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Abstract

Recent years have witnessed a growing interest in un-
derstanding the semantics of point clouds in a wide variety
of applications. However, point cloud labeling remains an
open problem, due to the difficulty in acquiring sufficient
3D point labels towards training effective classifiers. In
this paper, we overcome this challenge by utilizing the ex-
isting massive 2D semantic labeled datasets from decade-
long community efforts, such as ImageNet and LabelMe,
and a novel “cross-domain” label propagation approach.
Our proposed method consists of two major novel compo-
nents, Exemplar SVM based label propagation, which ef-
fectively addresses the cross-domain issue, and a graphical
model based contextual refinement incorporating 3D con-
straints. Most importantly, the entire process does not re-
quire any training data from the target scenes, also with
good scalability towards large scale applications. We eval-
uate our approach on the well-known Cornell Point Cloud
Dataset, achieving much greater efficiency and comparable
accuracy even without any 3D training data. Our approach
shows further major gains in accuracy when the training
data from the target scenes is used, outperforming state-of-
the-art approaches with far better efficiency.

1. Introduction
Coming with the popularity of Kinect sensors and

emerging 3D reconstruction techniques [1][2][3][4], we are

facing an increasing amount of 3D point clouds. Such mas-

sive point cloud data has shown great potential for solv-

ing several fundamental problems in computer vision and

robotics, for example, route planning and face analysis.

While the existing work mainly focuses on building bet-

ter point clouds [1][2][3][4], point-wise semantic label-

ing remains an open problem. Its solution, however, can

bring a breakthrough in a wide variety of computer vi-

sion and robotics research, with great potential in human-

computer interface, 3D object indexing and retrieval, as

well as 3D scene understanding and object manipulation in

robotics. Exciting applications such as self-driving vehicles

Figure 1. The framework of search based label propagation from

ImageNet to point clouds.

can also be expected, in which inferring the 3D object la-

bels can bring more comprehensive understanding for nav-

igation and decision making. Another instance comes from

semantic-aware augmented reality, bringing realistic inter-

actions between virtual and physical objects.

Challenges. While important, labeling 3D point cloud

is not an easy task at all. Following 2D semantic labeling,

the state-of-the-art solutions [5][6][7][8][9][10] train point-

wise label classifiers based on visual and 3D geometric fea-

tures, and optionally refined with spatial contexts. However,

their bottleneck lies in the difficulty to design effective 3D

features, while a 3D feature variant to rotation, translation,

scaling and illumination like 2D SIFT does is still missing.

Meanwhile, it is also hard to extend 2D features to 3D given

critical operations for 2D feature extraction such as convo-

lution is no longer valid for point clouds.

Another fundamental challenge comes from the lack of

sufficient point cloud labels for training, which, in turn has

been shown as a key factor towards successful 2D image

labeling [11][12][13]. This factor, as highly aware by the

computer vision community, has led to a decade-long effort

in building large-scale labeling datasets, showing large ben-

efits for 2D image segmentation, labeling, classification and

object detection [11][12][13][14]. However, limited efforts

are conducted for point cloud labeling benchmarks. To the

best of the authors’ knowledge, the existing labeled point

cloud or RGB-D datasets [15][16] are incomparable to the

2D ones, in terms of either scale or coverage. This causes
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even state-of-the-art point cloud labeling algorithms only

touch data from well controlled environments, with similar

training and testing conditions [5][6][7].

Inspirations. Manual point cloud labeling is certainly

one solution to the lack of sufficient training data. However,

it requires intensive human labor, especially considering the

difficulty in labeling 3D points. Even given sufficient point

cloud labels, the effective 3D feature design still remains

open. But turning to the 2D side, with such massive pixel-

wise image labels at hand, is it possible to “propagate” or

“transfer” such labels from images to point clouds? This

approach, if possible, solves the training data insufficiency,

while not requiring the intensive point cloud labeling, and

also gets around the open problem in designing effective 3D

feature and geometric representation.

To achieve this goal, we propose to exploit the reference
images required for point cloud constructions as a “bridge”.

