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Abstract

In this paper, we propose a generative tracking method

based on a novel robust linear regression algorithm. In con-

trast to existing methods, the proposed Least Soft-thresold

Squares (LSS) algorithm models the error term with the

Gaussian-Laplacian distribution, which can be solved ef-

ficiently. Based on maximum joint likelihood of parameters,

we derive a LSS distance to measure the difference between

an observation sample and the dictionary. Compared with

the distance derived from ordinary least squares methods,

the proposed metric is more effective in dealing with out-

liers. In addition, we present an update scheme to capture

the appearance change of the tracked target and ensure that

the model is properly updated. Experimental results on sev-

eral challenging image sequences demonstrate that the pro-

posed tracker achieves more favorable performance than

the state-of-the-art methods.

1. Introduction

Visual tracking plays a critical role in computer vision

that finds many practical applications (e.g., motion analysis,

video surveillance, vehicle navigation and human-computer

interaction). Although significant progress has been made

in the past decades, developing a robust tracking algorithm

is still a challenging problem due to numerous factors such

as partial occlusion, illumination variation, pose change,

complex motion, and background clutter.

Tracking algorithms can be classified as either generative

(e.g., [7, 1, 20, 19, 21, 15]) or discriminative (e.g., [2, 10,

4, 11, 27, 18, 30, 14]) methods. Generative methods focus

on searching for the regions which are the most similar to

the tracked targets, while discriminative methods cast track-

ing as a classification problem that distinguishes the tracked

targets from the surrounding backgrounds. In this work, we

propose a robust generative tracker which is able to handle

partial occlusion and other challenging factors effectively.

Among the generative methods, the trackers based on

linear representation maintain holistic appearance informa-

tion and therefore provide a compact notion of the “thing”

being tracked, which may facilitate some advanced vision

tasks [7, 20]. These methods often adopt a dictionary (e.g.,

a set of basis vectors from a subspace or a series of tem-

plates) to describe the tracked target. A given candidate

sample is linearly represented by the dictionary, and the

representation coefficient and reconstruction error are com-

puted, from which the corresponding likelihood (belonging

to the object class) is determined. Ross et al. [20] propose

an incremental visual tracking (IVT) method which repre-

sents the tracked target by a low dimensional PCA subspace

(a set of PCA basis vectors) and assumes that the error is

Gaussian distributed with small variances (i.e., small dense

noise). Therefore, the representation coefficient can be ob-

tained by a simple projection operator, which is equivalent

to the ordinary least squares solution under the assumption

that the dictionary atoms are orthogonal. The reconstruction

error is computed by the objective function of the ordinary

least squares methods. While the IVT method is effective

to handle appearance change caused by illumination varia-

tion and pose variation, it is not robust to some challenging

factors (e.g., partial occlusion and background clutter) due

to the following two reasons. First, ordinary least squares

methods have been shown to be sensitive to outliers due to

the formulation based on reconstruction error with Gaussian

noise assumption. Second, the IVT method uses new ob-

servations to update the observation model without detect-

ing outliers and processing them accordingly. Other recent

tracking algorithms [16, 12] based on the Gaussian noise as-

sumption or the ordinary least squares methods have similar

problems as the IVT method.

Motivated by the success of sparse representation-based

face recognition [28], Mei et al. [19] develop a novel �1
tracker that uses a series of target templates and trivial tem-

plates to model the tracked target, where the target tem-

plates are used to describe the object class to be tracked

and trivial templates are used to deal with outliers (e.g., par-

tial occlusion) with the sparsity constraints. For tracking, a

candidate sample can be sparsely represented by both tar-

get and trivial templates, and its corresponding likelihood is

determined by the reconstruction error with respect to target

templates. We note that this formulation is a linear regres-
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sion problem with sparsity constraints on the representation

coefficients. Recently, several methods have been proposed

to improve the �1 tracker in terms of both speed and accu-

racy by using accelerated proximal gradient algorithm [5],

replacing raw pixel templates with orthogonal basis vec-

tors [24, 26, 25], modeling the similarity between different

candidates [31], to name a few. Although these algorithms

consider outliers by using additional trivial templates, this

formulation can be generalized with better understanding.

