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Abstract

This paper addresses the problem of general-purpose
No-Reference Image Quality Assessment (NR-IQA) with the
goal of developing a real-time, cross-domain model that can
predict the quality of distorted images without prior knowl-
edge of non-distorted reference images and types of distor-
tions present in these images. The contributions of our work
are two-fold: first, the proposed method is highly efficient.
NR-IQA measures are often used in real-time imaging or
communication systems, therefore it is important to have a
fast NR-IQA algorithm that can be used in these real-time
applications. Second, the proposed method has the poten-
tial to be used in multiple image domains. Previous work
on NR-IQA focus primarily on predicting quality of natural
scene image with respect to human perception, yet, in other
image domains, the final receiver of a digital image may not
be a human.

The proposed method consists of the following compo-
nents: (1) a local feature extractor; (2) a global feature
extractor and (3) a regression model. While previous ap-
proaches usually treat local feature extraction and regres-
sion model training independently, we propose a supervised
method based on back-projection, which links the two steps
by learning a compact set of filters which can be applied
to local image patches to obtain discriminative local fea-
tures. Using a small set of filters, the proposed method is
extremely fast. We have tested this method on various natu-
ral scene and document image datasets and obtained state-
of-the-art results.

1. Introduction
With the advancement of digital imaging, there has been

a tremendous growth in using digital images for represent-

ing and communicating information. In such an environ-

ment, it is critical to have good image quality assessment

methods to help maintain, control and enhance the quality

of the digital images.

The goal of objective image quality assessment (IQA) is

to build a computational model that can accurately predict

the quality of digital images with respect to human percep-

tion or other measures of interest. Based on the availabil-

ity of reference images, objective IQA approaches can be

classified into: full-reference (FR), no-reference (NR) and

reduced-reference (RR) approaches.

This paper addresses the most challenging category of

objective IQA methods – NR-IQA, which evaluates the

quality of digital images without access to reference im-

ages [3, 11, 12, 13, 16, 19]. More specifically, we develop a

general-purpose NR-IQA algorithm which does not require

prior knowledge of the types of distortions.

NR-IQA has long been considered as one of the most dif-

ficult problems in image analysis [20]. Without knowledge

of the reference image and the type of distortion, this prob-

lem may seem difficult, but recently, significant progress

has been made in the field. State-of-the-art general-purpose

NR-IQA systems [12, 13, 16, 22] have been shown to out-

perform FR measures Peak Signal-to-Noise ratio (PSNR)

and Structural Similarity Index Measure (SSIM) on stan-

dard IQA dataset.

1.1. Motivation

Speed is an important issue for NR-IQA systems since

NR-IQA measures are often used in real-time imaging or

communication systems. Algorithms that rely on computa-

tionally expensive image transforms [13, 16] often can not

be used in these applications. By extracting image quality

features directly in spatial domain, recent algorithms COR-

NIA [22] and BRISQUE[12] have greatly accelerated this

process while maintaining high prediction accuracy. By us-

ing a compact set of filters, our method can further acceler-

ate the process.

Previous works on NR-IQA have focused primarily on

natural scene image and image quality is defined with re-

spect to human perception. Very limited work has been

done for NR-IQA for other types of images, such as camera-

captured or scanned document images. Document IQA has

been found to be very useful in many document image pro-

cessing applications. For example, depending on the level
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of degradation, the performance of modern OCR software

may suffer. Document IQA may help to automatically filter

pages with low predicted OCR accuracy or guide the selec-

tion of document image enhancement methods.

Conventional image quality measures developed for nat-

ural scene images may not work well for document images

since document images have very different characteristics

than natural scene images. For example, most document

images are gray-scale or binary consisting of black text and

white background. Building a NR-IQA system that can be

adapted to images with different characteristics is a chal-

lenging problem.

To sum up, the objective of this work is: first, to develop

a fast NR-IQA method that can be used in real-time systems

and second, to develop a general learning-based framework

that can be applied to various different image domains.

