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Abstract

General purpose blind image quality assessment (BIQA)
has been recently attracting significant attention in the field-
s of image processing, vision and machine learning. State-
of-the-art BIQA methods usually learn to evaluate the im-
age quality by regression from human subjective scores of
the training samples. However, these methods need a large
number of human scored images for training, and lack an
explicit explanation of how the image quality is affected by
image local features. An interesting question is then: can
we learn for effective BIQA without using human scored
images? This paper makes a good effort to answer this
question. We partition the distorted images into overlapped
patches, and use a percentile pooling strategy to estimate
the local quality of each patch. Then a quality-aware clus-
tering (QAC) method is proposed to learn a set of centroids
on each quality level. These centroids are then used as a
codebook to infer the quality of each patch in a given image,
and subsequently a perceptual quality score of the whole
image can be obtained. The proposed QAC based BIQA
method is simple yet effective. It not only has comparable
accuracy to those methods using human scored images in
learning, but also has merits such as high linearity to hu-
man perception of image quality, real-time implementation
and availability of image local quality map.

1. Introduction
With the ubiquitous use of digital imaging devices (e.g.,

digital cameras and camera phones) and the rapid develop-

ment of internet service, digital images have been becoming

one of the most popular types of media in our daily life. For

example, one can easily find a huge amount of images in

Google, Facebook and Flicker, etc. The quality of those

images can be deteriorated due to noise corruption, blur,

JPEG or JPEG 2000 compression, etc. However, in most

scenarios we do not have the source of the distorted im-

age, and consequently how to evaluate blindly the quality

of an image has been becoming increasingly important [22].

The current blind image quality assessment (BIQA) meth-

ods can be classified into two categories: distortion specific

methods [1,8,9,18,25] and distortion independent method-

s [4,10,13,14,16,17,21,27]. The former category estimates

the quality of an image by quantifying the particular arti-

facts induced by the distortion process, and usually works

well for one specific type of distortion. The latter category

often refers to the general purpose BIQA, which is clearly

a much more challenging task than the former category due

to the lack of distortion information. In this paper we focus

on the general purpose BIQA methods.

Most of the state-of-the-art BIQA methods [4, 10, 13,

14, 16, 17, 21, 27] learn to estimate the image quality from

training samples whose human subjective quality scores are

available, e.g., the images in the TID2008 [15], LIVE [19]

and CSIQ [6] databases. Generally speaking, all these

methods follow a two-step framework: feature extraction

and model regression by human scores. The method pro-

posed by Moorthy et al. [13] first uses a support vector ma-

chine (SVM) to detect the distortion type and then uses a

support vector regression (SVR) [20] model specified to that

distortion for BIQA. Saad et al. trained a probabilistic mod-

el for BIQA based on the contrast and structural features

such as kurtosis and anisotropy in the DCT domain [16].

The BIQA metric in [21] extracts three sets of features

based on the statistics of natural images, distortion textures

and blur/noise. Three regression models are then trained for

each feature set and finally a weighted combination of them

is used to estimate the image quality. A summarization of

the used features and the regression algorithms in recently

developed BIQA methods can be found in [27]. The most-

ly widely used algorithm for regression is the SVR with a

radial basis function as kernel. In [4], the sparse represen-

tation based classifier firstly developed in face recognition

literature [26] was used to regress the image quality score.

Though the above methods represent the state-of-the-arts

of BIQA research, there are several important issues to be

further addressed. First of all, all these methods need a

large amount of human scored images for training. This

makes the developed algorithm training dataset dependent,
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Figure 1. (a) The ten training images used by us. They are randomly selected from the Berkeley Segmentation database [7]. Reference

images in the (b) LIVE database [19]; (c) TID2008 database [15]; and (d) CSIQ database [6].

and the results are heavily dependent on the size of train-

ing samples. Second, these methods usually learn a map-

ping function (e.g., using SVR) to map the extracted image

features (e.g., global statistics) to a single perceptual score.

This makes the BIQA process a black box and the relation-

ship between features and quality score implicit. None of

these methods can provide a local quality map of the distort-

ed image, which is much desirable to understand the good

and bad quality regions of the input image. Third, some of

these methods can achieve relatively high BIQA accuracy,

but their complexity is too high to be implemented in real-

time, limiting their practical use.

