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Abstract

Recognizing the category of a visual object remains a
challenging computer vision problem. In this paper we de-
velop a novel deep learning method that facilitates example-
based visual object category recognition. Our deep learn-
ing architecture consists of multiple stacked layers and
computes an intermediate representation that can be fed
to a nearest-neighbor classifier. This intermediate repre-
sentation is discriminative and structure-preserving. It is
also capable of extracting essential characteristics shared
by objects in the same category while filtering out nonessen-
tial differences among them. Each layer in our model is a
nonlinear mapping, whose parameters are learned through
two sequential steps that are designed to achieve the afore-
mentioned properties. The first step computes a discrete
mapping called supervised Laplacian Eigenmap. The sec-
ond step computes a continuous mapping from the discrete
version through nonlinear regression. We have extensively
tested our method and it achieves state-of-the-art recogni-
tion rates on a number of benchmark datasets.

1. Introduction

Recognizing the category of a visual object is an impor-

tant and challenging aspect of automatic object recognition.

Visual objects from the same category may exhibit a wide

range of shape and appearance variations due to many rea-

sons, including inherent within-class shape and appearance

diversity as well as the presence of deformation and illumi-

nation changes. Humans have a remarkable ability in recog-

nizing object categories despite such within-class shape and

appearance variations. It is a common practice in computer

vision to develop algorithms that are inspired by mecha-

nisms in the human visual system. Deep learning methods,

such as convolutional neural networks [16], are a good ex-

ample of this approach. They are biologically inspired by

complex multilayer hierarchies in the human visual cortex.

It is well known that learning plays a significant role in

the development of human brain functionalities. Learned

knowledge is often represented as a collection of cases and

examples. In the event of visual object recognition, when

presented with a new object, humans often draw conclu-

sions from their past experiences [7]. That is, we con-

sciously or subconsciously compare the new object against

examples of objects we have seen in the past. Nevertheless,

such comparisons are not always performed on the original

visual impressions where the directly observed shape and

appearance of the objects may be very different even when

they belong to the same category. Therefore, correctly rec-

ognizing visual object categories with large within-class di-

versity requires the brain to form an intermediate represen-

tation that grasps the essence of those characteristics shared

by objects in the same category while filtering out nonessen-

tial differences. Objects with similar intermediate represen-

tations in this nature are more likely to belong to the same

category.

Our goal is to develop a deep learning method that facil-

itates example-based reasoning for visual object category

recognition. Inspired by the important role played by ex-

amples in human visual recognition, we would like to de-

termine the category of an object by computing its simi-

larities with a set of examples with known category labels.

As discussed above, such similarities need to be computed

with the assistance of a proper intermediate representation,

which is crucial in achieving high recognition rates. Since

this intermediate representation needs to grasp the essence

of an object’s attributes, it is likely to be the result of a

complicated transformation applied to the features extracted

from original input images. Since multilayer deep learning

architectures have a reputation for learning such transfor-

mations, we devise a novel deep learning architecture for

computing a desired intermediate representation.

There exist a few requirements on the intermediate rep-

resentation we learn. First, it needs to be discriminative.

The intermediate representation of a visual object is in fact

a point in a new multidimensional feature space, and the

dissimilarity between two objects can be measured by the

Euclidean distance between their corresponding points. In
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this context, being discriminative means points with differ-

ent category labels should be further away from each other

than those with same category labels. Second, nonessential

differences between objects with the same category label

should be suppressed, which has been much discussed ear-

lier. Third, essential structures in image feature distribution

should be retained. It is important for supervised learning to

capture intrinsic connections between the input (image fea-

tures) and the output of the trained system. Otherwise, the

trained system would have poor generalization capability.

In summary, we propose a supervised layered visual ob-

ject category classification framework inspired by recent

deep learning methods. Our framework is simple and pow-

erful. It consists of three stages. The first stage is usual

feature extraction. In the second stage, a layered model is

applied to the extracted features to obtain a desired inter-

mediate representation. In the last stage, the intermediate

representation is fed to a classifier based on nearest neigh-

bors. Our main contribution is the layered model used in

the second stage. This model is capable of obtaining dis-

criminative and structure-preserving intermediate represen-

tations supporting nearest-neighbor classification. At each

layer, the output representation from the previous layer is

taken as the input and is nonlinearly mapped. The result of

this mapping defines the output representation at the cur-

rent layer. This nonlinear continuous mapping approxi-

mates (through regression) a discrete mapping called super-
vised Laplacian Eigenmap, which is the optimal solution

of an energy function designed to address the aforemen-

tioned three requirements. We have tested our framework

on a number of benchmark datasets. It achieves recognition

rates higher than other state-of-the-art techniques.