1.2. Related work

Natural Scene Statistics for NR-IQA
Natural Scene Statistics (NSS) based approaches have been

successfully applied to IQA for natural scene images. These

methods are based on the following observations: first,

when images are properly normalized or transferred to some

transform domains (e.g. DCT or wavelet domain), local

descriptors (e.g. normalized intensity values, wavelet co-

efficients, etc), can be modeled by some parametric distri-

butions; second, the shape of these distributions are very

different for non-distorted and distorted images. These fun-

damental observations form basis of many recent IQA ap-

proaches [12, 13, 16]. These methods differ from each other

primarily in how the local descriptors are extracted. For ex-

ample, in DIIVINE [13] local descriptors are extracted in

wavelet domain. Cosine transform coefficients based de-

scriptors are used in BLIINDS-II [16]. BRISQUE [12] di-

rectly models the normalized image pixel value using gen-

eralized Gaussian distributions (GGD) and models product

of neighboring pixels by asymmetric generalized Gaussian

distributions (AGGD). The success of these methods rely

largely on how local features are computed, therefore hand-

craft features designed specifically for a particular domain

are often used. This limits the application of these methods

in other image domains.

Feature Learning
Instead of using hand-craft local descriptors, the proposed

approach is based on feature learning. The goal is to learn

local features whose distributions possess discriminative

shapes for distorted and non-distorted images. Unsuper-

vised feature learning has been explored in CORNIA [22],

where the local descriptors are encoded using codeword that

are learned in an unsupervised way. The success of this

method relies on using a large set of codeword (usually in

order of thousands), which can capture different aspects of

distortions. As was shown in [22], when only a small set of

codewords are used, the performance of this method drops

significantly. Our method can be considered as a supervised

extension of CORNIA, where instead of using a large re-

dundant set of filters, the proposed method learns a com-

pact set of filters in a supervised way. Using a small set

a filters, our feature extraction process is much faster and

more memory efficient.

The proposed supervised filter learning method is closely

related to supervised dictionary learning for image classi-

fication. Earlier methods for dictionary learning focused

on reconstruction of signals and ignored label informa-

tion. To learn a more compact and discriminative dictio-

nary, learning approaches that jointly optimize both a re-

constructive and a discriminative criterion have been devel-

oped [10, 21, 7]. Unlike conventional supervised dictionary

learning, which requires that the linear combination of the

learned atoms in dictionary should be able to well represent

image patches, we do not have this constraint in our super-

vised filter learning process. In fact, it will be shown later

that the functionality of filter for NR-IQA and codeword for

image classification are very different.

Supervised filter learning has also been explored by Jain

and Karu in [6] for texture classification, where feature ex-

traction and classification tasks are performed by a neural

network. The learned filters are weight vectors in the first

layer of the network. Our work is along the same lines of

learning a compact set of filters using a back-propagation

approach but differs in final stage where we perform support

vector regression (SVR) using learned filters for predicting

image quality.

1.3. Our approach

A typical NR-IQA system may consist of the following

three components (1) a local feature extractor; (2) a global

feature extractor, which summarizes the distribution of local

features and (3) a regression model. Previous approaches

usually treat local feature extraction and regression model

training independently. We propose a supervised method

based on back-projection, which links these two steps by

jointly optimizing the prediction model and the local feature

extractor. The learned compact set of filters when applied

to local image patches yields more discriminative features.

Additionally, due to a significant reduction in the number

of filters, the proposed method achieves much better time

performance in comparison to previous approaches. An

overview of our system is shown in Fig. 1.

2. Feature extraction
In this section, we discuss how a set of linear filters are

used to obtain global features. Suppose an image is repre-

sented by a set of local descriptors, where these local de-

scriptors are normalized raw image patches:

X = [x1, x2, ..., xN ] ∈ Rd×N
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Figure 1: Overview of the proposed approach with linear

SVR.

where the column vector xi denotes the i-th local descriptor

of the image. The normalization is performed by subtract-

ing the local mean value from each patch, and dividing it by

its standard deviation.

A set of filters are represented by B = [b1, ..., bK ] ∈
Rd×K , where the column vector bi (||bi||2l2 = 1) denotes

the i-th filter and K is the number of filters.

2.1. Local feature encoding
The first step in this work-flow is local feature encoding

using linear filters. Specifically, each local descriptor is en-

coded by its responses to the set of linear filters (i.e. inner

product between local descriptors and filters). We have an

image level representation matrix as follows:

Ω = BT ×X =

⎛
⎜⎜⎜⎝

b1 · x1 b1 · x2 · · · b1 · xN

b2 · x1 b2 · x2 · · · b2 · xN

...
...

