation details in Section 4, and in Section 5,

we present our experiments and discuss our results.

2. Related Work
Recent work addressing the problem of zero-shot learn-

ing or unseen class detection has taken advantage of the

generality of high-level attribute descriptions [18, 12, 16,

11, 25]. Some methods treat zero-shot learning as a nearest-

neighbor problem, classifying a test image as the category

with the most similar attribute description [12, 25]. These

applications typically assume that sufficient knowledge of

the characteristics of the unseen classes is provided or can

be extracted prior to test time. These characteristics can

come in various forms, including binary attribute descrip-

tions [25] or relative relationships between attributes [27].

Of the limited works that do address unfamiliar class detec-

tion [12, 19], the focus is on basic-level categories, whereas

we focus on detecting unfamiliar fine-grained categories.

Approaches to large-scale multi-class classification ad-
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dress the computational infeasibility of testing against all

possible classes by using a hierarchical tree structure of

classifiers [15, 1, 8]. However, these methods do not deal

with unfamiliar classes that may be encountered at test time.

Other work directly addresses the novel category scenario in

large-scale recognition by having a user provide a set of im-

ages belonging to an unfamiliar class [3]; the focus in this

case is on retrieval, as the novelty of the test class is known.

For unfamiliar classes, the primary challenge is that

the class-attribute relationships are unknown. Determin-

ing class-attribute associations is a non-trivial task. The

associations can potentially be manually assigned by hu-

man subjects or experts with appropriate domain knowl-

edge [18, 6]; other work has focused on determining these

associations either automatically by mining natural lan-

guage resources [31, 2] or interactively by using human

guidance [26]. While the attributes can be harvested with

varying levels of automation, the class-attribute descriptions

are generally assumed to be determined or obtained prior to

testing. In this work, our goal is to detect unfamiliarity, and

we do not aim to determine true class-attribute descriptions.

Mahajan et al. [20] address a problem similar to unfa-

miliar class detection but make some different assumptions.

Their method learns the class-attribute relationships in ad-

dition to the attribute classifiers, eliminating the need for

prior knowledge of these associations. However, the num-

ber of unfamiliar classes must be specified beforehand. We

do not place such restrictions on the unfamiliar classes; ex-

amples from both seen and unfamiliar classes occur at test

time, and we assume that all classes (seen and unfamiliar)

can be characterized by the same super set of attributes.

In the machine learning literature, there is significant rel-

evant work on novelty detection [21, 22], which includes

techniques such as one-class classification methods [34, 5].

We note that among fine-grained visual categories of the

same basic-level category, the interclass variation lies at the

attribute level, and an unfamiliar class represents an un-

known combination of these attributes. A one-class SVM

cannot adequately characterize these fine-grained distinc-

tions, which we empirically demonstrate in Section 5.1.

Others have addressed the open-set problem in recogni-

tion, where classes not seen in training may occur in testing;

this issue is frequently encountered in the biometric verifi-

cation setting, such as for face recognition or matching [33].

This work presents an approach to unfamiliar class detec-

tion in the visual categorization setting that uses high-level

attribute features and is not application specific.

3. Approach

In this section, we introduce our algorithm for perform-

ing unfamiliar class detection using knowledge of attributes

and present a method for incorporating user responses.

3.1. Problem formulation

Given an image x, our goal is to predict whether the true

object class c for x belongs to the set of seen classes c ∈ S ,

where |S| = C, or is an unfamiliar class c ∈ U , where

U is the set of unfamiliar classes. The random variable

g ∈ {0, 1} denotes this characteristic of being unfamiliar.

For fine-grained categories, we assume that images from

seen and unfamiliar classes all contain an object belonging

to the same basic-level category, that is, we do not address

detecting object presence.

We assume that all classes c ∈ S ∪ U can be represented

using a shared vocabulary of A attributes (e.g. striped wing,

red crown, etc.) and can be described with a unique deter-

ministic vector of attributes ac = [ac1, . . . , a
c
A], a

c
i ∈ 0, 1, as

in [18]. Unfamiliar classes differ from seen classes in that

their attribute values and distributions are not known.

This assumption is reasonable given a sufficiently large

attribute vocabulary, with which we can theoretically repre-

sent an exponential number of classes; in practice, it enables

us to capture a significant amount of variation in attributes

that may represent new categories. Detecting an unfamiliar

class therefore involves predicting an unfamiliar combina-

tion of attributes, such that it does not correspond with any

known class-attribute relationships.