1.1. Related Work

Many image classification and object category recogni-

tion approaches [26, 31, 17, 28] have been developed to

process medium-scale benchmark datasets such as Caltech

101 [14], Caltech 256 [18] and PASCAL VOC [13]. There

are also attempts made on the large-scale ImageNet [12]

dataset, which includes millions of images distributed in

more than 20,000 classes.

Deep learning has received much attention recently and

been employed to further improve image classification ac-

curacy. It relies on multiple levels of transformation and

abstraction to extract the essence of the input data. Thus,

deep learning simulates the subconscious process under-

taken by humans when they make classification decisions.

Deep belief networks (DBN) are a type of deep learn-

ing models where lower-level features are progressively

combined into more compact high-level representations.

Stacked denoising autoencoders [27] represent another deep

learning architecture where each layer serves as a com-

pact encoder of its previous layer. In recent years, deep

convolutional neural networks (DNN) [16], have demon-

strated their capability of automatically extracting spatial

and spatial-temporal features from raw images while be-

ing resistant to object appearance variations in the images.

Recently, a multi-column DNN (MCDNN) framework [10]

has much improved the state-of-the-art recognition rates

on several benchmark datasets, including MNIST [20] and

NORB [21]. Nevertheless, training such DNNs is very

time-consuming even with the help of GPUs. It is also hard

to comprehend the internal structures of a DNN.
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Figure 1. LEFT: A diagram of our layered model. RIGHT: A de-

tailed illustration of one layer, where an input feature vector xi is

mapped to an output feature vector xi+1 through F i, which itself

has multiple components. Each component maps xi to one of the

elements in xi+1.

2. Architecture
The architecture of our learning system, as demonstrated

in Figure 1, is a layered model which aims at construct-

ing a discriminative and structure-preserving image feature

space. Images from the same category have inherent con-

nections and similarities even though they may differ visu-

ally in geometric deformation, color, texture, illumination,

etc. Our model is designed to dig out hidden similarities and

force together images with the same category label in a new

feature space. Meanwhile, the new feature space needs to be

sufficiently discriminative and structure-preserving. That

means feature vectors with different category labels should

be further away from each other than those with same cate-

gory labels, and feature distribution in the new space should

be regularized. Since it would be hard to meet these goals

at once for challenging datasets, in the spirit of deep learn-

ing, we envision compositing multiple layers of nonlinear

transformations together would be a more feasible solution.

Suppose there exist d layers in our model. Each layer

performs a (nonlinear) mapping between an input feature
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space and an output feature space. Let us first focus on a sin-

gle layer Li(1 ≤ i ≤ d). The training data for Li is denoted

as {(xi
j , lj)}Nj=1, where xi

j(∈ Rsi) is a training sample, lj
is its category label, which is independent of the layer index,

N is the number of training samples, and si denotes the di-

mensionality of the training samples. There are two types

of training samples. For the first layer, they are features ex-

tracted from raw training images. For any of the subsequent

layers, they are actually transformed features produced by

the previous layer Li−1(i > 1). In this context, we define

the mapping at Li as F i : Rsi → Rsi+1 . Let Si(j) be

the set of n nearest neighbors of xi
j , and W i

jk(≥ 0) be a

similarity measure between xi
j and xi

k.

Fulfilling the previously mentioned objectives amounts

to the following optimization problem.

F i = argminλiEpull + μiEpush + (1− λi − μi)Einner,
(1)

where λi and μi are weights for different energy terms.

Specific formulations of the three energy terms in (1) are

discussed as follows. The first term,

Epull =
∑

j

∑

k∈Si(j),

lj=lk

||F i(xi
j)− F i(xi

k)||2, (2)

is a pulling energy that attempts to pull closer a training

sample and its neighbors with the same category label in

the output feature space Rsi+1 .