. . .
...

bK · x1 bK · x2 · · · bK · xN

⎞
⎟⎟⎟⎠
(1)

Examples of distributions of filter responses from images

with different types and levels of distortions are shown in

Fig. 2. We can see from this figure that with properly

learned filters, statistics extracted from these distributions

can be good indicators of image quality. The filter here is

similar to the codeword in the image classification literature

in that both are used for local feature encoding. However,

their functionalities are very different. For example, in the

object recognition problem, whereas a codeword resembles

a part of the object, and the maximal response to each code-

word indicates its presence or absence in the image. In our

problem, both maximal and minimal responses are informa-

tive and important for prediction task. More generally, we

are interested in characterizing the entire distribution of the

filter responses.

2.2. Summarizing statistics

Statistics which summarize the distribution of local fea-

tures are extracted as global descriptors. Specifically, we

(a) Gaussian Blurring

(b) Fast Fading

Figure 2: Examples of filter respones for different types and

levels of distortions. (High DMOS indicates low quality)

use the maximal and minimal value of filter responses for

describing the effect of filters on the image. The image level

descriptor of X can be written as:

Z = [max(Ω)T ,min(Ω)T ] (2)

where max and min are operated on each row of Ω and

superscript T means transpose. Other statistics which sum-

marize the distribution of filter responses can also be ex-

plored, such as skewness and kurtosis. One can also use

a parametric model, for example, BRISQUE [12] models

normalized intensity value using GGD where the shape and

scale parameters are used as features. Although the minimal

and maximal value of filter responses may not be accurate

in characterizing the shape of distribution, as is shown in

Fig. 2, for discriminating images with high and low quality,

they are fairly good indicators, in addition to being efficient

to compute.

Combining the two steps above, we have Z = φ(X,B)
where Z ∈ R2K×1 with the first K elements corresponding

to maximal responses and the last K elements correspond-

ing to minimal responses.

3. Supervised filter learning
In the previous section, we have introduced the use of a

set of filters for obtaining global descriptors of an image. In

987987987989989



this section, we discuss how these filters are learned so that

the corresponding global descriptors are good for NR-IQA

tasks.

3.1. Problem formulation

Suppose we have n training images and the k-th train-

ing image is denoted as Xk with corresponding feature vec-

tor denoted as Zk. Its regression target, i.e, the true qual-

ity score, is denoted as yk. In this paper, we use linear

ε-Support Vector Machine Regression (ε-SVR) for train-

ing. The prediction function takes the form: f(Zk, w) =∑2K
i=1 wiZk(i) + w0, where Zk(i) is the i-th element in Zk

and w is learned by minimizing the sum of a loss function

and a regularization term:

minw{
n∑

k=1

L(yk, f(Zk, w)) + λ1||w||2l2}

where L is the ε-insensitive loss function described by:

L(y, ŷ) =

{
0 if |y − ŷ| ≤ ε
|y − ŷ| − ε otherwise

(3)

In the above formulation, the prediction model is trained

with the set of filters fixed. Our supervised filter learning

method jointly optimizes the prediction model and the set of

filters. The objective function of this optimization problem

is defined as follows:

C(B,w, {Xk}nk=1) =
∑n

k=1 L(yk, f(φ(Xk, B), w))
+λ1||w||2l2 + λ2avecorr(B)

subject to ||bi|| = 1, i = 1, ...,K
(4)

where λ1 is a balancing factor of the regulariza-

tion term in the prediction model and avecorr(B) =
1

K−1

∑K
i=1

∑
j:j �=i < bi, bj > is the average correlation of

one filter with every other filters. This correlation penalty

term is added to avoid learning highly correlated filters.

Furthermore, in order to avoid the over-fitting problem and

regularize the search space of the optimal filters, we add the

constraint that ||bi|| = 1(i = 1, ...,K).
Optimal B and w is given by

(B∗, w∗) = argminB,wC(B,w, {Xk}nk=1)

This optimization problem can be solved by optimizing

alternatively over B and w. The initial set of filters are ob-

tained by performing k-means clustering on a set of local

features. When B is fixed, optimal w can be found using

a standard SVR program [4]. Given w fixed, we can apply

stochastic gradient descent (SGD) to find the optimal B.

3.2. Optimizing B

Computing Gradient
The SGD process requires us to compute the gradient of C

with respect to B. The gradient is computed as follows.