Intuitively, one interesting question is can we develop

an effective and efficient BIQA algorithm but without using

human scored images for training? In [11], Mittal et al. ev-

er proposed such an algorithm by conducting probabilistic

latent semantic analysis (pLSA) on the statistical features

of a large collection of pristine and distorted image patch-

es. The uncovered latent quality factors are then applied to

the image patches of the test image to infer a quality score.

However, this method does not perform well compared with

those methods learning with human scoring information.

In this paper, we present a novel solution to BIQA using

no human scored images in learning. They key is that we

propose a quality-aware clustering (QAC) method to learn a

set of quality-aware centroids and use them as the codebook

to infer the quality of an image patch so that the quality of

the whole image can be determined. With some reference

and distorted images (but without human score), we parti-

tion them into overlapped patches and use a percentile pool-

ing strategy to estimate the quality of each patch. According

to the estimated quality level, the patches are grouped into

different groups, and QAC is applied to each group to learn

the quality-aware centroids. In the testing stage, each patch

of the distorted image is compared to the learned quality-

aware centroids, and a simple weighted average operation

is used to assign a score to it. The perceptual quality score

of the whole image can then be figured out by summing

over all patches.

The proposed QAC based BIQA method is simple yet

effective. Our experimental results validate that it has com-

parable accuracy to those state-of-the-art methods learning

from human scored images. The QAC method has the fol-

lowing feature points. First, it shows that even without us-

ing human scored images for training, we are still able to

develop effective BIQA algorithms. Second, it builds an ex-

plicit relationship between the image feature and the quali-

ty score, and could provide a local quality map of the input

image, which is not achievable by all the other BIQA meth-

ods. Third, the proposed QAC is very fast and can work in

real-time, making it applicable to devices with limited com-

putational resources (e.g., cell phones). At last, QAC has a

very high linearity to human perception of image quality.

The rest of the paper is organized as follows. The learn-

ing of quality-aware centroids by QAC is described in detail

in Section 2. Then how to use the learned centroids to per-

form blind quality estimation is described in Section 3. Ex-

periments and discussions are detailed in Section 4. Finally,

Section 5 concludes the paper.

2. Quality-aware clustering

2.1. Learning dataset generation

Our method works on image patches and aims to learn

a set of quality-aware centroids for blind image quality as-

sessment (BIQA). To this end, we need some reference and

distorted images for training but do not need to know the

human subjective scores of the distorted images. Consider-

ing that the existing IQA databases [6,15,19] will be used to

evaluate and compare the different BIQA algorithms in the

experiments, we do not use them in our method to better

validate the generality and database-independency of our

approach. Instead, we randomly selected from the Berke-

ley image database [7] ten source images (please refer to

Fig. 1(a)), which have different scenes from the images in

the databases [6,15,19] that will be used in our experiments

(please refer to Fig. 1(b)∼ Fig. 1(d) for these images).

We then simulated the distorted images of the ten im-

ages. The four most common types of distortions are sim-

ulated: Gaussian noise, Gaussian blur, JPEG compression

and JPEG2000 compression. These four distortion types

are also the ones TID2008, LIVE and CSIQ databases have

in common. For each image, we generate its distorted ver-

sions of each type on three quality levels by controlling the

noise standard deviation (for distortion of Gaussian noise),

the support of blur kernel (for distortion of Gaussian blur),

the resulted quality level (for distortion of JPEG compres-

sion) and the compression ratio (for distortion of JPEG2000
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Figure 2. Flowchart of the proposed quality-aware clustering

(QAC) scheme.

compression), respectively. Finally, we obtain a dataset of

120 distorted images and 10 reference images. A choice

of the three quality levels should make sure that the quali-

ty distribution of the resulted samples in the next section is

balanced.

2.2. Patch quality estimation and normalization

With the simulated dataset which has no human subjec-

tive quality score, we aim to learn a set of quality-aware

centroids for BIQA. The flowchart of our learning scheme is

illustrated in Fig. 2. We partition the reference and distorted

images into many overlapped patches. Denote by xi a patch

of one reference image and by di the distorted version of it.

One key problem in our method is how to assign a percep-

tual quality to di. To this end, we can first use the similarity

function in some state-of-the-art full-reference image qual-

ity assessment (FR-IQA) method, such as SSIM [23] and

FSIM [29], to calculate the similarity between xi and di.

