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Abstract

This paper proposes motionlet, a mid-level and spa-
tiotemporal part, for human motion recognition. Motion-
let can be seen as a tight cluster in motion and appear-
ance space, corresponding to the moving process of differ-
ent body parts. We postulate three key properties of mo-
tionlet for action recognition: high motion saliency, multi-
ple scale representation, and representative-discriminative
ability. Towards this goal, we develop a data-driven ap-
proach to learn motionlets from training videos. First, we
extract 3D regions with high motion saliency. Then we clus-
ter these regions and preserve the centers as candidate tem-
plates for motionlet. Finally, we examine the representa-
tive and discriminative power of the candidates, and intro-
duce a greedy method to select effective candidates. With
motionlets, we present a mid-level representation for video,
called motionlet activation vector. We conduct experiments
on three datasets, KTH, HMDB51, and UCF50. The re-
sults show that the proposed methods significantly outper-
form state-of-the-art methods.

1. Introduction

Due to the popularization of surveillance cameras and

personal video devices, video based human motion analysis

and recognition have become a highly active area in com-

puter vision [2]. Human action recognition is difficult for

many reasons, such as high-dimension of video data, intra-

class variability caused by scale, viewpoint and illumination

changes, low resolution and video quality. Like many com-

puter vision problems, an effective visual representation of

video data is vital to deal with these problems.
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Figure 1. Three types of video representation: Low-level represen-

tation is based on local features around small regions (indicated by

yellow circles) and maps video into “ codebook space”; High-level

representation is based on a global template covering the whole

action (indicated by blue boxes) and encode the video into “ ac-

tion space”; Our motionlet is a mid-level 3D part (indicated by red

boxes) and share advantages of both low and high level represen-

tation.

Currently, the most popular methods of video represen-

tation are based on local spatio-temporal features. These

methods use detectors such as Harris3D [20], Cuboids [9]

to locate spatio-temporal interested points, and extract de-

scriptors like HOG/HOF [21], HOG3D [17]. Then the ex-

tracted descriptors are quantified with a pre-learned code-

book, and input videos are modeled with Bag of Visual

Words (BoVW) [31] (Figure 1). These local descriptors

share some desired properties for video representation, such

as local and repeatable. They usually describe motion and

appearance information of a local cuboid around interest

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.345

2672

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.345

2672

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.345

2674



point. Thus it tends to be easy to find repeatable patterns

among different videos. These properties make local de-

scriptors robust to intra-class variability and deformation to

a certain degree. However, they only capture low-level in-

formation, and may lack discriminative power for high-level

motion recognition. Several recent works attempt to solve

this problem by introducing high-level features or models,

such as Motion Energy and History Image [3], Silhouette

[7], Space-time Shape [14]. Among them, Action Bank

[27] applies a large set of action detectors on input video,

and use the responses of these detectors as a semantically

rich representation (Figure 1). These high-level detectors

are made up of global templates of actions, and have de-

sired properties such as global and discriminative. But the

global nature makes them sensitive to intra-class variation

and deformation.

To balance between low-level and high-level represen-

tations, we propose a mid-level 3D (spatio-temporal) part,

called motionlet. The concept of “ Part ” originates from the

area of object recognition, and has been widely explored in

object detection and recognition recently. Different from

2D image, video is represented by a 3D volume data with

an additional dimension of time, which exhibits properties

different from 2D spatial dimensions. In addition to appear-

ance, motion is an important visual cues for action recog-

nition. Moreover, it is more ambiguous and difficult to de-

fine parts for human motion than for objects. In this pa-

per, we define Motionlet as a spatio-temporal part with sta-

ble features in both appearance space and motion space. It

corresponds to the moving process of parts, objects, visual

phrases (See Figure 1).

We expect motionlets to have three desired properties:

1) high-motion saliency, which means it is able to capture

the part with strong motion cues in videos; 2) multiple scale
representation, which means it is a balance between with lo-

cal features and global template and can capture motions at

different scales; 3) representative and discriminative ability,

“representative” implies it should occur frequently enough

in action video, and “discriminative” indicates it can pro-

vide rich information for classifying motions.