In this work, we show that the linear regression with the

Gaussian-Laplacian noise assumption is more effective in

dealing with outliers for object tracking. In addition, from

the viewpoint of linear regression, it is not suitable to esti-

mate the likelihood based on the reconstruction error with

respect to target templates. We present a novel distance

function to compute the distance between a candidate and

the object class.

In this paper, we present a generative tracking algo-

rithm based on linear regression. The contributions of this

work are as follows. First, we introduce a novel linear re-

gression method, Least Soft-thresold Squares (LSS), which

assumes that the error vectors follow the i.i.d Gaussian-

Laplacian distribution. Second, we present an efficient iter-

ation method to solve the LSS problem and propose a LSS

distance to measure the dissimilarity between the observa-

tion vector and the dictionary. We note that the LSS method

is related to the robust regression with the Huber loss func-

tion and is effective in detecting outliers. Compared with

the least squares distance, the LSS distance is more effec-

tive in measuring the distance between the observation vec-

tor and the dictionary when outliers occur. Third, we de-

sign a generative tracker by using the LSS method, where

the dictionary consists of PCA basis vectors. The observa-

tion likelihood of each candidate is computed based on the

LSS distance. Furthermore, we update the tracker by us-

ing an effective update scheme. Numerous experiments on

challenging image sequences with comparisons to state-of-

the-art tracking methods demonstrate the effectiveness of

the proposed model and algorithm.

2. Least Soft-thresold Squares

2.1. Regression with Gaussian-Laplacian Noise

The objective of linear regression is to fit a linear model

(i.e, estimate model parameters) to a series of noisy obser-

vations:

y = Ax+ e, (1)

where y ∈ R
d×1 is a d-dimensional observation vector, x ∈

R
k×1 denotes the k-dimensional parameter (or coefficient)

vector to be estimated and A = [r1; r2; ...; rd] ∈ R
d×k

represents the input data matrix (ri is the i-th row of A).

We denote e = y−Ax = [e1; e2; ...; ed] (i.e, ei = yi− ri ·
x, i = 1, ..., d) as the error or residual term.

The coefficient x can be obtained by maximizing the

posteriori probability p (x|y), which is also equivalent to

maximizing the joint likelihood probability p (x,y). As-

suming there is a uniform prior, the coefficient x is esti-

mated by x̂ = argmax
x

p(y|x) = argmax
x

p (e), which is

the maximum likelihood estimation (MLE).

The errors e1, e2, ..., ed are usually assumed to be in-

dependently and identically distributed (i.i.d) according to

some probability density function (PDF) fθ (ei), where θ is

the parameter set that characterizes the probability distribu-

tion. Thus, the likelihood of the estimator (the joint proba-

bility of the error term e) is p (e) =
∏d

i=1 fθ (ei). To max-

imize the likelihood function is equivalent to minimizing

the objective function Lθ (e1, e2, ..., ed) =
∑d

i=1 ρθ (ei),
where ρθ (ei) = − log fθ (ei).

When the error e = y−Ax follows the Gaussian distri-

bution (ei ∈ N
(
0, σ2

N

)
1), the MLE solution is equivalent

to the ordinary least squares (OLS) solution

x̂ = argmin
x

1

2
‖y −Ax‖22 , (2)

and the closed form solution is x̂ =
(
A�A

)−1
A�y. Al-

though the OLS method is easy to solve, it is sensitive to

outliers due to the Gaussian noise assumption. If the er-

ror e follows the Laplacian distribution (ei ∈ L (0, σL)
2),

the MLE solution is equivalent to least absolute deviations

(LAD) solution,

x̂ = argmin
x

‖y −Ax‖1. (3)

Compared with the OLS method, the LAD method is robust

to outliers. However, it is difficult to be solved by using

either the simplex-based methods [6] or the iteratively re-

weighted least squares methods [22].