By this way, the dependency on human score are removed.

In this paper, we use FSIM:

si = S(xi, di)

=
2PC(xi)PC(di) + t1

PC(xi)2 + PC(di)2 + t1
× 2G(xi)G(di) + t2

G(xi)2 +G(di)2 + t2
(1)

where PC(xi) and G(xi) refer to the phase congruency [5]

and gradient magnitude at the center of xi, respectively, and

t1 and t2 are positive constants for numerical stability.

The similarity score si can reflect the quality of di to

some extent, and it ranges from 0 to 1. In FR-IQA, we

usually simply take si as the local quality score of di, and

average all si in one image as the final quality score of this

image. Such a simple strategy works well for FR-IQA since

the availability of reference image. However, our goal here

Figure 3. The effect of percentile pooling. Y-axis denotes the pre-

diction score by IQA models. Note that the mean values of the

lowest 10% predicted quality scores shows much better linearity

to the human subjective scores.

is to learn for performing BIQA, and taking si as the quality

score of di will have some problem. Suppose that the real

human scored quality of a distorted image d is s, if we take

si as the local quality score of its patch di, then the average

of all si can be very different from s, leading to much bias

in the learning stage.

To solve this problem, we must normalize si in order

to make the average of all si in an image as close to it-

s overall perceptual quality as possible. It is known that

the similarity functions in FR-IQA methods can only give

a nonlinear monotonic prediction of the human subjective

score [23, 29]. Fig. 3 shows an example on the LIVE

database. The red round point shows the FR-IQA result-

s by FSIM with average pooling versus the subjective s-

core with a two-order polynomial fitting. It is this nonlin-

earity that often makes the estimated quality score deviate

from the human perception. On the other hand, it has been

found that in an image, the predicted quality of the worst lo-

cal areas has a good linearity to human perception [12, 24].

The blue squared points in Fig. 3 shows the worst 10% per-

centile pooling results of FSIM versus the subjective score,

which has much better linearity. Based on this finding, we

propose a percentile pooling procedure to normalize si. In

particular, we divide si by a constant C such that the av-

erage quality of all patches in an image will equal to the

percentile pooling result.

Denote by Ω the set of patch indices of an image, and by

Ωp the set of indices of the 10% lowest quality patches. The

normalization factor C is calculated as:

C =

∑
i∈Ω si

10
∑

i∈Ωp
si

(2)

Then each si is normalized as: ci = si/C.

2.3. Quality-aware clustering

With the patch quality normalization strategy in Section

2.2, finally we can have a set of patches {di} and their nor-

malized quality scores {ci}, based on which the quality-

aware clustering can be conducted. The idea is that with
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Figure 4. Examples of the quality-aware clustering outputs. Top

row: 3 clusters on quality level ql = 0.1; bottom row: 3 clusters

on quality level ql = 1.

{ci} in hand, we can group {di} into groups of similar qual-

ity, and then cluster those patches in the same quality group

into different clusters based on their local structures.

Since ci is a real-value number between 0 and 1, we first

uniformly quantize ci into L levels, denoted by ql = l/L,

l = 1, 2, . . . L. Then the patches having the same quality

level are grouped into the same group, denoted by Gl. There

is:

Gl =

{ {di|ql−1 < ci ≤ ql, for l = 2 . . . L}
{di|ci ≤ ql, for l = 1} (3)

The clustering is then applied to each group Gl. Since

the quality of each group is aware, we call this clustering

quality-aware clustering (QAC).

To enhance the clustering accuracy, the QAC within each

Gl should be based on some structural feature of di. In this

paper, we use the following high pass filter to extract the

feature of patch di:

hσ(r) = 1r=0 − 1√
2πσ

exp(− r2

2σ2
) (4)

where σ is the scale parameter to control the shape of the

filter. By convolving hσ with the image, the image detailed

structures will be enhanced. It has been shown that the pro-

file of the receptive field of the ganglion in the early stage

of human vision is analogous to the shape of the difference

of Gaussian (DoG) filter [28]. The filter defined in Eq. 4 is a

special case of DoG filter when the support size of the first

Gaussian shrinks to 1.