To achieve the above goals , we propose a learning based

approach to extract motionlets from training videos. Specif-

ically, we first estimate motion saliency using spatiotem-

poral orientation energies [1], and extract 3D regions with

high motion saliency. Then we tightly cluster these 3D re-

gions into candidate motionlets, and keep the medians for

each cluster as the templates. Finally, we examine the repre-

sentative and discriminative power of these candidates, and

introduce a greedy search algorithm to select effective can-

didates as motionlets. We represent a video by motionlet
activation vector, which measures the strength of each mo-

tionlet occurring in the video. We conduct experiments on

human motion recognition on three public datasets: KTH

[28], UCF50 [26], and HMDB51 [19]. The proposed meth-

ods achieve significant improvements compared with state-

of-the-art methods. We obtain accuracy rates of 78.4% on

UFC50 and 42.1% on HMDB51, which are the best results

reported on these datasets so far.

2. Related Work

The concept of “part” has been widely and successfully

used in image based object detection and recognition. In

[11], Felzenszwalb et al. propose Pictorial Structure Model

and use a tree to model the relationship among different

body parts. In a more recent work [10], Felzenszwalb et
al. propose Deformable Part Model (DPM) for object de-

tection and achieve success on identifying very difficult ob-

jects. DPM uses root detector to find a match of the whole

object, and then uses part detectors to fine-tune the result.

Perhaps the most similar work to ours is Poselet proposed

by Bourdev et al. [4]. They construct Poselet based on

annotations of human pose in 2D image. Motionlet differs

from Poselet in two ways: 1) Motionlet is a 3D part con-

structed from video and designed for human motion recog-

nition; 2) we construct motionlet in an unsupervised way

without using human annotations of pose.

Several recent action recognition methods also make use

of the concept of “part”, either explicitly or implicitly. In

[23], Niebles et al. propose to decompose the whole video

into several segments, which can be regarded as temporal

“parts”. In [5], Brenderl et al. firstly over-segment the

whole video into tubes corresponding to action “part” and

adopt spatiotemporal graphs to learn the relationship among

the parts. In [25], Raptis et al. group the trajectories into

clusters, each of which can be seen as an action part. Then

they use graphical model to incorporate motion/appearance

information of each part and pairwise constraints between

parts. All these part related methods rely on complex mod-

els and iterative optimization algorithms to learn model pa-

rameters. Different from these methods, our motionlets are

motion templates and provide mid-level representation of

video. Moreover, motionlets do not rely on specific infer-

ence algorithms in recognition step, which makes it easy to

be combined with other methods.

3. Low-Level Features

There are many low level features designed for video

data, such as STIP [20] and Cuboids [9]. Most of these

local features are based on interest points, and are suitable

for BoVW based video representation. To construct motion-

lets, however, we need features for describing and matching

templates. In this paper, we use spatiotemporal orientation

energy (SOE) [1] as low level features. SOEs have been

used for action recognition in [8, 27]. They compute SOE

for each pixel, thus making feature sensitive to small shift
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Figure 2. Low-level Features, left: the motion saliency of eight orientations; right: dense HOE and HOG features of three video clips from

KTH, HMDB51 and UCF 50.

and adding the computational cost. Instead, we resort to

a dense sampling strategy and compute SOE histogram as

features. This approach not only fits motionlet representa-

tion of video very well, but also reduce time cost in template

matching.

Spatiotemporal Orientation Energy. Video can be

seen as a 3D volume data. We use 3D steerable filter to es-

timate local spatiotemporal orientation energy to represent

the strength of motion along 3D spatiotemporal directions.