In this paper, we model error vector e as an additive com-

bination of two independent components: an i.i.d Gaussian

noise vector n (ni ∈ N
(
0, σ2

N

)
) and an i.i.d Laplacian

noise vector s (si ∈ L (0, σL)),

y = Ax+ n+ s, (4)

where the Gaussian component models small dense noise

and the Laplacian one aims to handle outliers 3.

1ei is a zero-mean Gaussian random variable with variance σ2
N

and its

PDF is fN (ei) =
1√

2πσN

exp

(
−

e
2

i

2σ2

N

)
.

2ei is a zero-mean Laplacian random variable with variance σ2
L

and its

PDF is fL (ei) =
1√
2σL

exp
(
−

√
2|ei|
σL

)
.

3The similar ideas of decomposing the noise into two components (e.g.,

decomposing the noise into sparse and non-sparse ones [3, 8] for achieving

robust motion estimation) have appeared in computer vision community.

While the goals are similar, the formulations and derivations are differ-

ent. In this work, the proposed algorithm focuses on not only handling

occlusion but also deriving a novel distance metric to compare the target

candidate and the target template under the outlier condition, which will

be presented later.
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The additive combination of i.i.d Gaussian and i.i.d

Laplacian noise variables is also called Gaussian-Laplacian

distribution [23]. Its joint PDF is p (e) =
∏d

i=1 fNL (ei),
where the PDF fNL (ei) is given by the convolution,

fNL (ei)
= fN (ni) ∗ fL (si)
=

∫
fL (si) fN (ei − si) dsi

= 1
2
√
2σN

exp
(
− e2

i

2σ2

N

)⎡
⎣ erfcx

(
σN

σL
− ei√

2σN

)
+erfcx

(
σN

σL
+ ei√

2σN

)
⎤
⎦ ,

(5)

where erfcx (x) = exp
(
x2

)
erfc (x) and erfc (x) =

2√
π

∞∫
x

e−t2dt. Compared with the Gaussian and Laplacian

distributions, the PDF of the Gaussian-Laplacian distribu-

tion is complex. Thus, it is difficult to obtain a simple ob-

jective function (such as Eqs. 2 and 3) directly.

Because of this, we treat the Laplacian noise term s as

missing values with the same Laplacian prior, and therefore

we can maximize the joint likelihood p (y,x, s) instead.

p (y,x, s)
= p (y|x, s) p (x, s)
= p (y −Ax− s) p (s)

= K exp
{
− 1

σ2

N

(
1
2 ‖y −Ax− s‖22 + λ‖s‖1

)}
,

(6)

where K =
(

1√
2σL

)d(
1√

2πσN

)d

and λ =
√
2σ2

N

σL
. Thus,

to maximize the joint likelihood p (y,x, s) is equivalent to

minimizing the function 1
2 ‖y −Ax− s‖22 + λ‖s‖1 with

respect to both x and s.

2.2. Least Soft-thresold Squares Regression

To maximize the joint likelihood of Eq. 6, we consider

the objective function:

L (x, s) =
1

2
‖y −Ax− s‖22 + λ‖s‖1, (7)

and the optimal solution is [x̂, ŝ] = argmin
x,s

L (x, s). The

above objective function is based on the standard least

squares criterion and an �1 regularization term on s, and

thus is convex but not differentiable everywhere. To the best

of our knowledge, there is no closed-form solution for this

optimization problem, so we present an iterative algorithm.

Proposition 1: Given ŝ, the optimal x̂ can be com-

puted by the ordinary least squares solution x̂ =(
A�A

)−1
A� (y − ŝ).

Proposition 2: Given x̂, the optimal ŝ can be obtained

by a soft-thresholding (or shrinkage) operation ŝi =
Sλ ([y −Ax̂]i), where Sλ (x) = max (|x| − λ, 0) sgn (x)
and sgn(·) is the sign function.

Let P denote
(
A�A

)−1
A�, which can be pre-

computed before the iterative process. By Propositions 1

and 2, the optimization can be solved efficiently. The it-

erative operation is terminated when a stopping criterion is

met (e.g., the difference of objective values between two

iterations or the number of iterations). As our algorithm

consists of two main components: ordinary least squares

and soft-thresholding operation, we denote it as the Least

Soft-threshold Squares Regression method.