The second term,

Epush =
∑

j

∑

k∈Si(j),

lj=lk

∑

q∈Si(j),

lj �=lq

[1 + dijk
2 − dijq

2
]+, (3)

where dijk = ||F i(xi
j) − F i(xi

k)||, is a pushing energy

that attempts to push neighbors with different category la-

bels at least a unit margin further away in the output fea-

ture space than neighbors with same labels. The term

[z]+ = max(z, 0) is the standard hinge loss, which makes

this term disappear once the unit margin has been satisfied.

The third term,

Einner =
∑

j

∑

k∈Si(j)

||F i(xi
j)− F i(xi

k)||2W i
jk, (4)

is a standard structure-preserving energy that keeps training

samples close in the output feature space if they have high

similarity in the input feature space. Unlike previous two

energy terms, this one does not take labels into considera-

tion.

This last energy term is very similar to the energy used

for deriving Laplacian Eigenmap [1] except that we seek a

continuous mapping F i instead of a discrete embedding and

there is no normalization constraint on the magnitude of the

mapped training samples. Furthermore, the first two energy

terms have a supervised nature since they make use of labels

while the third one has an unsupervised nature. These are

the reasons we call the mapping we learn at each layer a

supervised Laplacian Eigenmap.

The three energy terms in our optimization have compet-

ing effects at the same time being complementary to each

other. For example, without a normalization constraint,

minimizing Einner in (4) alone would make all input sam-

ples collapse to a single point in the output feature space.

However, the unit margin in (3) can effectively prevent that

from happening. On the other hand, minimizing Epull in

(2) alone would also have the potential of collapsing input

samples with the same category label to a single point in

the output feature space. Einner has the effect of a reg-

ularization term. Its structure-preserving functionality can

make such samples more spread out according to their mu-

tual similarities. Results in Figure 2 show that minimizing

the sum of all three energy terms with proper weights can

yield much better (7% to 9% in accuracy) recognition per-

formance than minimizing Epush + Epull only or Einner

only.

Our complete model consists of multiple layers of

continuous mappings stacked on top of each other, i.e.

F i(xi
j) = xi+1

j . Each layer is constructed and learned

in the same way while using potentially different parame-

ters, which include the dimensionality si of input features,

and the weights λi and μi for different energy terms. Note

that our model only takes care of the middle portion of

the entire pipeline. It neither extracts features from a raw

input image nor performs final classification to determine

the category label of the input image. It only performs

nonlinear transformations that eventually define a final fea-

ture space through multiple intermediate feature spaces de-

fined at intermediate layers. Given an input feature vec-

tor, x1 (∈ Rs1 ), to the first layer, the output feature vector,

F d(F d−1(...F 1(x1)...)) (∈ Rsd ), of the last layer is fed to

a final multi-category classifier.

Our general strategy to solve the optimization in (1) is to

decompose it into two sequential subproblems. In the first

subproblem, we seek a discrete mapping between an input

feature space and an output feature space for the training

samples only. This discrete mapping minimizes the same

energy as defined in (1). In the second subproblem, we seek

a continuous mapping by performing regression on the dis-

crete results obtained in the first subproblem. This general

strategy is motivated by the fact that directly minimizing (1)

can be easily stuck with local minima while solving the two

simpler subproblems may actually gives rise to better solu-

tions. The actual implementation of these two steps will be

elaborated in the following section.
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3. Implementation
3.1. Feature Extraction

We use concatenated combinations of PHOG [3],

SIFT [22], and CENTRIST [30] as the initial feature vector

from raw input images. Such feature vectors are used as the

input to the first layer of our learned model. Detailed fea-

ture settings with respect to individual datasets can be found

in Section 4.

PHOG [3] partitions an image into a pyramid of nested

subregions, and computes a histogram of oriented gradi-

ents (20 bins or 40 bins) over each subregion at each pyra-

mid level. In our experiments, we typically use oriented

(Shp360) PHOG, with 40 bins and 3 levels. The total di-

mensionality is 40
∑3

l=0 4
l = 3400. We also use SIFT [22]

to model appearance and adopt a codebook with 1024 to

4096 grey-scale keypoint descriptors in our implementa-

tion. CENTRIST [30] is used for datasets where the contour

of foreground objects plays a crucial role in classification.