Turning to a label propagation perspective, if we can link

query regions to regions in the dataset with the right label

as a graph formulation, this point cloud or reference image

labeling problem can be easily solved by propagating la-

bels from labeled nodes to unlabeled nodes along the edges.

This idea is also inspired from the recent endeavors in

search based mask transfer learning, which has shown great

potential to deal with the “cross-domain” issue in both ob-

ject detection and image segmentation [14][17][18]. While

requiring good data coverage, this is more and more practi-

cal with the increasingly “dense” sampling of our world as

images, for instance there are over 10M images in ImageNet

[12], over 100K segments in LabelMe [11], and over 500K

segmented images in ImageNet-Segment[14]. Furthermore,

such search based propagation can be performed in parallel

by nature, with high scalability towards big data.

Other than memory based approaches, it is certainly pos-

sible to directly train a classifier [19] from other sources

[11][12]. However, this solution lacks the generality among

different datasets, thus is not practical for our situation.

Approach. We design two key operations to propagate

external image labels to point clouds, namely “Search based

Superpixel Labeling” and “3D Contextual Refinement”, as

outlined in Figure 1.

Search based Superpixel Labeling: Given the massive

pixel-wise image labels from external sources such as Ima-

geNet [12] or LabelMe [11], we first use Mean Shift to over-

segment individual images into “superpixels”, and then

propagate their labels onto the visually similar superpixels

in the reference images of point clouds. We accomplish

this by using Exemplar SVMs rather than the naive near-

est neighbor search, because the latter is not robust enough

against the “data bias” issue, e.g., the photometric condition

changes between training and testing sets. More specifi-

cally, we first train linear Support Vector Machines (SVMs)

for individual “exemplar” superpixels in the external image

collection, use them to retrieve the robust k Nearest Neigh-

bors (kNN) for each superpixel from the reference images,

and then collect their labels for future fusion. Note this is

comparably efficient to naive kNN search by exploiting the

high independence and efficiency of the linear SVMs.

3D Contextual Refinement: We then aggregate super-

pixel label candidates to jointly infer the point cloud labels.

Similar to the existing works in image labeling, we exploit

the intra-image spatial consistency to boost the labeling ac-

curacy. In addition, and more importantly, 3D contexts are

further modeled to capture the inter-image superpixel con-

sistency. Both contexts are integrated into a graphical model

to seek for a joint optimal among the superpixel outputs

with Loopy Belief Propagation.

The rest of this paper is organized as follows: Section 2

introduces our search based superpixel labeling. Section 3

introduces our 3D contextual refinement. We detail the ex-

perimental comparisons in Section 4 and discuss related

work in Section 5, with conclusions in Section 6.

2. Search based Superpixel Labeling
Notations. We denote a point cloud as a set of 3D points

P = {pi}, each of which is described with its 3D coordi-

nates and RGB colors {xi, yi, zi, Ri, Gi, Bi}. P is built

from R reference images IR = {Ir}Rr=1 using methods

such as Structure-from-Motion [1] or Simultaneous Local-

ization And Mapping (SLAM) [3]. We also have an exter-

nal superpixel labeling pool consisting of superpixels with

ground truth labels S = {Si, li}Ni=1. Our goal is to assign

each pi a semantic label l from an exclusive label set L, as

propagated from the labeling pool S1.

Search based Label Propagation. In our approach, 2D

image operations are performed in the unit of “superpixels”,

produced by over-segmentation [20]. Note that we do not

leverage randomly sampled rectangles used in recent works

in search based segmentation [14][21] or object detection

[18], to ensure label consistency among pixels in each re-

gion, as widely assumed for superpixels [19]2.

For every superpixel Sq to be labeled in the reference

images, we aim to find the most “similar” superpixels in S,

whose label will then be propagated and fused to Sq . To

achieve this goal, a straightforward solution is to directly

find the k nearest neighbors in S, which results in the fol-

lowing objective function:

kNN(Sq) = arg
k

min
Si∈S

D(Si, Sq), (1)

in which argminkSi
denotes the top k superpixels with the

1In practice, our external superpixel labeling pool comes from Ima-

geNet [12], as detailed in Section 4, while other image/region labeling

datasets can also be integrated.
2Techniques like objectness detectors [22] can be further integrated to

boost the accuracy and efficiency.
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Figure 2. Examples of search based label propagation from Ima-

geNet [12] to Cornell Point Cloud Dataset [6]: (a) outputs from

Naive kNN, (b) outputs from ESVMs. We can see Naive kNN has

lots of false positives (with red borders), e.g., it outputs printer
and table for the input of wall. But ESVM performs much more

robust. For each result, we show not only the superpixel but also

its surroundings for clarity.

least distance D from Sq , and D(·, ·) is the metric used

to measure the distance among superpixels, e.g., Euclidean

distance in the feature space.