We note that if an unfamiliar class is detected, a neces-

sary task is to verify this prediction. In addition to verifying

it is indeed a new class, one potentially would want to assign

a descriptive label to this new class, as well as determine its

true attribute description. Both the verification and naming

of unfamiliar classes are non-trivial tasks, and we assume

that they will be performed by an expert with necessary do-

main knowledge. This expert interaction stage would occur

offline and is a different line of work. We do note that pro-

viding an estimate for unfamiliarity is still of value in this

scenario, as it reduces reliance on the expert.

3.2. Detecting unfamiliar classes

Our goal in unfamiliar class detection is to estimate the

probability of an incoming test example belonging to an

unfamiliar class in U . We first define the per-class prob-

abilities, which are used in determining unfamiliarity. The

probability of the object class c belonging to any of the indi-

vidual seen classes in S, given the image pixels x, is p(c|x)
and can be determined in terms of attributes:

p(c|x) =
∫
a

p(c|a, x)p(a|x)dx. (1)

We assume a direct-class attribute model, such that

p(c|a, x) is nonzero only when a = ac, where ac is the

ground truth attribute vector for class c. Together with

our assumption that the class can be fully determined by

a unique attribute membership vector, the integral of Equa-
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tion 1 can then be expressed as:

p(c|x) = p(c|ac, x)p(ac|x) = p(c|ac)p(ac|x). (2)

If ∀c′ �= c then ac
′ �= ac, this can be represented as p(ac|x).

Estimating the probability of object class c ∈ U is equiv-

alent to estimating how unlikely a test example belongs to

any seen class in S:

p(g|x) =
∏
c

(1− Zp(c|x)), (3)

where p(g|x) is the probability the class is unfamiliar, and

Z represents a normalization term β + α
∑C

c=1 p(c|x). We

cannot assume the true class of a test example belongs to

the set of seen classes in S and normalize directly with∏
c p(c|x), so we learn α and β terms on a validation set

to maximize the log-likelihood
∑

j log p(gj |xj).
The validation set contains seen as well as unfamiliar ex-

amples. Note that the unfamiliar examples in validation and

testing are drawn from disjoint sets of categories. While we

are unable to learn parameters that optimize for unfamiliar

classes in the test set, we assume that all possible unfamiliar

classes are drawn from the same basic-level category and

thus validate on other classes within this basic-level cate-

gory. Intuitively, classes that share a basic-level category

are likely to have visual similarities (e.g. birds share body

parts like beaks and wings).

3.3. Incorporating computer vision

Under the assumption of mutual independence of at-

tributes, we estimate the attribute probabilities using binary

attribute classifiers. We convert the attribute classification

scores zi = aci 〈wi, x〉, i ∈ 1 . . . A, to probabilities by fit-

ting a sigmoid function σ(γazi) [29]:

p(ac|x) =
A∏
i=1

p(aci |x) =
A∏
i=1

σ(γazi), (4)

where aci ∈ {−1, 1} and zi is a linear function of the im-

age pixels. The parameters wi are the learned weights of

each of the attribute classifiers. The sigmoid parameter γa
is learned on a validation set (as in Section 3.2) for each at-

tribute ai, to maximize the log-likelihood
∑

j log p(ai|xj).
In practice, this approach worked better than maximizing

over the log-likelihood probability of belonging to an unfa-

miliar class, as attribute classifier performance and robust-

ness play a large role in accurately predicting unfamiliarity.

3.4. Incorporating user responses

An advantage of an attribute-based approach is the abil-

ity to incorporate human responses. Our framework for

unfamiliar class detection supports the addition of human

users, who can boost performance by replacing outputs of

poor attribute detectors. We model the set of user attribute

responses U in a similar fashion as [37, 6]. Given the as-

sumptions from Section 3.2, we express the per-class prob-

abilities p(c|U, x) as:

p(c|U, x) = p(U |ac, x)p(ac|x)
p(U |x) . (5)

A user’s perception of an attribute value ai is denoted as

a random variable ãi, and we assume attribute values are

perceived independently:

p(U |x) =
∏
ãi∈U

p(ãi). (6)

It remains for us to estimate p(U |ac, x). We assume that

a user’s perception of attribute ãi is dependent only on the

ground truth attribute aci :

p(U |ac, x) =
∏
ãi∈U

p(ãi|aci )γ = exp {
∑
ãi∈U

γ log p(ãi|aci )},

(7)

and as in Section 3.2, we learn the parameter γ with cross-

validation. Using parameters learned on Mechanical Turk

responses, we can estimate p(ãi|aci ) for each attribute.