CENTRIST is performed on the Sobel filtered images, and

fully takes advantage of local sign information.

Since the visual objects that need to be recognized typi-

cally belong to a salient foreground region of an image, we

first perform saliency detection as in [9] and then threshold

the resulting saliency map. We further obtain a bounding

box for the pixels with saliency above the threshold. Fea-

ture descriptors are only computed for the part of the image

inside the bounding box. Most of the feature descriptors we

use involve histograms. During the computation of a his-

togram, the feature value at a pixel is cast into a bin after

being multiplied by the saliency value of that pixel. Then

the summation of all the bins in the histogram is normal-

ized. By doing so, foreground pixels within the bounding

box have a greater influence on the feature vector we con-

struct. Compared with region-of-interest (ROI) selection in

[4], we do not need to run an optimization over the entire

training set. Instead, it is only necessary to precompute and

save the saliency map and its associated bounding box for

each training image, once and for all.

3.2. Discrete Mapping

As discussed earlier, we take two sequential steps to

solve the optimization in (1). The first of these two steps

is to compute a discrete mapping that minimizes (1). Let

Y i
j = F i(xi

j)(j = 1, . . . , N)(∈ Rsi+1). Instead of tak-

ing the continuous mapping Fi as the unknown in the mini-

mization, we take {Y i
j }Nj=1 as a set of mutually independent

unknowns and replace all Fi(x
i
j)’s in (2)-(4) with Y i

j . Note

that the input feature vectors of the discrete mapping are

known since we solve the mapping for one layer at a time.

The resulting problem is still a challenging nonconvex opti-

mization with local minima. Nevertheless, converting from

a continuous mapping to a discrete mapping makes it easier

to compute a good initial solution, which is often crucial in

obtaining a high-quality final solution for nonconvex prob-

lems.

Because of the similarity between the energy term in (4)

and the energy for Laplacian Eigenmap [1], we decided to

take the Laplacian Eigenmap as the initial solution to our

discrete mapping. Laplacian Eigenmap is capable of pro-

ducing a nonlinear embedding that preserves important lo-

cal structures while removing non-significant features. With

the set of input vectors {Y i−1
j }Nj=1 at layer Li in mind,

we take the following steps. The adjacency graph among

these input vectors is defined by the set of nearest neigh-

bors, Si(j), of Y i−1
j . An edge in the graph is associated

with a heat kernel weight, W i
jk = e−||Y

i−1
j −Y i−1

k ||2/ti .
For each connected component of the adjacent graph, the

eigenvalues and eigenvectors of the following problem is

solved: L̃Y = λDY , where D is a diagonal matrix with

Djj =
∑

k W
i
kj and L̃ = D −W is the Laplacian matrix.

This is equivalent to minimizing the Einner term along with

the constraint Y TDY = 1 to avoid arbitrary scaling [1].

Although Laplacian Eigenmap generates a starting point

for our optimization, it does not take category label infor-

mation into consideration. We further minimize the com-

plete energy function defined in (1) from the initial solution

provided by Laplacian Eigenmap using gradient descent,

which typically result in a high-quality solution to the dis-

crete mapping we seek in our experiments.

Note that energy terms similar to Epull and Epush in

a discrete setting have been previously exploited in met-

ric learning literature, including the Large Margin Nearest

Neighbor (LMNN) approach in [29], which learns a Ma-

hanalobis distance metric for k-NN classification. Com-

pared with LMNN, we directly optimize the coordinates

of transformed feature vectors in a new si+1-dimensional

space instead of just training a linear transformation for the

original feature space. The total number of unknowns in our

problem is N × si+1, which is much larger than s2i+1 (for

LMNN) when N >> si+1. Furthermore, the new feature

vectors learned from our problem formulation is typically

the result of a more powerful nonlinear transformation.