∂C

∂B
=

n∑
k=1

∂L

∂fk

∂fk
∂Zk

∂Zk

∂B
+ λ2

∂avecorr(B)

∂B
(5)

where fk = f(Zk, w). When linear SVR is used, we can

compute the derivative of the objective function as follows:

∂C

∂bi
=

n∑
k=1

∂L

∂fk
(wix

k
max,i+wi+Kxk

min,i)+λ2
1

K − 1

∑
j:j �=i

bj

(6)where xk
max,i = argmaxxl∈Xk

(bi · xl) and xk
min,i =

argminxl∈Xk
(bi · xl). Superscript k is the index of the

training image and xl ∈ Xk means xl is a local feature

vector from image Xk. ∂L
∂fk

accounts for the prediction er-

ror of the k-th training image. The loss function defined in

Eq. 3 is not differentiable, so we use the Huber loss as an

approximation for computing the gradient. Details of this

computation process is provided in the supplementary ma-

terial.

Stochastic Gradient Descent
Our optimization problem has the constraint that ||bi||2l2 =
1, so we perform SGD on the unit sphere. This can be done

by projecting the gradient on the tangent plane of the sphere.

We describe the SGD process for optimizing a given filter

as follows:

1. Permute the training images randomly, set k = 1 and

initialize b1.

2. Compute the gradient gk = ∇bC
k(b)|b=bk , where

Ck = L(yk, f(Zk, w))+λ2avecorr(b
k) and bk is the value

of the filter at the k-th iteration.

3. Project gk on the tangent plane of the unit sphere at

bk, hk = gk − (gk · bk)bk and normalize it, nk = hk/|hk|.
4. Update bk with bk+1 = bkcos(rk)+nksin(rk), where

rk is the learning rate at the k-th iteration. Set k = k + 1.

5. Go back to step 2 and repeat the process until the

maximal number of iterations is reached.

We optimize a set of filters B by iterating the above pro-

cess. At each step, we simultaneously update all filters in B

and update the objective function with the new set of filters.

Early Stopping
The back projection based method may suffer from the

over-fitting problem. In order to avoid over-fitting, we

adopt the early stopping criteria, proposed in [15]. Specif-

ically, we divide the training data into a training set and

a validation set. In each iteration of the optimization pro-

cess, we train on the training set and test on the validation

set. The training process is terminated as soon as the er-

ror on validation set satisfies our early stopping rule. The

set of filters which gives the best performance on the vali-

dation set is chosen as the output of the optimization pro-

cess. In NR-IQA problems, the linear correlation coeffi-

cient (LCC) is usually used as an evaluation measure. So

we define the following generalization loss based on the

988988988990990



LIVE TID08 SOC Newspaper

patch size 7 5 7 5

ε 1 0.5 0.1 0.2

λ2 1 − 1 1

r0 0.001 − 0.002 0.005

Table 1: Parameters used in our experiments.

LCC. The generalization loss at the k-th iteration is give

by GL(k) = 100((1 − corr(k))/(1 − corropt(k)) − 1),
where corr(k) is the LCC on validation set at the k-th it-

eration and corropt(k) = maxk′≤kcorr(k
′). Two stopping

rules are used:

(Rule 1) GL(k) > α for some α > 0;

(Rule 2) corr decreases in consecutive l iterations.

Training terminates if Rule 1 or Rule 2 is true.

4. Experiment

4.1. Protocol

We refer to the supervised filter learning based method

with k filters as SFk and the corresponding unsupervised

method as CBk. For example CB100 refers to the method

using 100 filters obtained from kmeans clustering. SFk-
BS7 (CBk-BS7), SFk-BS5 (CBk-BS5) refer to methods with

patch size 5× 5 and 7× 7 respectively.

For different experiments, different experimental set-

tings may be used. We first introduce the experimental set-

tings that are fixed for all experiments: (1) We use linear ε-
SVR for regression with λ1 fixed to one. (ε may change for

different experiments). (2) Around 8000-10000 patches are

extracted from each image. (3) In cross-validation experi-

ments, 80% of the data is used for training and the remain-

ing 20% is used for testing. (4) For the SF method, around

1/4 of the training data is used as a validation set. (5) The

minimal number of iterations of the optimization process is

set to 50 and the maximal number of iterations is set to 250.