4. Implementation Details
In this section, we briefly discuss the datasets, features,

and computer vision algorithms used.

4.1. Datasets

We created two collections drawn from CUB for experi-

ments: All-Birds, and Bird-Families. The All-Birds collec-

tion uses 150 of the 200 available categories; 100 of those

classes were randomly selected to be kept as seen classes,

and another 50 randomly selected classes were denoted un-

familiar. Images from the unfamiliar categories were then

removed from the train set. We also removed correspond-

ing entries in the class-attribute matrix for the unfamiliar

classes. At test time, we included examples from the 150

classes. We performed 5-fold cross validation on random

sets of 10 unfamiliar classes drawn from the remaining 50

classes that did not appear in training or testing.

The Bird-Families collection consists of classes selected

from 20 manually identified taxonomic families within the

CUB dataset (see Figures 2 and 4 for examples). We de-

termined families based on taxonomic classification (e.g.

Least Terns and Arctic Terns are considered to be from the

family Tern), keeping the 20 families with the most classes.

We note that species that are considered similar in terms

of their scientific classification often share many visual fea-

tures, but visual similarity is not a precondition.

From each family, we randomly selected one class to

be included in the dataset as seen, and we selected a sec-

ond class as an unfamiliar category. The resulting collec-

tion eliminates many classes that fall under the same family
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(for instance, CUB includes 25 species of Warblers) and are

commonly confused. At the same time, it remains a chal-

lenging dataset: due to the selection of family pairs, unfa-

miliar classes may closely resemble seen classes. The val-

idation set consists of 5 classes drawn randomly from the

remaining 160 classes in CUB. For both bird datasets, we

used roughly 30 images per class to train our attribute clas-

sifiers, and 15 per class to test. We obtained the ground truth

class-attribute matrix by binarizing class-averaged user re-

sponses.

4.2. Features and learning

For the two collections, we used localized features for

all attributes. Each attribute is associated with a certain

part of the bird; object-level attributes such as Has Primary
Color Blue, Has Size Large, and Has Shape Perching-
Like are associated with the entire bounding box of the

bird. Similar to [6], we extracted features using [36] that

include vector-quantized color histograms, geometric blur

and color/gray SIFT features using spatial pyramids, from

patches around ground truth part locations.

We trained binary classifiers for each attribute on the

concatenated feature histograms with linear SVMs. In gen-

eral, we expect more sophisticated learning algorithms to

yield attribute classifiers of greater discriminative power

that can boost classification accuracy as well as unfamiliar

class detection accuracy. We discuss the effects of attribute

classifier performance in Section 5.1.

5. Experiments

In this section, we present our experimental results. We

observe empirically in Sections 5.2, 5.3, and 5.4 the roles

that attribute noise, class attribute variation, and users re-

spectively play in detecting unfamiliar classes accurately.

5.1. Unfamiliar class detection

We present results using our method on both datasets in

Table 1 and Figure 3. We measure performance in unfamil-

iar class prediction as the area under the ROC curve (AUC);

the advantage of using this metric is that it is invariant to

priors. On our Bird-Families dataset, we obtain an AUC of

0.652 for predicting unfamiliar classes. We note the only

similar experiment that we are aware of was presented by

Farhadi et al. [12] for rejecting unknown categories. They

reported an AUC of 0.6 for 20 Pascal object classes using

65 attributes, with significantly more training data and fo-

cusing on basic-level categories.

We compare our performance to a one-class SVM [34],

which attempts to find a smooth boundary enclosing a re-

gion, while separating out a fixed fraction ν of the train-

ing data. Using the feature vectors described in Section 4.2

with an RBF kernel, the one-class SVM performed only

(a) (b)

Figure 3: ROC curves for unfamiliar class detection with

the Bird-Families (3a) and All-Birds (3b) datasets.