Propagation with Exemplar SVM. As pointed out in

[18], nearest neighbor search with Euclidean distance can-

not capture the intrinsic visual similarity between superpix-

els, while on the other hand training a label classifier is too

sensitive to the training data, with large generalization error

against propagation.

To address this issue, Exemplar SVM (ESVM) [18] is

introduced to build a robust metric. For every superpixel

extracted from the labeling pool Si ∈ S , we train a linear

SVM to identify its visually similar superpixels. The Ex-

emplar SVM for Si is trained to optimize the margin of the

classification boundaries:

arg min
wi,bi

1

2
‖wi‖22 + C+

∑
{j|yj>0}

ξj + C−
∑

{j|yj<0}
ξj ,

s.t. yj(w
T
i xj + bi) ≥ 1− ξj , ∀j,

(2)

where xj is the visual features extracted from Sj .

To further guarantee the matching robustness, every su-

perpixel Si is translated and rotated to expand to more pos-

itive examples for training. And the negative examples are

subsampled from other superpixels. Larger penalties C+

are given for false negatives to balance the boundary. How-

ever, even with this C setting, if a superpixel other than but

very similar to the exemplar appears in the negative set, it

will significantly degenerate the performance with an ill-

trained SVM, while this is not studied in object detection

[18]. To address this issue, we add an extra constraint that

Algorithm 1: Building Superpixel Labeling Pool.

1 Input: A set of superpixels with ground truth labels

S = {Si, li}Ni=1

2 for Superpixel Si ∈ S do
3 Train an Exemplar SVM for each superpixel with

Equation 2 and hard negative mining
4 end
5 Learn a reranking function by solving Equation 5

6 Output: A set of Exemplar SVMs with reranking

weights and associated labels {wi, bi, w
(r)
i , b

(r)
i , li}

only superpixels with different labels from Si can be chosen

as negative examples.

Hard Negative Mining. Different from regular Exem-

plar SVMs only able to find nearly identical instances, we

set a small C in the training process for better generality, al-

lowing examples not exactly the same as the exemplar also

have positive scores. However, this may increase the num-

ber of false positives with different labels. To address this

problem, given the decision boundary is only determined by

the “hard” examples (the support vectors), we introduce the

hard negative mining to constrain the decision boundary:

1. Apply the ESVM trained from Si on the training data,

collecting the prediction scores {sj}
2. Add the false positives {Sj |sj > 0, l(Sj) �= l(Si)}

into the negative examples and launch another round

of SVM training

3. Repeat the first two steps until no new hard examples

are found or a preset iteration number is reached.

By the combination of small C and supervised hard nega-

tive mining with labels, we achieve a balance of general-

ity and sensitivity. Figure 2 shows a comparison between

ESVM and naive kNN search. We can see that although

naive kNN usually outputs visually similar instances, it is

not robust against false positives, while ESVM does better

in label robustness, with more sensitivity on the difference

of labels.

To label the superpixel Sq in the reference images, we

find the superpixels with the k strongest responses from

their ESVMs as its k nearest neighbors in S, i.e.,

kNN(Sq) = arg
k

max
Si∈S

Fi(w
T
i x(Sq) + bi). (3)

Here Fi is the ranking function as introduced below.

