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Abstract

This paper introduces an efficient approach to integrat-
ing non-local statistics into the higher-order Markov Ran-
dom Fields (MRFs) framework. Motivated by the observa-
tion that many non-local statistics (e.g., shape priors, color
distributions) can usually be represented by a small num-
ber of parameters, we reformulate the higher-order MRF
model by introducing additional latent variables to repre-
sent the intrinsic dimensions of the higher-order cliques.
The resulting new model, called NC-MRF, not only pro-
vides the flexibility in representing the configurations of
higher-order cliques, but also automatically decomposes
the energy function into less coupled terms, allowing us
to design an efficient algorithmic framework for maximum
a posteriori (MAP) inference. Based on this novel mod-
eling/inference framework, we achieve state-of-the-art so-
lutions to the challenging problems of class-specific im-
age segmentation and template-based 3D facial expression
tracking, which demonstrate the potential of our approach.

1. Introduction

Higher-order Markov Random Fields (MRFs) [21] have

been shown to be a very powerful tool in solving many com-

puter vision problems, largely due to their ability of rep-

resenting non-local interactions/statistics [17, 26], or mod-

eling geometric constraints that are invariant under various

transformation groups [22, 23, 29]. Nevertheless, it remains

challenging to even approximate the maximum a posteri-

ori (MAP) configurations on graphs with large clique size,

since most MAP inference algorithms scale exponentially

with the size of the maximal clique in the graph [21, 25]

(in the general case, even encoding the higher-order poten-

tials would require exponentially large space with respect

to the clique size). To overcome such a limitation, previ-

ous methods usually exploit tractable structures in higher-

order cliques by representing the higher-order potentials us-
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Figure 1. Low dimensionality of higher order cliques.

ing simpler functions [6, 7, 9, 16, 18]. In this paper, we

take a further step along this direction by exploring the in-

trinsic dimensions of higher-order cliques, leading to a new

MRF-based modeling/inference framework which broadens

the applicability of higher-order MRFs.

Our approach is largely motivated by the challenge of

introducing non-local statistics into the higher-order MRF

framework. On the one hand, due to the difficulty in MAP

inference, most existing MRF-based models only consider

low-order (e.g., pairwise) potentials, resulting in biases

away from their true distributions. On the other hand, many

existing machine learning techniques are capable of repre-

senting the non-local statistics/priors using a small num-

ber of parameters. For instance, component analysis based

approaches have been successfully applied in representing

shape priors [4, 24] or image statistics [17]. An example is

shown in Fig. 1. If we look at all the foreground/background

patterns of 35 × 35 patches (Fig. 1(a)), one should be con-

vinced that the plausible patch configurations constitute

only a small fraction of the total 235×35 possibilities. For

instance, principal component analysis (PCA) shows that

such plausible configurations exhibits a low intrinsic dimen-

sion, as shown in Fig. 1(b). Hence the practical applicabil-

ity of MRFs would be largely extended if we can design

efficient MAP-MRF inference algorithms by leveraging the

fact that the configurations of a higher-order clique can be

represented in a low-dimensional space.
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To this purpose, the first contribution of this paper is to

propose a formulation of higher-order MRFs that represents
the higher-order potentials efficiently, called Nonlinearly
Constrained MRF (NC-MRF). By assuming each higher-

order clique be represented using its local coordinates, we

reformulate the MRF model by introducing additional latent

variables to represent the intrinsic dimensions of the higher-

order cliques. Compared to the traditional higher-order

MRF formulation, NC-MRF provides a compact formalism

that allows efficiently exploring the regularity and/or spar-

sity of the possible configurations of higher-order cliques.

Moreover, it facilitates efficient inference algorithm since

the formulation automatically decomposes the energy func-

tion into less coupled terms. As a consequence, it enables

modeling sophisticated statistics in many vision problems.

Regarding the MAP inference, we make our second con-

tribution by designing an efficient algorithmic framework
for the proposed NC-MRF model. Based on a proper La-

grangian relaxation of the original problem, we achieve a

new optimization framework using the primal-dual schema

[19]. Similar to the dual-decomposition (DD) based in-

ference method [1, 10], we decompose the problem into

tractable slave problems which are coordinated by a master.