Dataset #SC #UC Clf. UCD OCS TCS
Families 20 20 0.708 0.652 0.503 0.512

All-Birds 100 50 0.284 0.572 0.518 0.514

Table 1: We present results for the multi-class classification

of seen classes (average accuracy on seen class test images),

and report AUCs for unfamiliar class detection (UCD); a

one-class SVM (OCS) with ν = 0.5; and a two-class SVM

(see Section 5.1 for more details). Also shown are the num-

bers of seen (SC) and unfamiliar classes (UC).

marginally better than random chance. Given the inher-

ent low interclass variation of fine-grained categories, this

method is unable to find a suitable hyperplane to separate

the seen from the unfamiliar.

A second baseline we compare to is a two-class SVM.

We train a binary classifier to recognize unfamiliar classes,

in which negative examples are drawn from all familiar

classes, and positive examples are drawn from a held-out

set of unfamiliar categories consisting of 5 classes selected

at random for Bird-Families and 25 for All-Birds. Perfor-

mance averaged over 10 folds of cross validation is compa-

rable to the one-class SVM.

We also report accuracy for the multi-class classification

task on the seen classes to demonstrate the difficulty of these

datasets without even considering the unfamiliar class prob-

lem. Per-class probabilities for the test examples belonging

to seen classes are computed using the model in [18].

For both multi-class classification and unfamiliar class

detection, the discriminativeness of the individual attribute

classifiers clearly affects performance. The average AUC

for the classifiers is 70.94%; low performance may be due

to factors such as imprecise localization. In general, we

note that better attribute classifiers are likely to produce

higher overall accuracy for the classification task and con-

sequently, unfamiliar class detection, as the prediction of

unfamiliarity is based on the per-class probabilities.
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Figure 4: Modeling attribute noise. For several bird family

pairs 4(a-d), we observe how unfamiliar class probabilities

change as noise is added to the attributes. Noise is quanti-

fied as the probability an individual attribute value is incor-

rect. Each family is represented by one seen (cyan dashed

lines) and one unfamiliar class (solid magenta lines). The

curves represent the probability for a certain class averaged

over all test images (Section 5.2).

5.2. Modeling attribute noise

As noted in Section 5.1, the accuracy of the classifiers

themselves play a large role in the overall success in pre-

dicting unfamiliarity. An attribute classifier’s performance

can be characterized in terms of noisiness if the output is

treated as a binary response—a poorly performing attribute

classifier will therefore detect an attribute with a high rate

of error or noise. Similarly, user-labeled attributes exhibit

ambiguity and errors due to differences in perception.

The amount of noise present in detecting attributes,

whether it arises from human users or attribute classifiers,

impacts how well one can detect unfamiliar classes. In this

experiment, we observe the effect of attribute noise in unfa-

miliar class detection, focusing on the Bird-Families dataset

as it allows us to examine this effect for similar and com-

monly confused classes.

We train a naı̈ve Bayes classifier on the image-level at-

tribute labels, using a Beta prior to improve robustness and

estimating parameters with maximum a posteriori estima-

tion. Because we wish to observe the effect of varying

amounts of noise at test time, we use ground truth class-

attribute values and simulate the addition of noise, which is

added independently and uniformly to all attributes.

The added noise represents the probability that an at-

tribute bit value will be flipped. For example, assume the

attributes are determined at test time with 5% noise. In

a 200-attribute vocabulary, roughly 10 attributes will then

be incorrectly determined, suggesting that the classes must

differ from each other by at least 10 attributes, in order to

be robust to noise. Error-correcting output codes (ECOCs)

quantify error in a similar manner [9].

We focus on pairs of related classes within the same fam-

ily. For each family, recall that one class appears in the

dataset as a seen class, and the other is considered an unfa-

miliar class. As noise is added to the attribute values, we ob-

serve the probability that test examples from the two classes

are unfamiliar (see Figure 4). In order to better understand

what is happening at the class level, the probabilities for test

images are averaged over the true class.

Referring to Figures 4(a-b), we observe that with no

added noise, the unfamiliar classes are predicted with high

probability of being unfamiliar, as compared to the corre-

sponding seen classes. We do not take into account any bias

or priors, so a threshold on the unfamiliar probability is not

determined. Regardless, it is important to note the clear

separation between how likely an unfamiliar class is indeed

unfamiliar versus how likely a seen class is considered un-

familiar. As noise is added and errors are introduced to the

attribute values, the probability of being unfamiliar for both

classes in a family tends to converge. This indicates a con-

fusion between seen and unfamiliar classes; after exceeding

a certain level of noisiness, it is not possible to discern be-

tween them as both are equally likely to be unfamiliar.