3.3. Continuous Mapping

So far we have obtained a discrete mapping which redis-

tributes training samples in a new feature space according

to the three requirements discussed in the Introduction. A

continuous mapping is then learned from the discrete map-

ping through nonlinear regression, which essentially solves

another optimization problem that seeks a continuous map-

ping that can approximately satisfy the constraints defined

by the discrete mapping, i.e. {F i(xi
j) = Y i

j }Nj=1, where

xi
j = F i−1(xi−1

j ), which means we fit a continuous map-

ping at layer Li immediately after computing the discrete

mapping, and when we work on layer Li+1, we take the
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output from the continuous mapping at Li as the input when

solving both the discrete and continuous mappings there.

We have experimented with multiple nonlinear regres-

sion techniques from the literature, including kernel SVM

regression, random forests [5], and radial basis functions

(RBFs) [6]. In our context, Gaussian RBFs achieve the

highest generalization accuracy. Since the output feature

space of layer Li is si+1-dimensional, we actually perform

RBF regression si+1 times once for each dimension. The

Gaussian RBF approximation of the k-th element of the out-

put feature vector has the following form:

f i
k(x) =

Ni
rbf∑

j=1

θik,jφ
i
k,j(x), (5)

where φi
k,j(x) = e−||x−xi

k,j ||2/2σi
2

. σi is the standard de-

viation which is estimated according to the average distance

between pairs of closest kernel centers in the input feature

space. It has been shown that any continuous function on

a compact interval can in principle be approximated to an

arbitrary accuracy with a sum in this form if a sufficiently

large number of radial basis functions are used. In practice,

however, too many RBF kernels would eventually overfit

noise and outliers, and consequently lower the generaliza-

tion capability of the learned model. In our experiments, the

centers of Gaussian kernels, {xi
k,j} are chosen to be a ran-

dom subset of training samples, whose size is between 1/50

to 1/10 of the training set size. The weights, {θik,j}Nrbf

j=1

are optimized to minimize the following summed squared

errors (SSE):

SSEi,k =

N∑

j=1

||f i
k(x

i
j)− Y i

j (k)||2, (6)

where Y i
j (k) denotes the k-th element of Y i

j .

3.4. Classification

The energy terms Epush and Epull in our optimization

make it naturally suitable (slightly better than using lin-

ear and kernel SVMs) to apply k-NN classification (vot-

ing among k nearest neighbors) on the final feature vector

Rd(Rd−1(...R1(x)...)) in our layered model. The final fea-

ture vectors of all training samples are stored in a k-d tree

for fast nearest neighbor lookup.

4. Experiments
In this section, we report experimental results on four

widely used datasets: Caltech 101 [14], Caltech 256 [18],

PASCAL VOC 2007 [13] and NORB [21]. Our method

is compared against other state-of-the-art techniques over

each dataset. All experiments were conducted on an Intel

Xeon E5-2690 2.90GHz CPU with 128GB RAM. Each re-

ported result is an average of 10 different runs.

Figure 2. Results on Caltech 256 by optimizing different energy

terms. The ”Total energy” curve was achieved by optimizing the

sum of all three terms in (1). The ”Inner” curve was achieved by

merely minimizing the Einner term without pushing and pulling.

The ”Push and Pull” curve was achieved by minimizing Epush +
Epull (equal weights) only. Note that for fair comparison, we use

random initializations for the ”Push and Pull” curve instead of the

way introduced in Section 3.2.

4.1. Caltech Datasets

The Caltech 256 dataset [18] contains 30,607 images in

256 categories with large variance in foreground object size,

pose, and texture. Each class contains no less than 80 im-

ages. We randomly chose 15, 30, 40, 45, 50, 60 training

images per class and no more than 100 test images. SIFT

(codebook size 1024) was concatenated to PHOG (Shp360,

3 levels) to construct the initial feature vector. 7 layers were

used, at the first 4 of which the dimensionality was reduced

by half with λ = μ = 0.35 while in the others the dimen-

sionality was reduced by a third with λ = μ = 0.45. The

size of a nearest-neighbor set during training was 31 (for 60

training images) for all layers. 580 RBF kernels were used

in the regression stage. Results and comparisons with state-

of-the-art techniques can be found in Figure 3(a). When us-

ing 15, 30, 40, 45, 50, 60 training images, our recognition

rates are: 38.74%, 50.69%, 52.48%, 53.12%, 53.63% and

54.19% (±0.24%). Our method gives competitive results

with 15 training images per category, and significantly leads

the performance when the training set becomes larger. For

example, with 50 training images per category, our recogni-

tion rate (53.63%) is 2.83% higher than the second best re-

sult (50.8%) achieved in [17]. Note that even using a single

feature descriptor, such as PHOG or SIFT, our method still

outperforms all existing methods. With 50 training images

per category, our recognition rates are 53.13% (PHOG) and

53.49% (SIFT).