Table 1. Least Soft-threshold Squares Regression

Input: An observation vector y, matrix A, per-

computed matrix P =
(
A�A

)−1
A�, and a small con-

stant λ.

1: Initialize s0 = 0 and i = 0
2: Iterate

3: Obtain xi+1 via xi+1 = P (y − si)
4: Obtain si+1 via si+1 = Sλ (y −Axi+1)
5: i← i+ 1
6: Until convergence or termination

Output: x̂, ŝ

It is clear that L (xi+1, si+1) ≤ L (xi+1, si) ≤ L(xi, si)
4. Hence, the proposed iterative algorithm converges to a

local minimal value. As the objective function is convex, it

also obtains the global minimal solution.

Remark 1: The proposed least soft-threshold squares re-

gression is equivalent to robust regression with the Huber

loss function:

x = argmin
x

∑d

i=1
f (ei), ei = yi − ri · x, (8)

where

f (e) =

{
e2
/
2, |e| ≤ λ

λ |e| − λ2
/
2, |e| > λ

(9)

is the Huber loss function and ri denotes the i-th row of A.

A detailed explanation can be found in the supplementary

material.

We note the approach to compute robust regression with

the Huber loss function is less efficient than the proposed

method as the former is generally solved by using the itera-

tively reweighted least squares scheme which requires solv-

ing a weighted least squares problem (i.e., pseudo-inverse)

at each iteration. As mentioned before, the pseudo-inverse

matrix can be percalculated before the iterative process in

the proposed LSS method.

Remark 2: The non-zero components in s can be used to

identify outliers.

4L (xi+1, si) = min
x

L (x, si) ≤ L (xi, si), and L (xi+1, si+1) =

min
s

L (xi+1, s) ≤ L (xi+1, si)
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(a) Observation samples. (b) Iterative process in the LSS method. (c) The Laplacian noise term.

Figure 1. Robust line fitting by using the least soft-threshold squares (LSS) regression.

Figure 1 shows an example of fitting a straight line when

small Gaussian noise and outliers occur simultaneously. It

requires to estimate an accurate parameter for a straight line

function y = az + b, where z is the input variable, y is

the output variable, and a and b are parameters to be de-

termined. Figure 1(a) shows ten observation sample pairs

{zi, yi} , i = 1, ..., 10, where zi = i in this case (z5 and

z9 are two outliers). Denote that y = [y1; y2; ...; y10],
z = [z1; z2; ...; z10], A = [z,1] and x = [a; b], we use

the proposed least soft-threshold squares (LSS) method to

estimate the parameter x. Figure 1(b) illustrates the itera-

tive process of the LSS method (λ is set to 1), from which it

is clear that the proposed LSS algorithm is not sensitive to

outliers. We note that the result after the first iteration is the

same as the result obtained using the OLS method, which

also shows that the proposed LSS method is more robust

than the OLS method. In addition, as shown in Figure 1(c),

the non-zero Laplacian noise components correspond to the

outliers.

2.3. Least Soft-thresold Squares Distance

We represent the matrix A = [a1, a2, ...,ak], where ai
is the i-th column of A. The vector, Ax, can be viewed as

a linear combination of the columns of A (Ax = x1a1 +
x2a2 + ... + xkak). The matrix A is known as dictionary

or basis matrix, and the vector ai is called an atom or basis

vector.

For some vision applications (such as tracking), it re-

quires not only to estimate the coefficient accurately but

also to define a distance between a noisy observation and

the dictionary or the subspace. This generative perspec-

tive has commonly been exploited in subspace-based meth-

ods [7, 20]. The distance is usually defined to be inversely

proportional to the maximum joint likelihood with respect

to the coefficient x,

d (y;A)
∝ − logmax

x

p (y,x)

= − logmax
x

p (y|x) p (x) .
(10)

Take the ordinary least squares method for example (i.e.,

uniform prior), we have

− logmax
x

p (y|x) p (x)

∝ − logmax
x

p (y|x)

∝ − logmax
x

exp
(
− 1

2 ‖y −Ax‖22

)
∝ min

x

1
2 ‖y −Ax‖22 .