However, rather than focusing only on the dual problem, a

primal-dual pair is maintained in each iteration, allowing

us to exploit the combinatorial nature of the problem. An

important feature of our new framework is that it is modu-

larized, based on the common structures of existing primal-

dual methods, into components that can be customized to

specific applications. Hence it provides significant flexibil-

ity in controlling the convergence rate of the algorithm, as

well as the quality of the solution.

As a result, in our third contribution, we demonstrate

the potential of our modeling/inference framework in two
challenging applications: class-specific segmentation and
template-based 3D facial expression tracking.

– In the class-specific segmentation problem, based on

the fact that the foreground/background patterns of each

non-local patch only span a subset of all the possible

configurations, higher-order cliques are used to represent

such constrained patterns learnt by PCA. By combining

both the low-level color cues and the higher-order shape

constraints in our NC-MRF framework, a robust solu-

tion is obtained. Our method is validated on the popular

Weizmann horses data set [2].

– In the even more challenging template-based 3D fa-

cial expression tracking problem, existing approaches

are either based on low-level cues with local consis-

tency constraints ([13, 31]) or on PCA-based global

shape statistics [24]. Our NC-MRF based formulation

combines both low-level cues and non-local deformation

constraints in the same inference framework, leading to

a solution that is robust to the noisy input without losing

important details. In our experiments, we have achieved

accurate tracking results on the BU 4D facial expression
(BU-4DFE) database [27].

The rest of this paper is organized as follows: in Sec. 2

we introduce the mathematical formulation of NC-MRF

and the dual of its relaxation; a new algorithmic framework

for the MAP inference of NC-MRF is proposed in Sec. 3; in

Sec. 4, we demonstrate two applications of our new model-

ing/inference framework; finally, we conclude in Sec. 5.

2. Nonlinearly constrained MRF model
Let us define a hypergraph G = (V, E) with V the vertex

set and E ⊂ 2V the hyperedge set. Also a random variable
xv ∈ L � {1, . . . , L} (L ∈ N

+) is associated to each v ∈ V.
The MAP-MRF problem with both unary potentials (θv :
L �→ R, v ∈ V) and higher-order potentials (θe : L|e| �→
R, e ∈ E) can be defined as follows

arg min
x∈L|V|

{E(x) =
∑
v∈V

θv(xv) +
∑
e∈E

θe(xe)}. (1)

Here xe represents the set of variables included in clique e.
In this paper, we represent each higher-order configura-

tion xe (e ∈ E) via a mapping

χe : ue ∈ R
le �→ xe, (2)

where ue denotes the local coordinates and le ∈ N
+. If

we let ψe(ue) � θe(χ
e(ue)), ∀e ∈ E , then problem (1) can

be reformulated into the following Nonlinearly Constrained
MRF (NC-MRF) optimization problem

argmin
x,u

E(x,u) =
∑
v∈V

θv(xv) +
∑
e∈E

ψe(ue) (3)

s.t. χe
ei(ue) = xei , ∀ei ∈ e and e ∈ E ,

where x ∈ L|V|, u � (ue)e∈E , and χe
ei(·) denotes the ith

component of the mapping χe(·) (Eq. 2). Note that Eq. 3

includes the original MAP-MRF problem (1) as a special

case1. Besides, it provides the flexibility of controlling the

complexities of the higher-order potentials (e.g., when le �
|e|, the complexity of problem (3) is significantly reduced).

The optimization problem in Eq. 3 belongs to the class

of Mixed Integer Nonlinear Programming (MINLP) [15]. A

standard approach to solving MINLP is very similar to that

of the dual-decomposition method [1], i.e., it first decom-
poses the original problem into a sum of sub-problems, and
then solves the Lagrangian relaxation on its primal and/or
dual domain. Since problem (3) is already decomposed into

terms that are coupled only by simple equality constraints,

here we follow the same dual-decomposition based method

in searching its MAP solutions. To this end, we first define

a proper continuous relaxation of problem (3) in Sec. 2.1;

then we discuss its dual problem in Sec. 2.2.