Specially, we use third derivatives of 3D Gaussian as local

filters, G3
θ̂
(x), where x = (x, y, t) represents a position in

spatiotemporal space, and unit vector θ̂ denotes a 3D direc-

tion. We can estimate the spatiotemporal orientation energy

at each pixel as follows,

Eθ̂(x) =
∑

x′∈Ω(x)

(G3
θ̂
∗ V )2, (1)

where Ω(x) represents a local region around x, V ≡ V (x)
is the input video, and (∗) denotes convolution. Note the

separable property of steerable filters allows us to estimate

SOE efficiently without conducting convolution for all di-

rections [12]. In order to remove the influence of spatial

orientation, the energy is usually processed by a “marginal-

ization” step [8]. Specifically, energy along a frequency do-

main plane with normal n̂ is calculated by summing a set of

measurements Eθ̂i(n̂)
,

Ẽn̂(x) =
N∑
i=0

Eθ̂i(n̂)
(x), (2)

where N is the order of Gaussian derivatives, θ̂i is one of

N + 1 = 4 directions needed to span orientation plane.

Formally θi(n̂) is given by,

θ̂i(n̂) = cos

(
πi

N + 1

)
θ̂a(n̂) + sin

(
πi

N + 1

)
θ̂b(n̂), (3)

with θ̂a(n̂) = n̂ × êx/‖n̂ × êx‖, θ̂b(n̂) = n̂ × θ̂a(n̂), and

êx is the unit vector along the ωx axis. When spacetime

orientation is defined by image velocity (u, v)�, the normal

vector is given by n̂ = (u, v, 1)�/‖(u, v, 1)�‖.
In our implementation of motionlet, we use nine spa-

tiotemporal energies with different image velocities (u, v)�

as shown in Table 1. In addition, we define another energy

called lack of structure Ẽo which is computed as a function

of the nine energies and has peaks when none of the other

nine energies has strong response. This energy is introduced

to avoid instabilities at points where overall energy is small.

As observed in our experiments and in [27], it is better to

use the energy of Ẽs and Ẽo which separate the pure orien-

tation energies from the background and noise influence:

Ei = max(Ẽi − Ẽs − Ẽo, 0), ∀i ∈ All− {s, o}. (4)

The resulting eight energies can be seen as measures of mo-

tion saliency along eight different orientations (Figure 2).

Finally, the eight pure energies are normalized to avoid in-

fluence of contrast and illumination change.

Dense features. We extract dense histogram of spa-

tiotemporal orientation energy (HOE) and histogram of gra-

dient (HOG) for video representation. As shown in Figure

3, we first divide the video into volumes of size W ×H ×
L. To incorporate the detailed spatiotemporal information,

each volume is further divided into w × h× l grids. In our

experiments, these parameters are set as W = H = L = 8
and w = h = l = 2. For each grid, we extract two kinds of
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Energy leftward: ˜El rightward: ˜Er downward: ˜Ed

(u, v) (−1, 0) (1, 0) (0, 1)

Energy upward: ˜Eu left-up: ˜Elu left-down: ˜Eld

(u, v) (0,−1) (−1,−1) (−1, 1)
Energy right-up: ˜Eru right-down: ˜Erd static: ˜Es

(u, v) (1,−1) (1, 1) (0, 0)
Table 1. Image velocities along different orientations.

Figure 3. The illustration of dense HOE and HOE extraction.

histogram features to capture motion and appearance infor-

mation. For motion information, we compute histogram of

eight pure energies by Equation (4). For appearance infor-

mation, we compute histogram of oriented gradient, where

the orientation are quantized into eight bins. Thus the total

feature dimension for a grid is 8 + 8 = 16, and the dimen-

sion for a volume is 2×2×2×16 = 128. Both descriptors

are normalized with their L1 norm. Figure 2 shows exam-

ples of HOE and HOG. By the dense sampling strategies,

dense HOE and HOG is more suitable for template match-

ing than interested point based local features such as STIP

[20] and Cuboids [9]. Being histogram features, dense HOE

and HOG is more compact and efficient than the spatiotem-

poral orientation energy features used in [27, 8], where they

compute a feature vector for each pixel. We define the sim-

ilarity between two volumes as follows,

m(Vi, Vj) =
128∑
k=1

√
h(Vi)kh(Vj)k , (5)

where h(Vi) is a vector of HOE and HOG, and h(Vi)
k de-

notes the kth element of h(Vi). Root function in Equation

(5) originates from the definition of Hellinger distance, and

proves to be effective for histogram features.