(11)

Recall that the OLS method assumes the observation vector

with i.i.d Gaussian noise, the distance y and A can therefore

be defined as,

dOLS (y;A)

= min
x

1
2 ‖y −Ax‖22

= 1
2

∥∥∥y − (
A�A

)−1
A�y

∥∥∥2

2
.

(12)

Similarly, under the i.i.d Laplacian noise assumption, the

distance between y and A can be defined as,

dLAD (y;A) = min
x

‖y −Ax‖1, (13)

which is difficult to be calculated (as mentioned in Sec-

tion 2.1).

In this work, we adopt the i.i.d Gaussian-Laplacian dis-

tribution to model observation noise. Therefore, we define

the distance between y and A under the i.i.d Gaussian-

Laplacian noise assumption as,

dLSS (y;A) = min
x,s

1

2
‖y −Ax− s‖22 + λ‖s‖1. (14)

As it is related to the Least Soft-thresold Squares (LSS) re-

gression, we denote it as the LSS distance.

Figure 2 illustrates a toy example of good and bad can-

didates for template matching with partial occlusion. For

simplification, we merely use a single template shown in

Figure 2(a). Figure 2(b) and (c) show good and bad can-

didates (shown in red and blue boxes respectively). In Ta-

ble 2, we report the OLS distance and the LSS distance be-

tween the template and different candidates. We denote the

237223722374



Table 2. The OLS and LSS distances between the template and

different candidates of Figure 2.

dOLS dLSS dLSS

(λ = 0.05) (λ = 0.1)

Good Candidate 27.78 5.83 10.88

Bad Candidate 25.51 7.21 12.51

template as t, the good candidate as yG and the bad can-

didate as yB respectively. In this example, dOLS (yB ; t) is

smaller than dOLS (yG; t), which means the bad candidate

is picked if the OLS distance is used. On the other hand, the

good candidate is selected (dLSS (yG; t) < dLSS (yB ; t))
when the proposed LSS distance is used. Thus, we note that

the proposed LSS distance is better than the OLS distance

for handling outliers (e.g., partial occlusion).

�������	
��� �������
���������

�������
���������

Figure 2. A toy example of good and bad candidates for template

matching.

3. Least Soft-thresold Squares Tracking

In this paper, visual tracking is treated as a dy-

namic Bayesian inference task with a hidden Markov

model. Given a set of observed image vectors y1:t =
{y1,y2, ...,yt} up to the t-th frame, the aim is to estimate

the target state variable xt by using the maximum a poste-

riori estimation,

x̂t = arg
x
i
t

max p
(
xi
t|y1:t

)
, (15)

where xi
t indicates the i-th sample of the state xt. Based on

the Bayes theorem, the posterior distribution p (xt|y1:t) can

be estimated recursively by,

p (xt|y1:t) ∝ p (yt|xt)

∫
p (xt|xt−1) p (xt−1|y1:t−1)xt−1,

(16)

where p (xt|xt−1) is the motion model that describes the

state transition between consecutive frames, and p (yt|xt)
is the observation model that estimates the likelihood of an

observed image patch belonging to the object class. The

affine motion model is used in this work and the state tran-

sition is formulated by random walk, i.e., p (xt|xt−1) =
N (xt;xt−1,Σ), where Σ is a diagonal covariance matrix

that indicates the variances of affine parameters.

Observation Model: In this paper, we assume that the

tracked target object is generated by a PCA subspace

(spanned by U and centered at μ) with i.i.d Gaussian-

Laplacian noise,

y = μ+Uz+ n+ s, (17)

where y denotes an observation vector, U represents a ma-

trix of column basis vectors, z indicates the coefficients of

basis vectors, n is the Gaussian noise component and s is

the Laplacian noise component.