Our method also exhibits similar advantages over the

Caltech 101 dataset [14], which contains 9,144 images with

significant shape variance in 102 classes. Similar to the set-

ting for Caltech 256, PHOG and SIFT were used as the ini-

tial features. 5 layers were used. At each layer the dimen-
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(a) Comparison results on Caltech 256 (b) Comparison results on Caltech 101

Figure 3. (a) Comparison on Caltech 256 between our method and [17, 28, 26, 4, 2, 18] as well as baseline linear and kernel SVMs with

the same input features; (b) Comparison on Caltech 101 between our method and [31, 28, 26, 23, 15, 19] as well as baseline linear and

kernel SVMs with the same input features.

sionality is reduced by half. λ = 0.2 and μ = 0.3 for the

first 4 layers, and at the last layer λ = 0.4 and μ = 0.5.

The nearest neighbor set size was 16 (for 30 training im-

ages) for all layers. 190 RBF kernels were used for regres-

sion. Results and comparisons are shown in Figure 3(b).

When using 15, 20, 25, 30 training images, our accuracy

rates are: 73.19%, 81.42%, 84,39% and 85.77% (±0.35%).

Our method works extremely well for 23 categories, such

as car, human face, pyramid, and etc., with 100% accuracy.

Like other deep learning methods, our method requires a

sufficient amount of training data to perform well, and when

compared to other approaches, yields better performance

once the training set becomes sufficiently large.

4.2. PASCAL VOC 2007

The PASCAL VOC 2007 dataset [13] has 9,963 images

(5011 for training and validation, 4952 for testing) of 20

classes from Flicker. Classification here is challenging due

to casual styles of daily photos. PHOG and SIFT (4096

codebook size) were used as the initial feature. There were

10 layers in our model. At each layer the dimensionality

was reduced by a third with λ = μ = 0.15. The number

of nearest neighbors used for training was 26 for all layers.

Note that since we are confronted with multiple labels here,

a training sample is considered to belong to a category as

long as they share a certain label. 480 RBF kernels were

used in the regression stage for all layers. Evaluations were

performed using Average Precision (AP) introduced in [13].

Results and comparisons are given in Table 1. Our method

delivers an overall best mean score (64.1), and also achieves

the best recognition rate in 6 of the 20 categories.

4.3. NORB

NORB [21] is a collection of stereo images of 3D models

for object shape recognition. These objects are centered on

randomly chosen backgrounds cluttered with other objects.

This dataset has images of 50 toys in 6 classes (5 genuine

categories and 1 background category), taken by 2 cameras

under 6 lighting conditions, 9 elevations (30 to 70 degrees

every 5 degrees), and 18 azimuths (0 to 340 every 20 de-

grees). There are 291600 training images (in 10 folds) in

total with 58320 test images.

We chose CENTRIST as the initial feature because ob-

ject contours are the most important features for NORB.

There were 8 layers in our model. At each layer the di-

mensionality is reduced by a quarter with λ = μ = 0.45.

The size of a nearest-neighbor set during training was 600

for all layers. 360 RBF kernels were used in the regres-

sion stage for all layers. Results using 2 folds (58320)

of training data and comparisons with state-of-the-art tech-

niques can be found in Table 2. We are further encour-

aged to observe that with 10 folds of training images, our

method achieves 97.67% accuracy which outperforms an-

other recent deep learning architecture [10] (97.3% accu-

racy), which has set records on a few benchmark datasets

including NORB. With large weights assigned to Epush and

Epull, our method is capable of well separating images from

different categories especially when each category has a rel-

atively large number of training images.