In our implementation, we use three hσ on different s-

cales (σ = 0.5, 2.0, 4.0 in our experiments) to extract the

feature of di. The filtering outputs of di on the three scales

are concatenated into a feature vector, denoted by fi. The

QAC of di ∈ Gl is then performed by applying the K-mean

clustering algorithm to fi:

minml,k

∑K

k=1

∑
di∈Gl,k

‖fi −ml,k‖2 (5)

where Gl,k is the kth cluster in Group Gl. Note that other

similarity metric may be used for clustering. However, giv-

en the complexity cost, we just use the Euclidean distance.

Besides, in the framework of quality aware clustering, this

is not necessary. For the clustering, we use the spectrum

clustering in [2], which is efficient to solve Eq. 5. As a re-

sult, for each group Gl, we learn a set of centroids {ml,k},
k = 1, 2, . . .K. Finally, we have L sets of centroids on L
different quality levels, and we call them quality-aware cen-

troids. Those centroids will then act as a structured code-

book to encode the quality of each patch so that the overall

quality of the image can be inferred.

In Fig. 4, we show three clusters of patches on the worst

quality level (ql = 0.1) and the best quality level (ql = 1),

respectively, by setting L = 10 and K = 30. One can

see that the cluster of patches on the worst quality level ex-

hibit obvious compression, blur and noise like distortions,

while the clusters on the best quality level exhibit Gabor-

like structures. These observations accord with the widely

recognized conclusion that the visual receptive fields in the

primary visual cortex (V1) are local orientated.

3. Blind quality pooling

With the learned quality-aware centroids {ml,k} in Sec-

tion 2, for each given distorted image, denoted by y, we

can easily estimate its perceptual quality by following the

procedures: patch partition and feature extraction, cluster

assignment on multiple quality levels, patch quality score

estimation, and final pooling with all patches’ quality.

Patch partition and feature extraction: For the test image

y, we partition it into N overlapped patches yi, and use the

high pass filters hσ to extract the feature vector, denoted by

fyi , of each yi, i = 1, . . . , N .

Cluster assignment: By assuming that patches which

have similar structural features will have similar visual

quality, on each quality level l we find the nearest centroid

to the feature vector fyi of patch yi. Denote by ml,ki
this

nearest centroid on level l. Then we will assign yi to L
clusters defined by ml,ki , l = 1, . . . L. The quality of patch

yi can be computed as the weighted average of the quality

levels of these centroids.

Patch quality estimation: The distance between fyi and

ml,ki is δl,i = ‖fyi − ml,ki‖2 . Clearly, the shorter the dis-

tance δl,i is, the more likely patch yi should have the same

quality level as that of centroid ml,ki
. Therefore, we can use

the following weighted average rule to determine the final

quality score of yi:

zi =

∑L
l=1 ql exp(−δl,i/λ)∑L
l=1 exp(−δl,i/λ)

(6)

where λ is a parameter to control the decay rate of weight

exp(−δl,i/λ) w.r.t. distance δl,i. One can see that the dis-

tance based weighted average in Eq. 6 actually interpolates

the real-valued quality score of patch yi from the discrete
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quality levels ql. This makes the quality estimation more

robust and more accurate.

Final pooling: With the estimated quality zi of all patch-

es yi available, we can then infer the final single quality

score, denoted by z, of test image y. Various pooling strate-

gies such as max pooling and percentile pooling have been

proposed in literature [12, 27]. Here we use the simplest

average pooling:

z =
1

N

∑N

i=1
zi (7)

It can be seen that the testing stage of our method is

very simple, while our experimental results in next section

demonstrate its competitive performance. The complexity

analysis and running time comparison can be found in Sec-

tion 4.3, where we can see that the proposed method can

run in real time, making it a very good choice for practical

BIQA applications in various resource-limited devices.

4. Experimental results

4.1. Protocol

The performance of QAC is validated in terms of its a-

bility to predict the subjective ratings of image quality. The

three largest publicly available subject-rated databases are

employed: LIVE [19], CSIQ [6] and TID2008 [15]. For

each image in these database, a subjective quality/distortion

score, i.e., the mean opinion score (MOS) or difference

mean opinion score (DMOS), is assigned to validate the

BIQA algorithms.