Based on the discussion in Section 2, under the i.i.d

Gaussian-Laplacian noise assumption, the distance between

the vector y and the subspace (U,μ) is the least soft-

threshold squares distance,

d (y;U,μ) = min
z,s

1

2
‖y −Uz− s‖22 + λ‖s‖1, (18)

where y = y − μ. Thus, for each observation yi corre-

sponding to a predicted state xi, we firstly solve the follow-

ing optimization problem,[
ẑi, ŝi

]
= argmin

z
i,si

1

2

∥∥∥yi −Uzi − si
∥∥∥2

2
+ λ

∥∥si∥∥
1
, (19)

where i denotes the i-th sample of the state x (without loss

of generality, we drop the frame index t). As the PCA basis

vectors U is orthogonal, the per-computed matrix P can be

simply set to U�. After the optimal ẑi and ŝi are obtained,

the least soft-threshold squares distance can be calculated

by d
(
yi;U,μ

)
= 1

2

∥∥∥yi −Uẑi − ŝi
∥∥∥2

2
+ λ

∥∥∥ŝi∥∥∥
1
. Then

the observation likelihood can be measured by

p
(
yi|xi

)
= exp

(
−γd

(
yi;U,μ

))
, (20)

where γ is a constant controlling the shape of the Gaussian

kernel.

Model Update: We note that the non-zero components

in the Laplacian noise term can be used to identify out-

liers. Thus, we present a simple yet effective update

scheme. After obtaining the best candidate state of each

frame, we extract its corresponding observation vector yo =[
y1o ; y

2
o ; ...; y

d
o

]
and infer the Laplacian noise term so =[

s1o; s
2
o...; s

d
o

]
. Then we reconstruct the observation vector
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by replacing the outliers with its corresponding parts of the

mean vector μ,

yir =

{
yio, s

i
o = 0

μi, sio �= 0
, (21)

where yr =
[
y1r ; y

2
r ; ...; y

d
r

]
denotes the reconstructed vec-

tor and μ =
[
μ1
r;μ

2
r; ...;μ

d
r

]
is the mean vector. The re-

constructed sample is cumulated and then used to update

the tracker (i.e., PCA basis vectors U and the mean vector

μ) by using an incremental principal component analysis

(PCA) method [20].

4. Experiments

The proposed tracker is implemented in MATLAB and

runs at 4 frames per second on a PC with Intel i7-3770 CPU

(3.4 GHz) with 32 GB memory. The regularization con-

stant λ is set to 0.1 in all experiments. For each sequence,

the location of the tracked target is manually labeled in the

first frame. We resize each image observation to 32 × 32
pixels and use 16 eigenvectors for PCA representation. As

a trade-off between effectiveness and speed, 600 particles

are adopted and our tracker is incrementally updated every

5 frames. The MATLAB source codes, datasets and sup-

plementary materials are available on our websites (http:

//ice.dlut.edu.cn/lu/publications.html, http:

//faculty.ucmerced.edu/mhyang/pubs.html).

In this work, we use fifteen challenging image se-

quences from prior work [20, 19, 4, 15, 29] and

the CAVIAR data set (http://groups.inf.ed.ac.uk/vision/

CAVIAR/CAVIARDATA1/). The challenging factors of

these sequences include partial occlusion, illumination vari-

ation, pose change, background clutter and motion blur. We

evaluate the proposed tracker against eleven state-of-the-art

algorithms, including the FragT [1], IVT [20], MIL [4],

VTD [15], TLD [14], APGL1 [5], MTT [31], LSAT [17],

SCM [32], ASLSA [13] and OSPT [26] trackers. For fair

evaluation, we use the source codes provided by the authors

and run them with adjusted parameters.

4.1. Quantitative Evaluation

We evaluate the above-mentioned algorithms using two

criteria: the center location error and the overlap rate. Ta-

ble 3 reports the average center location errors in pixels,

where a smaller average error means a more accurate result.

In addition, we use the segmentation criterion in the PAS-

CAL VOC challenge [9] to evaluate the overlap rate. Given

the tracking result (bounding box) of each frame RT and the

corresponding ground truth bounding box RG, the overlap

score is defined as score = area(RT∩RG)
area(RT∪RG) . Table 4 reports

the average overlap rates, where larger average scores mean

more accurate results.