4. Motionlet Construction
This section describes how to construct motionlet for

video representation. As shown in Figure 4, the whole pro-

cess consists of three steps, 1) extracting motion salient re-

gions, 2) finding motionlet candidates, and 3) ranking mo-

tionlets.

4.1. Extraction of Motion Salient Regions

In the first step, we extract 3D video regions with high

motion saliency as seeds for constructing motionlets. Like

the step for calculating dense features, we divided the video

into volumes of size W ×H × L. For each volume Ω, we

use the summation of spatiotemporal orientation energies as

a measure of motion saliency (See Left of Figure 4),

s(Ω) =
∑
x∈Ω

∑
i∈All−{s,o}

Ei(x). (6)

Then we use a threshold α to convert motion saliency map

into a binary one,

B(Ω) =
{

1 if s(Ω) > α,
0 otherwis.

(7)

Empirically, we set α as 0.9 times of saliency maximum. To

obtain region with different sizes, we conduct component

analysis based on these binary maps. In spatial dimension,

we extract its 8-connected motion regions. For temporal

dimension, we fix time duration of each volume. In this

way, we can obtain a large pool of 3D regions with differ-

ent sizes {R1, · · · ,RM}. For each 3D region, we extract

its dense HOE and HOG {h(R1), · · · , h(RM ))} , where

h(Ri) ∈ R
wi×hi×128 ,wi and hi represent the spatial sizes

of 3D regionRi, and M is the number of 3D regions.

4.2. Finding Motionlet Candidates

The 3D regions generated from motion saliency serve

as the seeds for constructing motionlet. In this section, we

identify representative ones from all 3D regions by using

clustering method. Since these 3D regions have different

sizes and the associate features h(Ri) have different dimen-

sions, we cannot compare them directly. Here we design a

two-step approach. We first group the 3D regions accord-

ing to their spatial sizes. This step ensures regions in the

same group share similar shapes, and reduces the computa-

tional cost in the next step. Then, for each group, we cluster

the 3D regions according to motion and appearance infor-

mation. The key issue is how to measure the similarity be-

tween two regions Ri and Rj . The difficulty comes from

that they may have different sizes. We define the similarity

as the maximum of the correlation between their two subre-

gions (shown in Middle of Figure 4):

Sim(Ri,Rj) = max
x

{∑
u

m(Ri(x+ u),Rj(u))

}
,

(8)

whereRi(x+u) andRj(u) denote two volumes started at

x+ u and u respectively, and m() represents the similarity

function defined by Equation 5. u ranges such that x +
u ∈ Scale(Ri) and u ∈ Scale(Rj), and x ranges over

the scale of Ri. The above equation will also be used for

matching templates (montionlets) in the recognition step,

thus is called template matching similarity.

With similarity measures, we use Affinity Propagation

[13] to cluster 3D regions. Affinity Propagation is an exem-
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Figure 4. The pipeline of motionlet construction: we first generate a large pool of 3D regions using motion saliency; then, we tightly cluster

3D regions into candidate motionlets; finally, we rank and select motionlets based on their representative and discriminative ability.

Figure 5. Some examples of representative-discriminative and non

representative-discriminative motionlets for brush hair.

plar based cluster algorithm whose input is similarity ma-

trix. It simultaneously considers all data points as poten-

tial exemplars and exchanges real-valued messages between

data points until obtaining a high-quality set of exemplars.

Due to the great variance of video data, the preference pa-

rameters of Affinity Propagation are set to be larger than

the median to make sure 3D regions within the same clus-

ter very similar. Each cluster corresponds to a candidate

motionlet, and some examples are shown in Figure 6. The

median of each cluster can be seen as a template of mo-

tionlet. The construction of motionlet is conducted for each

action category separately. For each action category, we

generate about 3, 000 3D regions and cluster them into 500
templates.