1The equivalence can be established if we let le = |e|, ∀e ∈ E and

define: (a) χe
ei
(ue) = k if uei ∈ [k, k + 1) and k ∈ {2, . . . , L − 1};

(b) χe
ei
(ue) = 1 if uei < 2; (c) χe

ei
(ue) = L if uei ≥ L− 1.
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2.1. A continuous relaxation of NC-MRF
Although Eq. 3 is already decomposed into a separable

form, its terms θv(·) (v ∈ V) and ψe(·) (e ∈ E) are not nec-
essarily convex, leading to potentially large duality gap in
its continuously relaxed problem. Following the same tech-
nique used in the LP-relaxation for MRFs [20], let us first
define indicator variables τv:j � [xv = j] 2 for each vertex
v ∈ V and label j ∈ L. Similarly, for the higher-order
cliques we can define χe

ei:j(ue) � [χe
ei(ue) = j] for each

ei ∈ e and j ∈ L. It follows that the NC-MRF optimization
problem (Eq. 3) can be reformulated as

argmin
τ,u

E(τ,u) =
∑
v∈V

∑
j∈L

θv:jτv:j +
∑
e∈E

ψe(ue) (4)

s.t. χe
ei:j(ue) = τei:j , ∀e ∈ E , ei ∈ e, j ∈ L∑

j∈L
τv:j = 1, ∀v ∈ V

τv:j ∈ {0, 1}, ∀v ∈ V, j ∈ L

where τ � (τv;j)v∈V,j∈L, θv;j � θv(j) (∀v ∈ V, j ∈ L). A

continuous relaxation of the above MINLP can be obtained

by letting τv:j ≥ 0 (∀v ∈ V , j ∈ L). Note that in con-

trast to the LP-based relaxation of the MAP-MRF problem

[9, 10, 20], the functions ψe(ue) (e ∈ E) are not neces-

sarily linear or convex. Hence it avoids introducing a very

large amount of auxiliary indicator variables for all the pos-

sible configurations in the higher-order cliques. In the next

section, we show that this relaxation scheme provides high

flexibility in designing efficient MAP algorithms.

2.2. Dual problem and optimality conditions
Given the primal problem defined by Eq. 4, now we look

at its dual problem based on Lagrangian relaxation [1]. By
introducing Lagrange multipliers μe

ei:j for each constraint
χe
ei:j(ue) = τei:j (e ∈ E , ei ∈ e, j ∈ L) and hv for each

constraint
∑

j∈L τv:j = 1 (v ∈ V) in Eq. 4, its Lagrangian
function takes the form

L(τ,u;μ,h) =
∑
v∈V

∑
j∈L

θv:jτv:j +
∑
e∈E

ψe(ue)+ (5)

∑
e∈E

∑
ei∈e

∑
j∈L

μe
ei:j(χ

e
ei:j(ue)− τei:j) +

∑
v∈V

hv(1−
∑
j∈L

τv:j)

=
∑
v∈V

∑
j∈L

(θv:j − hv −
∑

{e|v∈e}
μe
v:j)τv:j+ (6)

∑
e∈E

(ψe(ue) +
∑
ei∈e

∑
j∈L

μe
ei:jχ

e
ei:j(ue)) +

∑
v∈V

hv,

where μ � (μe
ei:j

)e∈E,ei∈e,j∈L and h � (hv)v∈V are the
Lagrange multipliers. Then the dual function for problem 4
is defined as follows

Dual(μ,h) � inf
τ≥0,u

L(τ,u;μ,h) (7)

and its dual problem becomes

sup
μ,h∈D

Dual(μ,h), (8)

2[p] = 1 if p is true and [p] = 0 otherwise.

where D is the domain of Dual(·) such that Dual(μ,h) ∈
(−∞,+∞). It can be proven that the following properties

hold for the dual function Dual(·) (Eq. 7).

Proposition 1 (Properties of the dual function)

1. (Weak duality) OPT(8) ≤ OPT(4), where OPT(P ) de-
notes the optimal value of the problem P .

2. The domainD of the dual function Dual(·) is convex and
Dual(·) is concave over D.

3. For the value of the dual problem to be finite, we have
(otherwise by letting τv;j → +∞, Dual(μ,h)→ −∞)

θv:j − hv −
∑

{e|v∈e}
μe
v:j ≥ 0, ∀v ∈ V, j ∈ L,

namely, hv ≤ minj∈L(θv:j −
∑
{e|v∈e} μ

e
ei:j

).

4. Following Prop. 1(3), by defining h(μ) = (hv(μ))v∈V
where hv(μ) = minj∈L(θv:j −

∑
{e|v∈e} μ

e
v:j), we have

sup
μ,h

Dual(μ,h) = sup
μ

Dual(μ,h(μ)), ∀(μ,h) ∈ D

Hence the variables h can be eliminated from Eq. 8.