Learning Reranking Functions. While we use the rel-

ative ranking of SVMs’ prediction scores for kNN search,

this relative order is still not constrained in the training pro-

cess. We address this issue by learning a linear function for

each SVM for reranking, which minimizes the ranking error

among different SVMs, i.e.,

Fi(x) = w
(r)
i · x+ b

(r)
i . (4)
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Figure 3. Construction of the graphical model. (a) shows how to construct nodes and edges from an example point cloud. (b) shows the

abstract representation of the graphical model, where N(Sj) denotes the spatial adjacent superpixels of Sj in the reference images. And

(c) shows the expected output after optimizing on the model. For clarity, only part of the connections are plotted in (a).

This linear mapping does not modify the relative order in

each ESVM, but rescales and pushes the ESVMs jointly

to make their prediction scores comparable. This differs

from the calibration step in [18] that transforms the decision

boundary of each SVM independently for object detection.

More specifically, given a held-out superpixels valida-

tion set with ground truth labels SH = {Sq}Hq=1, we first

apply the ESVMs to get prediction scores {sq}Hq=1, and then

collect SVMs with positive scores for reranking, only some

of which have the same label with Sq . Here we aim to learn

the function Fi for each ESVM in S, making superpixels

with the same label as Sq have larger score than others, for-

mulated as a structured learning-to-rank problem [23].

min
∑
i

1

2
‖w‖22 + C

∑
ξi,j,k

s.t. for every query qi,

wTΦ(qi, sj) > wTΦ(qi, sk) + 1− ξi,j,k
∀l(Sj) = l(Sqi), l(Sk) �= l(Sqi)

ξi,j,k ≥ 0.

(5)

Here w = {(wi, bi)}ni=1. Φ(qi, sj)’s (2j − 1)th and 2jth
dimensions are sj and 1 respectively, to encode the weights

and scores into a single vector. Although this problem is not

convex or differentiable, its upper bound can be optimized

efficiently with a cutting plane algorithm [24]. Algorithm 1

shows the training procedures of our label propagation.

3. 3D Contextual Refinement

Given the k nearest neighbors of each superpixel in the

reference images, the next step is to label the point cloud

{l(pi) | pi ∈ P} by backprojecting and fusing their labels.

Considering a point pi in P may appear in different ref-

erence images with different viewing angles, our prediction

exploits both the intra-image 2D context and the inter-image

3D context, as shown in Figure 3. Note different from tradi-

tional contextual refinement approaches [5][6][25], our ap-

proach does not require any labeled 3D training data.

Graphical Model. First the point cloud is over-

segmented based on the smoothness and continuity [5], pro-

ducing a 3D segment set {Di} as shown in Figure 3 (a).

Second, with the transform matrices {Mi} from local 2D

coordinates in reference images {Ii}Ri=1 to the global 3D

coordinates, segments in {Di} are matched to the reference

images, each resulting in a 2D region SMj
(Di). If this pro-

jected region shares enough portion with some superpixel

{Si} from this reference image, we connect an edge be-

tween {Si} and SMj
(Di), as shown as red links in Figure 3

(a). Spatially adjacent superpixels within one reference im-

age are also connected, as shown as yellow links in Figure 3

(a). Then, an undirected graph G = {V, E} is built with 3D

segments and 2D superpixels as nodes V = {Di}∪{Sq}Mq=1

and the connections mentioned above as edges E . Figure 3

(b) shows the corresponding graphical model.

For every node v, we adopt its label l(v) as the variables

on the graphical model, and define the potential function

to enforce both intra-image and inter-image consistency, as

detailed later. In the end, the semantic labels L for 3D seg-

ments {Di} is inferred by minimizing the potential function

of the graphical model:

arg min
L∈Ln

∑
v∈V

logψd

(
l(v)

)
+λ

∑
(v1,v2)∈E

logψs

(
l(v1), l(v2)

)
,

(6)

in which L is the label set, n is the number of nodes in the

graphical model, and λ is a constant that weights different

potential components. The potential function consists of the

data term ψd and the smoothing term ψs.

The assigned labels of 2D superpixels are encouraged to

be the same as their results from label propagation. There-

fore the data term is defined as,

ψd

(
l(Si)

)
= exp

(
− pSi

(
l(Si)

))
, (7)

where pSi
(·) is the label distribution among kNNs of Si

retrieved using Equation 3.

Intra-Image Consistency. To encode the intra-image

consistency in the reference images, neighbor superpixels

313631363138



Algorithm 2: Search based Label Propagation.