4.3. Ranking Motionlet

The motionlet templates constructed above mainly takes

account of the low level features captured by HOE and

HOG. As a consequence, it is still uncertain whether these

templates are representative and discriminative for high-

level action classification. To be representative, a motionlet

should occur frequently and distribute widely in different

videos (See Figure 4). To be discriminative, a motionlet

should provide information to distinguish one action class

from the others (See Figure 4). Some examples are shown

in Figure 5.

Algorithm 1: Greedy Selection Algorithm of Motion-

let.
Input : Representative and Discriminative power: P .

Coverage table: T . Selecting number l.
Output: Selected motionlets: S

Init: coverage counter C ← 0, selected set S ← ∅;
for i← 1 to l do

1. videoset← FindLeastCoverage(C);

2. motionletset← FindActive(T ,videoset);

3. bestmot← FindBest(P ,S,motionletset);

4. Update(S,C,T ,bestmot);

end

To measure the representative and discriminative abil-

ity of motionlets, we use each motionlet as template to

scan over all training videos, and analyze their matching

response values. Specifically, let sji denote motionlet acti-

vation value which is calculated as the max pooling result

of matching motionletMj with video Vi, .

sji = max
x

{∑
u

m(Vi(x+ u),Mj(u))

}
, (9)

where Vi(x + u),Mj(u) denotes two volumes and m(, )

is defined by Equation (5). sji indicates the strength of mo-

tionlet Mj occurring in Vi. We define the representative

and discriminative measure of Mj as the ratio of between-

class variance to within-class variance,

Pj =

∑K
k=1 Nk(s

j
k − sj)2∑K

k=1

∑
Vi∈Ck

(sji − sjk)
2
, (10)

where K is the total number of action classes, Nk is the
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number of videos in action class Ck, and sjk and sj are the

means within class Ck and over all classes,

sjk =
1

Nk

∑
Vi∈Ck

sji , sj =
1∑K

k=1 Nk

K∑
k=1

Nks
j
k. (11)

With the measures above, we can rank motionlets and se-

lect those with high measures. However, this method treats

each motionlet independently, and ignore the correlation be-

tween motionlets. This may result in a redundant set just

covering a subset of training classes. We overcome this lim-

itation by exploring the k nearest videos of each motionlet

in training samples, as shown in Figure 4. We call video

Vi is ‘k nearest’ to motionlet Mj , if matching result sji be-

longs to the k largest value of {sjn} (n = 1, ..., N is index

of training videos). We say motionlet Mj covers video Vi
if Vi is in the k nearest neighbors ofMj .

Our goal is to find a subset of motionlets satisfying two

requirements, the sum of representative and discriminative

power should be as large as possible; the coverage percent-

age of training samples should be as high as possible. We

design a greedy algorithm to select motionlets sequentially

as shown in Algorithm 1. In each iteration, we first find the

least covered training samples. Then, we search for the set

of motionlets that cover these training samples. Finally, we

greedily select the motionlet that has highest representative

and discriminative power in this set.

4.4. Video Representation using Motionlet

With a set of motionlets M = {M1,M2, ...,Mm}, we

can represent an action video V by a motionlet activation
vector f = [s1, ..., sm], where activation sj is the max

pooling result for matching motionlet Mj with V (Equa-

tion (9)). We use a spatial-temporal pyramid representation

of video for matching which has three layers 1 × 1 × 1,

2 × 2 × 2, and 1 × 1 × 4. Thus the dimension of mo-

tionlet activation vector is m × 13, where m is number of

motionlets. For classifier, we use linear SVM implemented

by LIBSVM [6], and adopt one-versus-rest scheme to select

the class with highest score for multi-class classification.