The LIVE database consists of 779 distorted images gen-

erated from 29 original images by processing them with

5 types of distortions on various levels: JPEG2000 com-

pression (JP2K), JPEG compression, additive white noise

(WN), Gaussian blurring (GB) and simulated fast fading

Rayleigh channel (FF). These distortions reflect a broad

range of image impairments, for example, edge smoothing,

block artifacts and random noise. The CSIQ database is

composed of 30 original images and their distorted coun-

terparts by using six types of distortions on five different

distortion levels. The TID2008 database is composed of 25

reference images and their distorted versions of 17 types on

4 levels. As in many previous works [4, 14, 16], in our ex-

periments we only consider 4 types of distortions that are

common to the three databases: JPEG2000, JPEG, WN and

GB. Those four types of distortions are also the most com-

monly encountered distortions in practical applications.

To evaluate the performance of a BIQA metric, two cor-

relation coefficients between the prediction results and the

subjective scores are adopted: the Spearman rank order cor-

relation coefficient (SROCC), which is related to the predic-

tion monotonicity, and the Pearson correlation coefficient

(PCC), which is related to the prediction linearity. A good

BIQA method will demonstrate a big (close to 1) correla-

Table 1. Blind image quality assessment results on LIVE.

SROCC Blind/FR JP2K JPEG WN GB ALL

QAC Blind 0.8505 0.9401 0.9613 0.9094 0.8857

pLSA [11] Blind 0.85 0.88 0.80 0.87 0.80

PSNR FR 0.8954 0.8803 0.9853 0.7829 0.8749

SSIM FR 0.9614 0.9764 0.9694 0.9517 0.9479

FSIM FR 0.9717 0.9834 0.9652 0.9708 0.9685

PCC Blind/FR JP2K JPEG WN GB ALL

QAC Blind 0.8381 0.9326 0.9236 0.9064 0.8608

pLSA [11] Blind 0.87 0.90 0.87 0.88 0.79

PSNR FR 0.8726 0.8654 0.979 0.7746 0.8578

SSIM FR 0.8925 0.9279 0.9583 0.8881 0.829

FSIM FR 0.9015 0.9071 0.9085 0.9084 0.8647

Table 2. Blind image quality assessment results on CSIQ.

SROCC Blind/FR JP2K JPEG WN GB ALL

QAC Blind 0.8704 0.9126 0.8624 0.8483 0.8627

PSNR FR 0.9361 0.8879 0.9363 0.9291 0.9218

SSIM FR 0.9605 0.9543 0.8974 0.9608 0.9325

FSIM FR 0.9685 0.9654 0.9262 0.9729 0.9616

PCC Blind/FR JP2K JPEG WN GB ALL

QAC Blind 0.8822 0.9376 0.8735 0.8439 0.8768

PSNR FR 0.927 0.7898 0.9438 0.9081 0.8463

SSIM FR 0.8966 0.9165 0.8044 0.8692 0.8622

FSIM FR 0.9073 0.9026 0.7642 0.8838 0.8795

Table 3. Blind image quality assessment results on TID2008.

SROCC Blind/FR JP2K JPEG WN GB ALL

QAC Blind 0.8885 0.8981 0.7070 0.8504 0.8697

PSNR FR 0.8249 0.8762 0.9183 0.9336 0.8703

SSIM FR 0.9603 0.9354 0.8168 0.9598 0.9016

FSIM FR 0.9763 0.9263 0.8571 0.9526 0.9526

PCC Blind/FR JP2K JPEG WN GB ALL

QAC Blind 0.8778 0.9235 0.7200 0.8500 0.8377

PSNR FR 0.8814 0.8681 0.9416 0.9271 0.8361

SSIM FR 0.9472 0.9469 0.7576 0.8906 0.8927

FSIM FR 0.9555 0.9312 0.7827 0.9073 0.9288

tion coefficient with the subjective score MOS or a small

(close to -1) correlation coefficient with DMOS.

4.2. Implementation details and results of QAC

In the implementation, we partition the 130 training im-

ages into overlapped patches of size 8×8. In total, 161,181

patches are extracted for training. In feature extraction, we

set the three scales of high pass filters (refer to Eq. 4) as

σ = 0.5, 2.0, 4.0. In clustering, we quantize the quality into

L = 10 levels; that is, ql is from 0.1 to 1 with step length

0.1. On each quality level, K = 30 clusters are clustered

by using the clustering algorithm in [2]. These centroids to-

gether form a codebook to encode the quality of test images.