5. (Subgradient) For any (λ,h(λ)) ∈ D, if (τ̂ , û) ∈
argminτ,u L(τ,u;λ,h(λ)) and

∑
j∈L τ̂v;j = 1, ∀v ∈ V,

the vector g(τ̂ , û) � (χe
ei;j(ûe) − τ̂ei;j)e∈E,ei∈e,j∈L is a

supergradient of Dual(·) at λ, i.e., ∀(μ, h(μ)) ∈ D

Dual(μ,h(μ)) ≤ Dual(λ,h(λ)) + g(τ̂ , û)T (μ− λ)

Furthermore, following the same argument in Prop. 1(3),

it is not difficult to see that the following must hold true for

each v ∈ V , j ∈ L.

Lemma 1 (Complementary slackness conditions) For an
optimal primal-dual solution (τ,u;μ,h), we have

(a.1) τv:j > 0 =⇒ hv = θv:j −
∑

{e|v∈e}
μe
v:j

(a.2) hv < θv:j −
∑

{e|v∈e}
μe
v:j =⇒ τv:j = 0.

Finally, regarding the sufficient conditions when the

problem of Eq. 4 reaches its global optimality, we have the

following lemma.

Lemma 2 (Strong agreement conditions) For an optimal
primal-dual solution (τ,u;μ,h), if the following holds

(b.1) ue ∈ argmin
ue

{ψe(ue) +
∑
ei∈e

∑
j∈L

μei:jχ
e
ei:j(ue)}

(b.2) χe
v:j(ue) = [τv:j > 0] =⇒
hv = θv:j −

∑
{e|v∈e}

μe
v:j , ∀e ∈ E , ei ∈ e, j ∈ L,

then the optimal integer solution Eq. 3 is achieved by set-
ting xv = {j|τv;j > 0}, ∀v ∈ V . The uniqueness of xv is
guaranteed by the definition of χe (Eq. 2).
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The correctness of Lemma 2 can be proven by checking the

duality gap becomes zeros if the strong agreement condi-

tions are met. Based on the above analysis of the optimality

conditions, now we are ready for designing efficient opti-

mization algorithms.

3. MAP inference via primal-dual schema
Towards efficient MAP inference for the NC-MRF

model, we propose an algorithmic framework based on

primal-dual schema, referring to the class of approxima-

tion algorithms [19] that iteratively solve the problem by

maintaining both a primal integral solution and a feasible

dual solution in each iteration. As noted in [19], the advan-

tage of primal-dual schema is that they allow us to explore

the combinatorial structures of the problems and thus often

achieve good runtime (e.g., the FastPD algorithm [11]).

The basic ideas of our design are as follows:

1. In each iteration, we maintain both an integer solution
(xv)v∈V (xv ∈ L), a continuous primal solution τ and
a dual solution μ. Given a dual solution μ, the primal
solution τ is chosen such that both Lemma 1 and the
condition

∑
j∈L τv;j = 1 are met, which restricts us to

assign nonzero values only to τv;j’s with label j from

Solv(μ) � {j|hv(μ) = θv;j −
∑
e|v∈e

μe
v;j , j ∈ L}. (9)

Solv(μ) is guaranteed to be nonempty if we consider the

dual function Dual(μ,h(μ)) defined in Prop. 1 (4). Intu-

itively, τv;j denotes the probability for label j to be the

primal solution of the integer programming problem of

Eq. 4. Accordingly, each xv is also chosen from those

labels with non-zero probability, i.e., Solv(μ).

2. Following 1, the first term in Eq. 6 disappears. The dual
problem then becomes the following

max
μ
{Dual

I(μ) =
∑
e∈E

se(μe) +
∑
v∈V

hv(μ)}. (10)

Here each subproblem se(·) is defined by

se(μe) = min
ue

{ψe(ue) +
∑
ei∈e

∑
j∈L

μei:jχ
e
ei:j(ue)} (11)

and μe � (μe
ei;j

)ei∈e,j∈L. The advantage of maintain-
ing a primal solution in each iteration, is that each sub-
problem can also compute its solution based on current
primal solution x, by solving a proximal problem

min
ue

{ψe(ue) +
∑
ei∈e

∑
j∈L

μei:jχ
e
ei:j(ue) + d(χe(ue),x)},

where d(·, ·) denotes a similarity measure between the

solution proposed by the subproblem and the current

integer primal solution. This scheme will encourage

agreement among different subproblems [14].