5. Experiment
We evaluate the effectiveness of motionlet on three

datasets, one small scale dataset KTH [28] and two large

scale datasets UCF50 [26] and HMDB51 [19]. KTH [28]

consists of six human action classes and each action is

performed several times by 25 subjects. The videos are

recorded in a controlled settings with homogeneous back-

ground and static camera. In total, the data consists of 2,391

video clips and we follow the original experimental setup

[28], i.e. 16 subjects for training and 9 subjects for testing,

each long video is split into several short clips. UCF50 [26]

and HMDB51 [19] are two large datasets for human action

recognition. UCF50 has 50 action classes with total 6,618

videos, and each action class is divided into 25 groups with

at least 100 videos for each class. HMDB51 has 51 action

classes with total 6,766 videos and each action class has at

least 100 videos. Videos in these two sets are from realistic

environment such as, YouTube, Movies and Sports Video.

For UCF50, we conduct experiments according to two kinds

schemes: 5-fold group-wise cross validation (GV) [27] and

Leave One Group Out cross validation (LOGO) [26]. For

HMDB51, we use the original settings in [19] which include

three training-testing splits. The final results are reported as

the average of three splits.

Visualization of Motionlets. Some examples of mo-

tionelts are shown in Figure 6. From the results, we can

see that video parts belonging to the same motionlets ex-

hibit similar motion and appearance features. Motionlets

can correspond to the motion of body part (such as upper

body, leg) or visual phase (person-horse, gun-hand), and

thus can yield important cues to recognize human motion

category.

Method Accuracy (%)

Harris3D [20] + HOG/HOF [21] (from [30]) 91.8

Cuboids [9] + HOF3D [17] (from [30]) 90.0

Dense + HOF [21] (from [30] ) 88.0

Hessian [32]+ ESURF [32] (from [30]) 81.4

HMAX(C2) [15] 91.7

3D CNN [16] 90.2

GRBM [29] 90.0

ISA (dense sampling) [22] 91.4

ISA (norm thresholding) [22] 93.9

ActionBank [27] 98.01

Motionlet (1000) 92.1

Motionlet (3000) 93.3

Table 2. Recognition accuracy in KTH [28]. We compare motion-

let with low-level representation, high-level representation, deep

learning based method.

Recognition Results. The experimental results on three

datasets are shown in Table 2, Table 3, and Table 4. From

these results, we see that the proposed motionlets achieve

a comparable result on the simple dataset and high per-

formance on the two large scale datasets. For KTH, our

method get recognition accuracy 92.1% for 1, 000 motion-

lets and 93.3% for 3, 000 motionlets. Our result is com-

parable to low-level features [20, 9, 32] and deep learning

based methods [15, 16, 29, 22]. Action bank [27] use a

different testing settings and get the best result on KTH.

For HMDB51, our method obtains a classification accuracy

32.1% using 1, 000 motionlets and 33.7% using 3,000 mo-

tionlets. These results yield 13 percents improvement over

a baseline HOG/HOF (low-level representation), 7 percents

1They remove part of testing videos in the bank and they do not split

each video into short clips according to [28], thus their testing settings is

different from the other methods and ours.
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Figure 6. Examples of motionlet from three datasets: KTH (left), UCF50 (middle) and HMDB51 (right). We find each motionlet is a tight

cluster both in motion and appearance space.

Method Accuracy (%)

Gist [24] (from [27]) 13.4

Harris3D [20] + HOG/HOF [21] (from [19]) 20.2

HMAX(C2) [15] (from [19]) 23.2

Motion Interchange Pattern [18] 29.2

Action Bank [27] 26.9

Motionlet (1000) 32.1

Motionlet (3000) 33.7
Table 3. Recognition accuracy in HMDB51 [19]. We compare

motionlet with low-level representation, high-level representation.

improvement over a recent method of action bank (high-

level representation), and 4 percents improvement over a

recent feature of motion interchange pattern (low-level rep-

resentation) [18]. For UCF50, the proposed method ob-

tains recognition accuracy of 67.9% (1000 motionlets) and

71.7% (3, 000 motionlets) for GV. For LOGO, we obtain re-

sults of 70.2% (1000 motionlets) and 73.9% (3, 000 motion-

lets). Our method outperforms HOG/HOF, Action Bank,

and motion interchange pattern for both group wise cross

validation (GV) and leave one group out cross validation

schemes (LOGO). For computational cost, we extract mo-

tion saliency for about 30s and 3000 motionlets match for

about 40s for each video on average on HMDB51 and

UCF50 on a PC with E5645 CPU(2.4 GHZ) and 8G RAM.