In the test stage, we set the parameter λ in Eq. 6 as 32. The

Matlab source code of the proposed QAC can be download-

ed at http://www.comp.polyu.edu.hk/ cslzhang/code.htm.

The BIQA results (in terms of SROCC and PCC) of QAC
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Figure 5. Average performance (SROCC) gain of the existing

BIQA methods over the proposed QAC.

on the three databases are listed in Tables 1, 2, 3. The FR-

IQA metrics PSNR, SSIM and FSIM are used for reference.

Considering that pLSA [11] is the only one existing BIQA

method which does not use the human subjective scores for

training, we also list its result on LIVE here. (Results of

pLSA on the other databases are not provided in [11].) Ta-

ble 1 shows that the proposed QAC wins a large margin

over pLSA in terms of both SROCC and LCC on LIVE.

Compared with PSNR, QAC performs better on JPEG and

GB distortions, and has better results in the overall database.

Table 2 shows that on CSIQ QAC gives a good SROCC and

better PCC than PSNR and SSIM. Table 3 shows that on

TID2008, QAC outperforms PSNR on JPEG and JP2K, and

has almost the same overall SROCC and PCC as PSNR.

In FR-IQA and BIQA, we always hope that quality pre-

diction results of one method could be linearly proportional

to the subjective score, i.e., the so-called linearity, so that

one can avoid the additional optimisation procedures in the

nonlinear mapping [3] and guarantee a consistent results be-

tween different distortion types. The linearity of QAC, P-

SNR, SSIM and FSIM are visualized as the scatter plots in

Fig. 7. Clearly, QAC show much better linearity than P-

SNR, SSIM and FSIM. This makes QAC a very suitable

blind quality estimator since there is no need of some non-

linear transformation to get the final prediction results.

4.3. Comparison with state-of-the-arts

We then compare QAC with state-of-the-art and rep-

resentative BIQA methods, including BIQI [13], DI-

IVINE [14], BLIINDS-II [17], CORNIA [27] and

BRISQUE [10]. Note that all these methods use the human

scored images for learning. The codes of these methods

are provided by the authors and we tune the parameters to

achieve their best results.

Table 4 shows the results of the competing methods on

the LIVE, CSIQ and TID2008 databases. Due the limit of

space, we only present the SROCC results here since it is the

most important index to evaluate BIQA metrics. (In fact,

similar conclusions can be obtained by the PCC results.)

Except for the proposed QAC, all the other methods need to

partition the IQA database into a training set and a testing

set. We present their results under three settings: 80%, 50%

and 30% samples are used for training and the remaining

Figure 6. Left: JPEG distorted image from the LIVE database;

Right: the local quality map predicetd by the proposed QAC

method. The areas highlighted by red rectangles are of the worst

quality, which are identical to human perception.

for testing. The partition is randomly conducted 1000 times

and the average results are shown here. We also show the

weighted average SROCC results over the three databases in

Table 4, and the weights are based on the number of samples

in the three databases.

From Table 4, we can see that QAC always performs

significantly better than BIQI under different ratio of train-

ing samples. When 80% samples are used for training

in the competing methods, QAC has a little lower SROC-

C than DIIVINE, and about 0.04∼0.05 lower than other-

s. When 50% samples are used for training, QAC outper-

forms DIIVINE and lags behind BLINDS-II, CORNIA and

BRISQUE. When 30% samples are used for training, QAC

gives comparable results with CORNIA, and outperforms

all the other methods. To make the above findings easier

to observe, we draw in Fig. 5 the average SROCC gains

of these competing methods over QAC under different ra-

tio of training samples. We can see that the performance

of most existing BIQA methods decreases rapidly with the

decrease of the number of training samples. The CORNI-

A method has relatively good robustness to the number of

training samples. However, it uses a 20,000-dimensional

feature vector to represent each local descriptor, which may

consume excess memory in implementation.