3. Given the solution proposed by each subproblem, the

dual variables μ are updated to optimize the dual func-

tion by the dual ascent algorithm using its subgradient.

4. After the dual ascent update, the algorithm stops if the

dual objective function can no longer be improved. Oth-

erwise, a new primal solution xv (v ∈ V) is selected

from the updated set Solv(μ) (Eq. 9). Therefore, if

Solv contains more than one elements, a consensus rule

should be specified to decide a unique xv .

By following the above design rules, it is guaranteed

that the final solution is in the set Solv(μ), v ∈ V . Our

new framework provides the flexibility in the design of dual

ascent algorithms (Sec. 3.1) and selection of primal solu-

tions (Sec. 3.2), which can be decided according to the need

of applications. An outline of the above primal-dual (PD)

strategy for the MAP inference is summarized in Alg. 1.

Algorithm 1: Outline of the PD strategy for NC-MRF

Initialization: set t = 0, μt = 0,

x0v = argminj θv:j , ∀v ∈ V (break ties arbitrarily)

Repeat
Solve each subproblem (Eq. 11) with solution {χe(ut

e)};

Dual ascent – update μt (Sec. 3.1);

Primal consensus – update (xv)v∈V and τ t (Sec. 3.2);

t← t+ 1;

Until no update of μt can improve the lower bound

3.1. Design of dual ascent algorithms
Now let us look at strategies to improve the lower bound

in the dual domain. From Prop. 1(5), for each e ∈ E , ei ∈
e, j ∈ L, the subgradient update is represented by

μe,t+1
ei:j

= μe,t
ei:j

+ αt(χe
ei:j(u

t
e)− τ tei:j), t = 0, 1, . . . (12)

where αt > 0 denotes the step size at iteration t. Intu-

itively, this update rule simply states that if the current pri-

mal solution (τ tei:j) is different from the solution (χe
ei:j(u

t
e))

proposed by the subproblem se(·) on label j, the value of

μe
ei:j

should be increased (χe
ei:j(u

t
e) > 0 and τ tei:j = 0) or

decreased (χe
ei:j(u

t
e) = 0 and τ tei:j > 0)3.

However, as noted in [5], one issue with directly opti-
mizing the dual problem of Eq. 7 is that the convergence
can be very slow when the number of subproblems is large.
Intuitively, the more subproblems we have, the more dif-
ficult to reach an agreement. A standard approach to get
around this is to define a surrogate/proximal function that
relaxes the original objective function [5, 11, 14]. In fact,
a very straightforward surrogate function can be simply de-
fined by

Dual
II(μ) =

∑
v∈V

hv(μ). (13)

3Note that this dual ascent strategy underlies many dual optimization

based MRF inference algorithms [8, 10, 11, 25]. When the subproblems

se(·) are formulated into LP, the dual objective of Eq. 10 can be improved

using algorithms like dual averaging [8, 10] or max-sum diffusion [25].
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It is a good approximation to DualI(·) in Eq. 10 when the

dual function se(·) is relatively flat (i.e., given μe, it is al-

ways possible to find a primal solution ue that achieves the

same minimum) – this is the case when the higher-order po-

tentials ψe(ue) represents only configurational constraints.

In order to optimize the dual objective of Eq. 13, we only
have to solve the following problem

arg max
αt≥0

Dual
II(μt+1(αt)), (14)

where μt+1(αt) denotes the subgradient update. To fa-

cilitate fast convergence, we consider the subgradient up-

date defined by μe,t+1
ei:j

= μe,t
ei:j

+ αt(χe
ei:j

(ut
e) − τ tei:j) ∗

[χe
ei:j

(ut
e) ∗ τ tei:j = 0], which guarantees that the ob-

jective function DualII will first monotonically increase

then decrease as αt increases from zero [28]. It can be

shown that the problem of Eq. 14 can be solved by an

O(|V||E| log(|V||E|)) algorithm, and converges in O(1ε ) it-

erations for an ε-accurate solution [28]. Therefore, the dual

optimization algorithm only scales in the order of n log n,

where n is the number of cliques in the graph.