1 Input: Point cloud P with reference images IR, and

superpixel propagation pool S
2 Do over-segmentation on both P and IR
3 for Superpixel Sq ∈ IR do
4 Use Equation 3 to retrieve kNN from S
5 end
6 Use the over-segmentation structure of P and IR, and

the kNN of Sq to construct the graphical model as

introduced in Section 3

7 Solve the graphical model by minimizing Equation 6

with Loopy Belief Propagation

8 Output: 3D-segment-wise semantic labels of P

are encouraged to have related labels, defined by the intra-

image smoothing term ψs,2D.

ψs,2D

(
l(Si), l(Sj)

)
= p

(
l(Si), l(Sj)

)
, (8)

in which p(·, ·) is the co-occurrence probability learned

from the superpixel labeling pool S.

Inter-Image Consistency. To make the 3D labeling re-

sults consistent among reference images, we further define

the inter-image smoothing term as,

ψs,3D

(
l(Si), l(Dj)

)
=

{
1 l(Si) = l(Dj)

c l(Si) �= l(Dj),
(9)

in which c > 1 is a constant. Overall, we have a more

specific potential function design.

logψ(L) =
∑

Sq∈IR
logψd

(
l(Sq)

)

+ λ1
∑

(Si,Sj)∈E,Si,Sj∈IR
logψs,2D

(
l(Si), l(Sj)

)

+ λ2
∑

(Si,Dj)∈E
logψs,3D

(
l(Si), l(Dj)

)
.

(10)

Similar with above, λ1 and λ2 denote the weights for differ-

ent potential parts. We use Loopy Belief Propagation (LBP)

to find a local minima of ψ. Algorithm 2 outlines the overall

procedure based on the potential design above.

Integrating Other Contexts. If 3D point cloud train-

ing data with ground truth label is also available, we can

further integrate stronger context into our graphical model.

Such contexts may include 3D relative positions (e.g., a ta-
ble may appear under a book but should not under floor),

and normal vector (e.g. a wall must be vertical and floor
must be horizontal), etc., as investigated in [5]. However,

this requirement puts stronger dependence on training data

thus decreases the generality.

Figure 4. Superpixel distribution of the labeling pool (blue) and

reference images (red) in the (dimension reduced) feature space.

4. Experimental Validations

Data Collection. To build the superpixel labeling pool,

we collect superpixels from ImageNet [12], which provides

object detection ground truth as bounding boxes. We first

over-segment the image using Mean Shift [20], and then se-

lect the superpixels sharing enough area with the bounding

boxes of some object of interest (e.g. wall, floor). These su-

perpixels are then added in to the superpixel labeling pool

with their corresponding labels.

To evaluate our algorithm, the Cornell’s indoor dataset

[16] is adopted, which contains 24 office scenes and 28

home scenes, constructed from Kinect sensor and RGBD-

SLAM (http://openslam.org/rgbdslam). Each scene consists

of 3D points with 3D coordinates, RGB values, semantic la-

bels, and reference images used for the RGBDSLAM con-

struction. Following [5], we take labels present in ≥ 5
scenes (point clouds) for evaluation. We merge too specific

labels while they do not occur in the labeling pool (e.g.,

chairBackRest, chairBase, and chairBack to chair). As a

result, in the office scene we use labels {wall, floor, table,
chair, monitor, printer, keyboard, cpu, book, paper}, and in

the home scene we use labels {wall, floor, table, chair, sofa,
bed, quilt, pillow, shelfRack, laptop, book}3.

Rationality Checking. We illustrate the rationality of

our approach by visualizing the superpixel labeling pool

(blue dots) and the superpixels from the reference images

(red dots) in a 2D space mapped from the feature space

with Principal Component Analysis, as Figure 4 shows. We

can observe a good coverage in the feature space, although

the collection conditions of Cornell Point Cloud dataset are

certainly different from ImageNet. On the other hand, the

coverage is still not perfect, calling for more advanced tech-

niques other than naive kNN search such as ESVM.