After 50 iterations, if one of the two early stopping rules

is true or the maximal number of iterations is reached, we

terminate the filter training process. (6) Parameters in the

early stopping rules are α = 10, l = 10. (7) The learning

rate in SGD is rt = r0√
1+t/N

, where t is the number of it-

eration, N is the number of training samples and r0 is the

initial learning rate. (8) For evaluating IQA measures, we

follow common practice and use linear correlation coeffi-

cient (LCC) and Spearman rank order correlation (SROCC)

as our evaluation measures.

There may be parameters which are set differently for

different experiments. Table 1 summarizes the choice of

parameters in different experiments.

4.2. Experiments on Natural Scene Image

4.2.1 Dataset

The following two IQA datasets were used to test the pro-

posed method on natural scene images.

(1) LIVE IQA dataset: LIVE IQA dataset [17, 18] con-

sists of images with five types of distortions - JPEG2k,

JPEG, white Gaussian noise (WN), Gaussian blurring

(BLUR) and fast fading channel distortion (FF) derived

from 29 non-distorted images. The Differential Mean Opin-
ion Score (DMOS) associated with distorted images is pro-

vided. DMOS is generally in the range [0, 100], where

lower DMOS indicates higher quality. (2) TID2008 dataset:
25 reference images and 1700 distorted images derived

from them with 17 different distortions at 4 levels are in-

cluded in TID2008 [14]. In this paper, we consider four

of the 17 distortions which are most likely to occur in im-

age processing systems, including Additive Gaussian noise

(WN), JPEG compression (JPEG), JPEG2000 compres-

sion (JPEG2K) and Gaussian blur (BLUR). Each distorted

image is associated with a Mean Opinion Score (MOS).

Higher values of MOS (0 - minimal, 9 - maximal) corre-

spond to higher visual quality of the image.

4.2.2 Evaluation

Test on LIVE
In the first set of experiments, we randomly split the LIVE

dataset into training and testing parts. At each iteration

we train the codebook and regression model on the training

set and evaluate the trained model on the testing set. This

process was repeated for each distortion and also for the

complete set of all distortions. 100 repeated experiments

were performed and the resulting median value of LCC and

SROCC are shown in Table 2 and Table 3 respectively1.

Results can also be found for two FR measures – PSNR

and SSIM and two other NR measures – CORNIA [22] and

BRISQUE [12] in the tables. In [12], BRISQUE was trained

using SVR with RBF kernel. Since linear SVR is used in

our method and CORNIA, in our experiment, we compare

with BRISQUE-L, which is trained with linear SVR using

coarsely optimized parameters.

It can be seen that SF100 outperforms PSNR and is com-

parable to the SSIM. CORNIA is equivalent to CB10000,

which is based on a large set of filters. Using only 100 fil-

ters, the performance of SF100 is only slightly lower than

CORNIA and BRISQUE. As will be shown later in this sec-

tion, with a little loss in prediction accuracy, we can achieve

significant improvement in speed.

The optimization process on the entire LIVE from the

first 51 iterations averaged over all the 100-fold experiments

1Only distorted images are used in testing.
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JP2K JPEG WN BLUR FF ALL

PSNR 0.872 0.885 0.941 0.764 0.875 0.867

SSIM 0.939 0.946 0.965 0.909 0.941 0.914

CORNIA 0.943 0.955 0.976 0.969 0.906 0.942

BRISQUE-L 0.910 0.961 0.987 0.947 0.903 0.929

CB100 0.915 0.846 0.953 0.946 0.878 0.839

SF100 0.924 0.928 0.962 0.961 0.879 0.920

Table 2: Median SROCC with 100 iterations of experiments

on the LIVE dataset. (Italicized algorithms are NR-IQA

algorithms, others are FR-IQA algorithms.)

JP2K JPEG WN BLUR FF ALL

PSNR 0.873 0.874 0.928 0.774 0.869 0.855

SSIM 0.920 0.955 0.982 0.891 0.939 0.906

CORNIA 0.951 0.965 0.987 0.968 0.917 0.935

BRISQUE-L 0.910 0.966 0.992 0.943 0.929 0.929

CB100 0.918 0.843 0.970 0.947 0.878 0.821

SF100 0.929 0.940 0.978 0.960 0.888 0.921

Table 3: Median LCC with 100 iterations of experiments

on the LIVE dataset. (Italicized algorithms are NR-IQA

algorithms, others are FR-IQA algorithms.)