5.3. Modeling class attribute variation

Another dimension to unfamiliar class detection deals

with the amount of class attribute variation, which can be

thought of as the “difficulty” of the dataset. We quantify

it as the average number of attributes that differ between

classes; this metric is computed as the average Hamming

distance between all pairs of binary class attribute vectors.

If the classes are well separated in the multidimensional

attribute space, then the difficulty is considered low; on

the other hand, if the classes in the dataset share many at-

tributes, it is more challenging to distinguish between them,

especially with noisy attribute detection, and the dataset is

considered difficult. As noted in the previous section, the

minimum Hamming distance between any pair of classes in

the dataset quantifies the limiting factor in terms of robust-

ness to noise, similar to the quality of an ECOC [9].

In Figure 4(c), we note that even in the absence of added

noise, Brandt Cormorants are not correctly detected as unfa-

miliar. The unfamiliar Brandt Cormorant test examples are

instead mistaken for their seen class counterpart, the Red-

faced Cormorant. The pair of classes is visually very sim-

ilar, with the categories differing only by 3 attributes (see

Figure 5b).

While the family pairs represent taxonomically similar

species, the classes are not necessarily visually similar and

may share more attributes in common with other classes.
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(a) (b)

Figure 5: 5a: Seen class classification observed as we query

humans for attribute values. 5b: The Hamming distance

between classes of the same family from Bird-Families.

For Figure 4(d), we note that the Blue Jay and the Green

Jay differ by the most visual attributes (32) out of all family

pairs. As such, Blue Jays are not mistaken for Green Jays;

however, they are also not likely to belong to an unfamiliar

class. The Blue Jays are in fact getting confused with Lazuli

Buntings, from which they differ by fewer attributes (13).

5.4. Modeling users

To overcome noise in attribute classifiers, which is com-

pounded by the inherent difficulty of the dataset at hand, we

can incorporate human users into the pipeline. In order to

observe the role users play in unfamiliar class detection, we

perform an experiment in which we select attribute ques-

tions one at a time to ask users.

We investigate several different methods for selecting

what attribute value to query (Figure 6), using the All-Birds
dataset: (1) based on the performance of the trained at-

tribute classifiers, as ranked by the AUC; (2) based on how

well an attribute can discriminate the classes in the dataset;

(3) based on observed user confidence in training; (4) based

on mutual information (MI); and (5) at random. We de-

termine how well an attribute can discriminate the classes

by sorting the attributes based on their average Hamming

distance to all other attributes. User confidence on a per-

attribute basis is observed on the training set, and we query

users of attributes that they tend to answer with the highest

certainty (users are given the options definitely, probably,

and guessing when providing attribute values). The fourth

method ranks the attributes based on mutual information,

such that attributes that share less information with other

attributes are selected first.

In Figure 6, we observe that we are able to improve un-

familiar class detection accuracy by querying users selec-

tively, suggesting that despite variance in user responses,

we are able to leverage them to overcome poor attribute de-

tections. We note that the order in which users are queried

has an impact on unfamiliarity detection performance. For

example, the first two attributes queried using the Hamming

distance and MI methods are Has Eye Color Black and

Has Belly Pattern Solid, which are two of the most com-

mon attributes found in the seen classes. These attributes

are useful in detecting unfamiliar classes, because when

they are not detected in a test example, then the example

is less likely to belong to any of the seen classes. The at-

tributes queried later tend to occur infrequently in the set of

seen classes and thus are less informative in general.

We observe that by using user responses that are an-

swered with high certainty, without considering consistency

in response, we can boost unfamiliar class detection perfor-

mance significantly. While user consistency is not explicitly

observed, it still may contribute to improved unfamiliarity

detection performance early on. As more questions are an-

swered, the system incorporates less reliable attribute val-

ues, and this increased noise in attribute values (Figure 4)

may cause the drop in the curve after 60 user responses. At

the same time, user certainty has no observable impact on

seen class classification performance (Figure 5a), suggest-

ing that the issues of detecting unfamiliarities and classifi-

cation require different approaches and should be addressed

individually.