Evaluation Protocol and Baselines. We use average

classification accuracy, that is, the average percentage of the

3Different from [5], these labels are only used for testing, not involved

in our training process at all.
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Table 1. Visual features for label propagation

Superpixel Feature Dimension
HoG 9× 12

Average HSL values 3× 12
Difference of Gaussian 1× 12

Laplacian 1× 12
Edge detector (with different angles) 5× 12

4× 4 Walsh Hadamard kernels 16

correctly classified points among all the point clouds, as our

protocol to evaluate both the 2D superpixel labeling and the

3D point labeling. We compare our approach to the fol-

lowing baselines: (1) Naive kNN search based propagation;

(2) ESVM based propagation; (3) ESVM based propagation

with contextual refinement; (4) The state-of-the-art work by

Anand et al. [5], which uses 3D training data known to be

similar with the test data.

For Baseline (1) and (2), with the lack of inter-image opti-

mization, we use majority voting to get the 3D labels. And

for Baseline (4), given our approach does not use any lo-

cal 3D shape or geometry, for the fairness of comparison,

we adopt the accuracy only using the visual appearance re-

ported in [6]. But note our approach is complementary to

3D geometry based methods, it is easy to add more features

and contexts as introduced in Section 3. Baseline (1) to (3)

use our superpixel label propagation pool for ESVM train-

ing, and all the Cornell Point Cloud Dataset for testing.

Implementation Details. In terms of visual features, we

use Histogram of Gradient (HoG) feature [26] (with 4 ×
3 grids), average HSL values, texture features, and 4 × 4
Walsh Hadamard kernels [27] to represent each superpixel.

A complete list of features is shown in Table 1.

We adopt LibSVM4 for Exemplar SVM training and test-

ing, with C− = 0.01 and C+ = 0.05. And the training

examples are generated from the original superpixel with

five levels of translation and rotation. For every superpixel,

we collect 10,000 negative examples and do five rounds of

hard negative mining. For reranking function learning, we

use SVMrank5, with C = 200 and 10-fold cross-validation.

In terms of superpixel labeling pool, we collect about 28K

superpixels for each type of scenes (office or home).

Propagation Accuracy. Figure 6 shows the average ac-

curacy of 3D labeling in both office and home scenes, with

comparison among different baselines. We can see ESVM,

even without contextual refinement, performs well and out-

performs naive kNN with a large gap. In addition there

is a performance gain after incorporating contexts, making

our method (Baseline (3)) comparable with state-of-the-art

method [6] in classification accuracy, without requiring any

specific knowledge about the target scene. Note it is also

easy to integrate geometric features in our approach. In

terms of efficiency, our methods only requires less than 20

4http://csie.ntu.edu.tw/ cjlin/libsvm/
5http://www.cs.cornell.edu/people/tj/svm light/svm rank.html

Figure 6. Point cloud labeling accuracy of different baselines in

both office and home scenes.

Table 2. Efficiency of our approach (ESVM + Context)

Training Training (parallel) Testing (parallel)

43.2 s/superpixel 3.6 s/superpixel 18.2 s/point cloud

seconds for one point cloud, while the approach in [6] re-

quires 18 minutes to finish in average. In the training stage,

training an ESVM in a PC with a Core i7-970 CPU costs

three to four seconds. More details about efficiency are

shown in Table 2. Figure 5 shows several examples of re-

sults from different baselines, with ground truth labels.

Oracle rate. We also test our oracle rate, i.e., ESVM

with contextual refinement trained with labeled reference

images in Cornell Point Cloud Dataset. The accuracy of the

oracle rate is also shown in Figure 6. The performance is

evaluated with a four-fold cross-validation setting with Cor-

nell Point Cloud Dataset for training and testing. We can see

with a fair experiment setting, i.e., using the same training

data and type of features (visual feature), our approach can

outperform state-of-the-art method with only visual appear-

ance features. And Figure 7 shows the confusion matrices

of office scenes and home scenes. Because some classes

are affected by extreme shooting conditions such as paper
is often over-exposed, we cannot extract meaningful fea-

tures from these classes, thus cannot distinguish them from

other classes such as wall well. This indicates the limit of

pure visual approaches for 3D point cloud labeling. But we

are not proposing to substitute geometric features and con-

texts with our approach. This observation, on the contrary,

denotes that our approach is able to provide complementary

information with shape based methods, considering easy 3D

features like normal vector can distinguish paper from wall.
We can expect even higher performance by integrating geo-

metric features and contexts as mentioned in Section 3.