Figure 3: Optimization process of the first 51 iterations on

training set and validation set (average LCC from 100 fold

experiments on LIVE).

is shown in Fig. 3. It can be seen that the training process

converges nicely.

We also compare the supervised filter learning method

with unsupervised filter learning CB100-BS7. When only

100 filters are used, the prediction performance can be sig-

nificantly boosted by adopting the supervised approach.

Supervised filter training on LIVE, test on TID2008
To show that the proposed method does not depend on any

particular dataset, we train filters on the LIVE dataset and

test it on the TID2008 dataset. Using the fixed set of fil-

ters trained on LIVE, in each iteration of the experiment,

we split the TID2008 dataset into non-overlapping training

and testing part and perform training and testing on each

JP2K JPEG WN BLUR ALL

PSNR 0.884 0.922 0.920 0.928 0.832

SSIM 0.961 0.934 0.854 0.958 0.908

CORNIA 0.932 0.926 0.907 0.908 0.884

CB100 0.919 0.881 0.865 0.869 0.754

CB200 0.926 0.907 0.864 0.882 0.800

SF100 0.917 0.913 0.899 0.911 0.830

SF200 0.928 0.944 0.897 0.902 0.873

Table 4: Median SROCC with 1000 iterations of experi-

ments on the TID2008 dataset.

JP2K JPEG WN BLUR ALL

PSNR 0.907 0.928 0.944 0.912 0.789

SSIM 0.971 0.963 0.827 0.953 0.907

CORNIA 0.939 0.960 0.898 0.906 0.924

CB100 0.932 0.905 0.859 0.855 0.797

CB200 0.934 0.933 0.854 0.882 0.850

SF100 0.932 0.939 0.894 0.910 0.868

SF200 0.937 0.971 0.891 0.899 0.901

Table 5: Median LCC with 1000 iterations of experiments

on the TID2008 dataset.

SF100-BS7 SF100-BS5 BRISQUE CORNIA

Time 0.037 0.058 0.119 0.332

Table 6: Feature extraction time (in seconds).

part. This experiment was repeated 1000 times and the me-

dian values of SROCC and LCC are reported in Table 4

and Table 5. For a specific distortion category, the set of

filters are trained on corresponding subset in LIVE. Com-

paring results obtained using CB100-BS5/CB200-BS5 and

SF100-BS5/SF200-BS5, we can see great performance im-

provement by using a supervised feature learning strategy.

The performance of SF200-BS5 is comparable to CORNIA

and outperforms the FR measure – PSNR.

Speed Test
Since IQA measures are often used in real-time imaging or

communication systems, speed is an important issue deter-

mining whether an IQA measure can be used in these appli-

cations. We test the speed of our method with 100 filters and

two other recent fast NR-IQA measures. All three meth-

ods are implemented in Matlab and are tested on a SunFire

x4170 with 2.80GH processor. We consider only feature

extraction time and results are shown in Table 6. It is clear

that SF100 is much faster than other NR-IQA methods.

We further decompose the feature extraction process into

two steps (1) extracting non-overlapping image patches and

(2) extracting local and global feature based on Eq. 1 and

2. We then test their speeds respectively. For SF100-BS7,

the time taken for these two steps are around 0.027 seconds

and 0.01 seconds respectively. SF100-BS5 is slower than

SF100-BS7 mainly because it takes longer time to extract

distinct 5-by-5 patches compared to 7-by-7 patches.
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4.3. Experiments on Document Image

Instead of predicting human perceived image quality, for

document IQA (Doc-IQA), we are interested in predicting

the OCR accuracy with respect to a specific OCR software,

which has been found useful in many document image ap-

plications.

4.3.1 Dataset

To test the proposed method on document images, the fol-

lowing two document datasets are used.

(1) SOC dataset: Sharpness-OCR-Correlation(SOC)

dataset contains camera-captured document with blur. 25

non-distorted images in this dataset are taken from two

freely available datasets - University of Washington Dataset
[5] and Tobacco Database [9]. For each document, multiple

photos were taken from a fixed distance to capture the whole

document, but the camera was focused at varying distance

to generate a series of images with focal blur. A total of

25 such sets, each consisting of 6-8 high-resolution images

(dimension: 3264×1840) were created using an Android

phone with an 8 mega-pixel camera. ABBYY Fine Reader

was used to obtain the OCR results and OCR accuracy were

computed using ISRI-OCR evaluation tool [1]. OCR accu-

racy is in the range from 0 to 1. Details of this dataset is

available in [8].