4.2. Qualitative Evaluation

Severe Occlusion: We test several sequences (Occlusion1,

Occlusion2, Caviar1, Caviar2, Caviar3, DavidOutdoor)

with heavy or long-time partial occlusion, scale change

and rotation. Figure 3 (a-c) demonstrate that the proposed

method performs well in terms of position, rotation and

scale when the target undergoes severe occlusion. This can

be attributed to two reasons: (1) the proposed LSS distance

takes outliers (e.g., occlusion) into account explicitly; and

(2) the update scheme is able to avoid degrading the obser-

vation model by removing the outliers from new observed

samples. In addition, the SCM and ASLAS methods also

achieve good performance in most cases as both of them in-

clude part-based representations with overlapping patches.

The IVT method is sensitive to partial occlusion (Occlu-

sion2, Caviar1, Caviar3, DavidOutdoor) since the OLS dis-

tance is not effective to handle outliers. The MIL and TLD

methods do not perform well when the target object is oc-

cluded by a similar object (Caviar1, Caviar2, Caviar3).

This can be explained by that the rectangle features they

adopted (generalized Haar-liker features or binary patterns)

are less effective when similar objects occlude each other.

Illumination Change: Figure 3 (d) shows the tracking re-

sults in the sequences (DavidIndoor, Car4, Singer1) with

significant illumination variation, scale change and pose

change. We can see that the MIL and TLD methods are

less effective in these cases (e.g., DavidIndoor #0350 and

Singer1 #0090). Due to the use of incremental PCA algo-

rithm, the proposed tracker achieves good performance in

dealing with the appearance change caused by light change.

For the same reason, the IVT and ASLSA methods also per-

form well.

Background Clutter: Figure 3 (e) demonstrates the track-

ing results in the Car11, Deer and Football sequences with

background clutter. These videos also pose other challeng-

ing factors including illumination variation (Car11), fast

motion (Deer) and partial occlusion (Football). As the pro-

posed LSS distance encourages good matching results when

outliers occur, our tracker performs better than other meth-

ods in these videos (e.g., Deer #0052 and Football #0315).

Fast Motion: Figure 3 (f) illustrates the tracking results

on the Jumping, Owl and Face sequences. It is difficult to

predict the locations of the tracked objects when they un-

dergo abrupt motion. Furthermore, the appearance change

caused by motion blur poses great challenges for capturing

the tracked targets accurately and updating the observation

models properly. We can see that the TLD and proposed

methods perform better than other algorithms (e.g., Owl

#0248 and Face #0254). We note that the TLD method

is equipped with a re-initialization mechanism which facil-

itates object tracking.
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Table 3. Average center location error (in pixels). The best three results are shown in red, blue, and green fonts.

Sequence FragT IVT MIL VTD TLD APGL1 MTT LSAT SCM ASLAS OSPT LSST(Ours)