From these comparisons, we can conclude that motion-

let is effective in dealing with realistic videos. The diver-

sity of realistic videos is much higher than the controlled

videos of KTH. Local features like HOG/HOF cannot de-

scribe the complex motion information in realistic videos,

while high level templates like action bank fail to deal with

the large deformation among video samples very well. Due

to the mid-level nature, motionlets yield a good tradeoff be-

tween low-level and high-level representation, and provide

rich and robust information for classification.

Method GV LOGO

Gist [24] (from [27]) 38.8 -

Harris3D [20] + HOG/HOF [21] (from [27]) 47.9 -

Motion Interchange Pattern [18] 68.5 72.7

Action Bank [27] 57.9 -

Motionlet (1000) 67.9 70.2

Motionlet (3000) 71.7 73.9
Table 4. Recognition accuracy in UCF50 [26]. We compare mo-

tionlet with low-level representation, high-level representation.

Varying number of motionlets. We explore the influ-

ence of motionlet number and the effectiveness of motion-

let selection algorithm using HMDB51 and UCF50 (GV).

For HMDB51, there are totally 500 × 51 = 25, 500 candi-

date motionlets, and for UCF50 there are totally 500×50 =
25, 000 candidates. The results are shown in Figure 7, from

which we can see that the accuracy increases little when the

number of motionlets is larger than 2,000. These results in-

dicates high redundancy within candidates, and thus it is

necessary to conduct motionlet selection. We also make

comparison between our motionlet selection method and

random selection (we randomly select motionlets and re-

peat the random experiments 50 times). The results show

that our method significantly outperforms the random ones.

Besides, we can achieve a bit higher classification accuracy

using selected motionlets than using all candidate motion-

lets. All these results imply that our greedy algorithm is

effective in motionlet selection.

Combined with other representations. We use mo-

tionlets to obtain a mid-level representation of video. Since

mid-level representation is complementary to low-level and

high-level ones, we consider to combine these representa-

tions to further improve the performance. For low-level rep-

resentation, we use traditional BoVW of STIP + HOG/HOF

with 4,000 codewords. For high-level representation, we
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Figure 7. Results of varying motionlet size and compare rank-

ing algorithm with random selection, Left: HMDB51 and Right:

UCF50.

Method HMDB51 UCF50

Combined with Harris3D + HOG/HOF 35.5 73.6

Combined with Action Bank 39.0 74.0

Combine All 42.1 78.4
Table 5. Recognition accuracy of combined representation in

HMDB51 [19] and UCF50 [26].

use action bank representation with 205 detectors1. The

number of motionlets are set as 3,000 in this combination.

We simply concatenate the feature vectors of each repre-

sentation and use linear SVM for classification. The results

are shown in Table 5. We see that combination of any two

representation can improve the performance. Combination

of all three representations yields the state-of-the-art results

on the two large scale datasets, 78.4% for UCF50 (GV) and

42.1% for HMDB51.

6. Conclusion
In this paper, we propose a mid-level video represen-

tation for motion recognition using motionlet. Motionlet

are defined as a spatiotemporal part with coherent appear-

ance and motion features. We develop a data-driven ap-

proach to learn motionlets by considering three properties,

high motion saliency, multiple scale representation, and

representative-discriminative ability. Compared with local

features (such as STIP) and global template (such as ac-

tion bank), motionlets are a mid-level parts and provide a

good tradeoff between repeatability and discriminative abil-

ity. We evaluate the performance of motionlet on three pub-

lic datasets, KTH, HMDB51 and UCF50. The experimental

results show that our methods achieve significant improve-

ments over recent published methods.
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