6. Conclusion
In this work, we have presented an attribute-based frame-

work for unfamiliar class detection that supports the use of

humans in the loop, empirically observing the roles that

attribute noise and variation play in the task of unfamil-

iar class detection. Success at detecting unfamiliar classes

is influenced by how distinct the classes in the dataset are

to each other, as there inevitably will be noise in the at-

tribute detection. Achieving better performance on un-

familiar class detection also necessitates improving accu-

racy in the classification of attributes and classes; how-

ever, we emphasize that these problems should be addressed

separately. In order to improve attribute-based classifica-

tion, one could take into account dependencies between at-

tributes or consider multiple modalities in class attribute de-

scriptions; these are directions for future work.

The emerging trend of computer vision entering the wild

in the form of semi-automated field guides (Visipedia [28],

Leafsnap [17], butterflies [39], etc.) indicates that we have

only seen the tip of the iceberg for the unfamiliar class prob-

lem. This work offers progress towards a solution, and we

hope to spur further discussion and study of this problem

within the computer vision community.
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Eye�color�black?

Belly�pattern�solid?

Upper�tail�color�green?

Primary�color�buff?

Bill�shape�hooked�seabird?

Wing�color�red?

Wing�color�olive?

Wing�shape�rounded?

Figure 6: Using humans in the loop. We compare several methods of sequentially querying users and observe how each

affects unfamiliar class detection performance. The methods are plotted according to the number of user responses so far.

We show examples of the first and last attributes added using these methods. See Section 5.4 for more details.

References
[1] S. Bengio, J. Weston, and D. Grangier. Label embedding trees for

large multi-class tasks. In NIPS, 2010.

[2] T. Berg, A. Berg, and J. Shih. Automatic attribute discovery and

characterization from noisy web data. In ECCV, 2010.

[3] A. Bergamo et al. Picodes: Learning a compact code for novel-

category recognition. In NIPS, 2011.

[4] I. Biederman. Recognition by components: a theory of human image

interpretation. Pyschological review, 94:115–147, 1987.

[5] P. Bodesheim et al. Divergence-based one-class classification using

gaussian processes. In BMVC, 2012.

[6] S. Branson et al. Visual recognition with humans in the loop. In

ECCV, 2010.

[7] J. Deng et al. ImageNet: A large-scale hierarchical image database.

In CVPR, 2009.

[8] J. Deng et al. Fast and balanced : Efficient label tree learning for

large scale object recognition. In NIPS, 2011.

[9] T. Dietterich and G. Bakiri. Solving multiclass learning problems

via error-correcting output codes. Journal of Artificial Intelligence
Research, 2:263–286, 1995.

[10] M. Everingham et al. The PASCAL Visual Object Classes Challenge

2012 (VOC2012) Results. http://pascallin.ecs.soton.
ac.uk/challenges/VOC/voc2012/index.html.

[11] A. Farhadi, I. Endres, and D. Hoiem. Attribute-centric recognition

for cross-category generalization. In CVPR, 2010.

[12] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects

by their attributes. In CVPR, 2009.

[13] L. Fei-Fei et al. Learning generative visual models from few training

examples: An incremental Bayesian approach tested on 101 object

categories. In IEEE CVPR Workshops, 2004.

[14] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category

dataset. Technical Report CNS-TR-2007-001, California Institute of

Technology, 2007.

[15] G. Griffin and P. Perona. Learning and using taxonomies for fast

visual categorization. In CVPR, 2008.

[16] N. Kumar et al. Attribute and simile classifiers for face verification.

In ICCV, 2009.

[17] N. Kumar et al. Leafsnap: A computer vision system for automatic

plant species identification. In The 12th European Conference on
Computer Vision (ECCV), October 2012.

[18] C. H. Lampert et al. Learning to detect unseen object classes by

between-class attribute transfer. In CVPR, 2009.

[19] Y. J. Lee and K. Grauman. Object-graphs for context-aware category

discovery. In CVPR, 2010.

[20] D. Mahajan et al. A joint learning framework for attribute models

and object descriptions. In CVPR, 2011.

[21] M. Markou and S. Singh. Novelty detection: a review-part 1: statis-

tical approaches. Signal Processing, 83:2481–2497, 2003.

[22] M. Markou and S. Singh. Novelty detection: a review-part 2: neural

network based approaches. Signal Processing, 83:2499–2521, 2003.
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