Method [25] [11] [10] Our method

Accuracy 94.4% 95% 96.43% 96.87±0.18%

Table 2. Comparison on NORB between our method and those in

[25, 11, 10] using 2 folds of training images.
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Class aero bicycle bird boat bottle bus car cat chair cow

Chatfield et al. 2011 79.0 67.4 51.9 70.9 30.8 72.2 79.9 61.4 56.0 49.6

Yang et al. 2009 79.4 62.4 58.5 70.2 46.6 62.3 75.6 54.9 64.8 40.7

Zhou et al. 2010 79.4 72.5 55.6 73.8 34 72.4 83.4 63.6 56.6 52.8
Ours 79.8 66.1 57.9 72.5 46.4 72.8 82.6 57.5 63.1 47.6

Class table dog horse motor person plant sheep sofa train tv Mean

Chatfield et al. 2011 58.4 44.8 78.8 70.8 85.0 31.7 51.0 56.4 80.2 57.5 61.7

Yang et al. 2009 58.3 51.6 79.2 68.1 87.1 49.5 48.8 56.4 75.9 54.4 62.2

Zhou et al. 2010 63.2 49.5 80.9 71.9 85.1 36.4 46.5 59.8 83.3 58.9 64.0

Ours 63.7 47.2 78.2 72.1 85.9 46.6 45.4 61.2 83.6 51.8 64.1
Table 1. Comparison on PASCAL VOC 2007 between our method and those in [8, 31, 32].

4.4. Discussions

In this section, we explore the effects of model depth d,

the number of nearest neighbors n during training and the

number of RBF kernels Nrbf on final classification perfor-

mance. We fix other parameters and observe how recogni-

tion accuracy varies when we change the value of only one

of these three parameters. Related curves on Caltech 101

can be found in Figure. 4.

If we reach a certain feature dimensionality through dif-

ferent models with different numbers of layers, we obtain

the result in Figure. 4(a). Note that the dimension reduction

rate is different in models with different numbers of layers.

The final dimensionality is 1/32 of the original. When the

number of layers is too small, we may lose key feature di-

mensions from the beginning. However, adopting too many

layers does not necessarily increase the recognition rate af-

ter a certain value (5 in this case) since regression introduces

errors which gradually decrease the quality of the mapped

feature vectors. A proper choice of model depth contributes

to a high accuracy with less computation.

The curve of accuracy with respect to the size of the

nearest-neighbor set is interesting. It shows that with only a

small number of neighbors the adjacency information is not

sufficient. On the other hand, too many neighbors would

make an entire category almost shrink to a single point in

the new feature space. Some value in the middle of these

two extremes can deliver the best performance, and this

value is related to the number of training samples in each

category.

A similar phenomenon has also been observed on the

curve for the number of RBF kernels. Too few kernels can-

not produce sufficiently accurate results while too many of

them gives rise to overfitting. The proper number of RBF

kernels depends on the underlying structures of the dataset.

For example, a dataset with a small number of tight clusters

likely needs a relatively small number of kernels only while

a dataset with a more spread out distribution needs a larger

number of kernels.

5. Conclusions and Future Work

We have presented a supervised deep learning method

for visual object category recognition based on nearest

neighbors. In a flexible layered architecture, discrimina-

tive and structure-preserving intermediate data representa-

tions are obtained for modeling complex nonlinear feature

spaces. The performance of our method on widely used

benchmark datasets exceeds other state-of-the-art tech-

niques. Such performance demonstrates that classification

based on nearest neighbors can become at least as power-

ful as other classification approaches if a suitable feature

space is learned. In the extreme case, if we could learn a

continuous mapping from the raw input data to a feature

space identical to the label space where objects in the same

category share the same value, a nearest-neighbor classifier

would be able to achieve perfect accuracy.

Nevertheless, our method is by no means fully opti-

mized. In future, we aim at further boosting recognition

rates by exploring more effective feature descriptors used

as the initial feature fed to the first layer in our model. For

example, Fisher Vector [24, 32], which has been proved to

perform well on many datasets including ImageNet, is a po-

tential choice of dense descriptors. Domain transformation

techniques other than the Laplacian Eigenmap could be ex-

plored to remove the restriction that the dimensionality of

intermediate feature vectors cannot be increased from layer

to layer. Parallel or cluster computing techniques will be

considered to speed up the computation so that our frame-

work can be scaled to much larger image datasets.
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