At last, since the proposed QAC evaluates each patch of

an image to pool out the final score, it can naturally give a

local quality map (LQM) of the distorted image, in which

the value of each location indicates the quality of the sur-

rounding patch. It enables us to tell the good regions from

the heavily distorted regions in the image. Note that none of

the existing BIQA methods [4,10,13,14,16,17,21,27] could

give such an LQM. Fig. 6 shows an example. The left is a

JPEG distorted image in the LIVE database, and the right

is its LQM predicted by QAC. The red rectangles mark the

most annoying regions introduced by the distortion. We can

see that prediction is approximately identical to the human

subjective perception of this image.

4.4. Computational complexity

Speed is another important factor to evaluate a BIQA

method because in many practical applications we need to
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Table 4. The SROCC comparison between QAC and other BIQA methods learning from human scored images.

BLIINDS-II [17] Ratio of Samples for training DIIVINE [14] Ratio of Samples for training

80% 50% 30% 80% 50% 30%

LIVE 0.9425 0.9198 0.8973 LIVE 0.8946 0.8768 0.7954

CSIQ 0.9003 0.8832 0.8465 CSIQ 0.8697 0.8246 0.7838

TID2008 0.8982 0.8310 0.7690 TID2008 0.8930 0.7902 0.7132

Average 0.9163 0.8851 0.8480 Average 0.8850 0.8369 0.7716

CORNIA [27] Proportion of Samples for training BRISQUE [10] Ratio of Samples for training

80% 50% 30% 80% 50% 30%

LIVE 0.9528 0.9414 0.9277 LIVE 0.9557 0.9410 0.9094

CSIQ 0.8845 0.8706 0.8605 CSIQ 0.9085 0.8857 0.8628

TID2008 0.8990 0.8814 0.8680 TID2008 0.9085 0.8696 0.8228

Average 0.9147 0.9009 0.8886 Average 0.9270 0.9035 0.8716

BIQI [13] Ratio of Samples for training QAC N.A
80% 50% 30%

LIVE 0.8429 0.7993 0.7484 LIVE 0.8857

CSIQ 0.7598 0.7208 0.6721 CSIQ 0.8627

TID2008 0.8438 0.7510 0.6778 TID2008 0.8697

Average 0.8123 0.7587 0.7034 Average 0.8733

Table 5. Computational complexity analysis.(N denotes the total number of pixels in the test image)

Runtime (s) Complexity Notes

BLIINDS-II [17] 123.9 O(1/d2N log (N/d2)) d: blocksize

DIIVINE [14] 28.20 O(N(logN +m2 +N + 392b)) m: neighbour size in DNT, b: # of bins in the 2-D histgram

CORNIA [27] 3.246 O(Nd2K) d: blocksize, K: codebook size

QAC 0.189 O(N(h2/s2)) s: block step; h: filter window size

BRISQUE [10] 0.176 O(Nd2) d: filter window size

BIQI [13] 0.076 O(N)

judge the quality of an input image online. In Table 5, we

summarize the computational complexity and the running

time (the average processing time on the LIVE database) in

the test stage of all competing methods1. We can see that

BLIINDS-II and DIIVINE are the slowest, while BIQI is

the fastest (only takes 0.0768s per image). However, the

accuracy of BIQI is much worse than other methods (refer

to Table 4 please). CORNIA has good robustness to the

number of training samples with good accuracy; however,

it takes over 3s to process an image. The proposed QAC

has a similar speed to BRISQUE, and both of them need

less than 0.2s to process an image. Overall, QAC provides

a real-time solution to high performance BIQA.

5. Conclusions

We presented a novel general purpose blind image qual-

ity assessment (BIQA) approach, which is completely free

of the human subjective scores in learning. The key of the

proposed approach lies in the developed quality-aware clus-

tering (QAC) scheme, which could learn a set of quality-

aware centroids to act a codebook to estimate the qual-

ity levels of image patches. Via extensive experimen-

tal validations, we could have the following conclusion-

s. First, as a database independent method, the proposed

1The code of pLSA is not accessible, we didn’t list its runtime. How-

ever, the EM algorithm used to estimate the frequencies of the 400 visual

words makes it computational costly.

QAC achieves competitive SROCC results with those state-

of-the-art BIQA methods which heavily exploit the human

subjective scores in training. Second, QAC has very good

linearity to human perception of image quality. Third, it can

provide a local quality map of the distorted image, which is

not available by other BIQA methods. At last, QAC pro-

vides a real-time solution to BIQA applications.
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