(2) Newspaper dataset: This dataset contains a total of

521 text zone images from a collection of gray scale news-

paper images with machine-printed English and Greek text

[2]. Each text zone contains more than 30 characters. OCR

results obtained using ABBYY Fine Reader and associated

OCR accuracy are available for each image. Examples of

images from this dataset are shown in Fig. 4.

4.3.2 Evaluation
Test on SOC dataset
Experimental results on the SOC dataset are shown in Ta-

ble 72. This dataset contains mainly blur distortion. Blur

is a relatively easy distortion and as is shown Table 2 and

Table 3, all IQA measures performs fairly well on the blur

category in LIVE. However, when tested on document im-

age, we observe a significant drop in performance for all

IQA measures under comparison. This is partly due to the

fact that OCR accuracy may not be consistent with human

perception. Consider two document images with the same

level of blur distortion, they are expected to have similar

OCR accuracy. However, it is hard to tell which image

has higher OCR accuracy based on their visual appearances,

since OCR accuracy is also related to the content of the doc-

ument. This explains why we obtained LCC around 90%,

2When the number of filters is very small, the initial set of filters are

fairly unique. Therefore we set λ2 as zero for SF10 on the SOC dataset.

Figure 4: Examples of images from the newspaper dataset.

Character level OCR accuracy (a) 0.097 (b) 0.958.

BRISQUE-L CB10 CB100 CB10000 SF10 SF100
LCC 0.904 0.873 0.927 0.937 0.886 0.927

SROCC 0.836 0.736 0.839 0.862 0.780 0.854

Table 7: Median LCC and SROCC with 100 iterations of

experiments on the SOC dataset.

BRISQUE-L CB200 CB5000 SF200
LCC 0.722 0.692 0.751 0.735

SROCC 0.709 0.640 0.725 0.708

Table 8: Median LCC and SROCC with 100 iterations of

experiments on the Newspaper dataset.

while SROCC, which measures the monotonicity of the pre-

diction model is much lower than the corresponding LCC.

Only slight improvement has been observed using super-

vised filter based approach over unsupervised approach on

the SOC dataset. This may be due to the fact that OCR ac-

curacy, i.e. the regression target, for this dataset is highly

imbalanced. Our method replies heavily on training, there-

fore the “quality” of training set is important.

Test on Newspaper dataset
Experimental results on the Newspaper dataset are shown in

Table 8. It can be seen that SF200 significantly outperforms

CB200 and is comparable to BRISQUE-L. The local patch

extraction on the newspaper dataset was performed only on

text regions.

4.4. Discussions

It usually takes several runs to get optimal result using

SGD. In our experiments, we only used single-run SGD,

therefore, there is no guarantee that we have found global
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optimal filters. To further improve the performance, we can

repeat the iterative optimization process several times and

choose the final learned model as the one which gives the

best performance on the validation set.

When the initial set of filters obtained in an unsupervised

manner has been able to well capture the distortion proper-

ties, supervised learning may not be very helpful. Using our

approach, one can decide whether supervised extension is

needed for different filter based on prediction tasks. Boost-

ing over a large set of filters, say 10000, will not lead to

much performance improvement. The development of a

good Doc-IQA dataset is critical for developing any NR-

IQA measures in document image domain. Available Doc-

IQA datasets suffer from imbalance problem. It will be our

future work to develop a high-quality Doc-IQA dataset to

facilitate Doc-IQA research.

5. Conclusions
We have presented a supervised filter learning based al-

gorithm for general-purpose NR-IQA. Compared to previ-

ous approaches, the proposed method has the following ad-

vantages (1) using a small set of learned filters and operat-

ing directly on raw image patches, this method is extremely

fast; (2) unlike methods relying on hand-craft local descrip-

tors which may not be generalizable for different image do-

mains, our method is based on supervised feature learning,

which has the potential to be adapted to different image do-

mains. From our experiments, we conclude that a compact

set of learned filters can achieve the same accuracy as by

using a large number of unsupervised filters while reducing

the the computation time significantly.
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