5. Related Work
Semantic Labeling with Contextual Optimization.

Semantic labeling of 2D images is a long-standing prob-

lem in computer vision. State-of-the-art approaches usu-
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Figure 5. Example results of point cloud labeling on Cornell dataset [16]. To demonstrate labeling results with more details, reference

images from multiple views are provided. The rows are, reference images, ground truth, labeling result from Naive kNN, ESVM, ESVM

with refinement, and our oracle performance.

Figure 7. Confusion matrix of both office and home scenes if we

have training data from the target scenes.

ally incorporate context with independently predicted labels

(for each pixel or region) to get spatially consistent results

[25][28][29]. When integrating the contextual information,

Conditional Random Field (CRF) is often used [28][29],

while some work also makes context a feature and encodes

it in the independent classifiers [25].

Some of the recent works in 3D semantic labeling also

follow this scheme, either under a structured SVM frame-

work [5][6] or using CRFs [9]. Similarly, there is also work

use features to incorporate the spatial context into classi-

fiers [7]. Although good performance is reported, such ap-

proaches, no matter 2D or 3D ones, require the training and

testing data being from similar collection settings, thus pre-

vents its practical applications on 3D point clouds, where

large scale training data is not available and hard to label.

We address this problem by seeking help from existing mas-

sive 2D datasets, with a novel labeling approach inspired

from mask transfer.

Semantic Labeling with Mask Transfer. Another

branch of labeling work comes from the rising endeav-

ors in transfer learning, i.e., to intelligently obtain certain

knowledge from different yet related sources with metadata

propagation [30], showing promising performance in var-

ious tasks such as scene understanding [31], segmentation

[14], and 3D object detection [32]. In 3D semantic labeling,

there is also work adopting online synthesized data for label

transfer [8][10]. Its principle lies in identifying the near-

est neighbors in the reference data collection, following by

transferring the corresponding metadata from the neighbors

to the query target. However, traditional search based mask

transfer is typically deployed between datasets within the

same domain (e.g. from 2D images to 2D images), which

does not fit our scenario involving domain changes. We

address this with robust search using Exemplar SVMs and

incorporating 3D context to ensure a robust fusion from 2D

superpixels to point clouds.

Search by Exemplar SVM. Exemplar SVM [17][18]

targets at combining the above parametric classifiers and

non-parametric, search-based model. To this end, an SVM

is trained for each instance, e.g., image or superpixel, the

ensemble of which is then used to identify the nearest

neighbors of the target instance. Since the discriminatively

trained classifier is able to detect the most unique features

for each instance, Exemplar SVM has shown promising

performance in object detection [18] and cross-domain re-

trieval [17]. However, it is not easy to directly extend Exem-

plar SVMs trained on 2D images/superpixels to 3D points,
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which demands a comprehensive distance metric rather than

making binary decisions (is/is not the given instance). Our

approach, as detailed in Section 2, handles it with a jointly

optimized reranking step using structured prediction [23].

6. Conclusion
How to deal with the semantic labeling problem on the

rapidly growing point cloud data is an emerging challenge

with a wide variety of practical applications. To the best of

the authors’ knowledge, this is the first work trying to over-

come the key difficulty in the lack of sufficient 3D train-

ing data by exploiting existing 2D data. In this work, we

propose a novel 2D-to-3D search based label propagation

approach to address this issue. More specially, we use an

Exemplar SVM based scheme to transfer the massive 2D

image labels from ImageNet to point clouds, with a struc-

tured SVM based reranking functions design. Our sec-

ond contribution is proposing a graphical model to integrate

both the intra-image and inter-image spatial context in and

among reference images to fuse individual superpixel labels

onto 3D points. Experiments over popular datasets validate

our advantages, with comparable accuracy and superior ef-

ficiency to the direct and fully supervised 3D point label-

ing state of the arts, even without any point cloud labeling

ground truth.
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