Occlusion1 5.6 9.2 32.3 11.1 17.6 6.8 14.1 5.3 3.2 10.8 4.7 5.3

Occlusion2 15.5 10.2 14.1 10.4 18.6 6.3 9.2 58.6 4.8 3.7 4.0 3.1

Caviar1 5.7 45.2 48.5 3.9 5.6 50.1 20.9 1.8 0.9 1.4 1.7 1.4

Caviar2 5.6 8.6 70.3 4.7 8.5 63.1 65.4 45.6 2.5 62.3 2.2 2.3

Caviar3 116.1 66.0 100.2 58.2 44.4 68.6 67.5 55.3 2.2 2.2 45.7 3.1

DavidOutdoor 90.5 53.0 38.4 61.9 173.0 233.4 65.5 101.7 64.1 87.5 5.8 6.4

DavidIndoor 148.7 3.1 34.3 49.4 13.4 10.8 13.4 6.3 3.4 3.5 3.2 4.3

Singer1 22.0 8.5 15.2 4.1 32.7 3.1 41.2 14.5 3.7 5.3 4.7 3.5

Car4 179.8 2.9 60.1 12.3 18.8 16.4 37.2 3.3 3.5 4.3 3.0 2.9

Car11 63.9 2.1 43.5 27.1 25.1 1.7 1.8 4.1 1.8 2.0 2.2 1.6

Deer 92.1 127.5 66.5 11.9 25.7 38.4 9.2 69.8 36.8 8.0 8.5 10.0

Football 16.7 18.2 16.0 4.1 11.8 12.4 6.5 14.1 10.4 18.0 33.7 7.6

Jumping 58.4 36.8 9.9 63.0 3.6 8.8 19.2 55.2 3.9 39.1 5.0 4.8

Owl 148.0 141.4 148.9 86.8 8.2 104.2 184.3 110.7 7.3 7.6 47.4 6.2

Face 48.8 69.7 134.7 141.4 22.3 148.9 127.2 16.5 125.1 95.1 24.1 12.3

Average 67.8 40.2 55.5 36.7 28.6 51.5 45.5 37.5 18.2 23.4 13.1 5.0

Table 4. Average overlap rate. The best three results are shown in red, blue, and green fonts.

Sequence FragT IVT MIL VTD TLD APGL1 MTT LSAT SCM ASLAS OSPT LSST(Ours)

Occlusion1 0.90 0.85 0.59 0.77 0.65 0.87 0.79 0.90 0.93 0.83 0.91 0.89

Occlusion2 0.60 0.59 0.61 0.59 0.49 0.70 0.72 0.33 0.82 0.81 0.84 0.86

Caviar1 0.68 0.28 0.25 0.83 0.70 0.28 0.45 0.85 0.91 0.90 0.89 0.89

Caviar2 0.56 0.45 0.26 0.67 0.66 0.32 0.33 0.28 0.81 0.35 0.71 0.80

Caviar3 0.13 0.14 0.13 0.15 0.16 0.13 0.14 0.58 0.87 0.82 0.25 0.85

DavidOutdoor 0.39 0.52 0.41 0.42 0.16 0.05 0.42 0.36 0.46 0.45 0.77 0.76

DavidIndoor 0.09 0.69 0.23 0.23 0.50 0.63 0.53 0.72 0.75 0.77 0.76 0.75

Singer1 0.34 0.66 0.34 0.79 0.41 0.83 0.32 0.52 0.85 0.78 0.82 0.80

Car4 0.22 0.92 0.34 0.73 0.64 0.70 0.53 0.91 0.89 0.89 0.92 0.92

Car11 0.09 0.81 0.17 0.43 0.38 0.83 0.58 0.49 0.79 0.81 0.81 0.84

Deer 0.08 0.22 0.21 0.58 0.41 0.45 0.60 0.35 0.46 0.62 0.61 0.58

Football 0.57 0.55 0.55 0.81 0.56 0.68 0.71 0.63 0.69 0.57 0.62 0.69

Jumping 0.14 0.28 0.53 0.08 0.69 0.59 0.30 0.09 0.73 0.24 0.69 0.65

Owl 0.09 0.22 0.09 0.12 0.60 0.17 0.09 0.13 0.79 0.78 0.48 0.81

Face 0.39 0.44 0.15 0.24 0.62 0.14 0.26 0.69 0.36 0.21 0.68 0.76

Average 0.35 0.51 0.32 0.50 0.51 0.49 0.45 0.52 0.74 0.66 0.72 0.79

5. Conclusion

In this paper, we propose a Least Soft-thresold Squares

(LSS) regression method that assumes the noise is

Gaussian-Laplacian distributed, and apply it to object track-

ing. We present an efficient iteration algorithm to solve

the LSS problem, which achieves the global minimal so-

lution. We derive a LSS distance to measure the difference

between an observation sample and the dictionary. The LSS

distance is effective in handling outliers and therefore pro-

vides an accurate match, which facilitates object tracking

(e.g., in dealing with partial occlusion). In addition, we

develop a robust generative tracker based on the proposed

LSS method and a simple update scheme. Both quantitative

and qualitative evaluations on challenging image sequences

show that the proposed tracker performs favorably against

several state-of-the-art algorithms. In the future, we will ex-

tend the LSS method to solve other vision problems (e.g.,

face recognition).
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