3.2. Design of primal consensus rules
Let us recall the process of the primal-dual update in

the tth iteration of Alg. 1: (1) for each node v ∈ V , af-

ter each subproblem is solved based on current primal-dual

solution, a new solution is proposed by each clique e with

v ∈ e; (2) if there are proposed solutions not in the current

set Solv (Eq. 9), then the dual optimization algorithm up-

dates μ based on the newly proposed solutions (Sec. 3.1);

(3) accordingly, the set Solv(μ
t) is updated as well, with

some labels included and some excluded. Eventually, the

dual objective function will no longer be improved and a

unique solution is determined from Solv(μ
t). If there are

cliques that disagree with the final solution, their proposed

solutions will simply be disregarded. Therefore, the role of

the consensus rule is to guarantee that the final solution se-

lected reflects the agreement of the majority. In practice,

which strategy to choose is application dependent. Here we

propose a general consensus rule as follows.

The idea is to assign a weight to each label, denoted by
wv;j , j ∈ L, which is initialized to 1. The weights are up-
dated in each iteration as follows: if the clique e proposes
a solution j ∈ L for node v, the weight can be updated by
wv;j ← wv;j ∗ (1 + kve ), where kve ≥ 0 denotes the impor-
tance of the solution proposed by clique e for node v. kve
can be either defined as a constant or learnt from training
data. Intuitively, when there are multiple choices in the set
Solv(μ), larger weights are given for those labels with larger
number of cliques that agree on them. Hence a primal inte-
gral solution can be chosen from the set Solv(μ) with largest
weight (tie is broken arbitrary). Given the weighting system
defined above, we can simply determine the primal solution
for τ as

τv;j =

{
wv;j/

∑
j∈Solv

wv;j if j ∈ Solv

0 otherwise
,

which is used for the subsequent dual optimization in the

next iteration.

At this point, we have presented a complete algorith-

mic framework for solving the NC-MRF inference problem

of Eq. 4 based on the common structure of exiting dual-

optimization based approaches (e.g., [8, 9, 10, 25]). Since

it is unlikely (unless P = NP) that any algorithm can ob-

tain a guaranteed approximate solution to the general MRF

optimization problem of Eq. 1 [3], our approach provides an

alternative way to get around the boundary in computation

and allows us to pay more attention to the model’s efficacy,

whose benefits will be demonstrated in the next section.

4. Applications
The major advantage of our new modeling/inference

framework lies in its ability to encode rich non-local statis-

tics in an efficient manner. Thus, it provides a very use-

ful tool for developing advanced graph-based algorithms

for numerous challenging problems in computer vision.

To demonstrate its potential, we present two applications:

class-specific image segmentation and template-based 3D

facial expression tracking. In both cases, we consider the

dual objective defined by Eq. 13 (ε = 10−3) and set kve =
0.05 for the weight update described in Sec. 3.2.

4.1. Class-specific segmentation with shape priors

Given an image I , the graph G = {V, E} is constructed

by associating each pixel in I with a node v ∈ V . The binary

label set L � {F = 1, B = 0} for each node v consists

of foreground (F ) and background (B). The higher-order

clique set E consists of all the p× p patches in the image.
An intrinsic representation of the higher-order cliques

can be obtained by the PCA model learnt from all the possi-
ble F/B patterns of p×p patches (Fig. 1). Thus for the map-
ping function χe(ue), e ∈ E , we define ue as the parameters
for the PCA components that encode the shape priors. By
choosing the first l components in the learnt PCA model,
the configuration of the higher-order clique corresponding
to each patch can be defined as

χe(ue) = Π{F,B}p×p(s0 +

l∑
i=1

ue
i si). (15)

Here si (i = 0, 1, . . . l) are the learnt shape bases from PCA

and Π{F,B}p×p(·) denotes the mapping from the vectorized

shape space to the binary F/B patch.
As commonly used in MRF-based segmentation ap-

proaches, the unary term is defined as follows

θv(xv) =

{
− log(Pr(Iv|Hf )) if xv = F

− log(Pr(Iv|Hb)) otherwise
(16)
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Figure 2. An example of segmentation result, with the labeling

error (defined in the text) at each iteration (d).

where Hf and Hb denote the photometric/color model for

the foreground and background, respectively. We use the

standard Gaussian Mixture Models (GMM) with learned

parameters from training images in our experiments.
Given the unary potential of Eq. 16, we can define the

potential for each higher-order clique e ∈ E as

ψ(ue) =
∑
ei∈e

θei(χ
e
ei(ue)) =

∑
ei∈e

∑
j∈L

θei;jχ
e
ei;j(ue), (17)

which constrains the configuration must be within the learnt
prior patterns while conforming to the observation. By sub-
stituting Eq. 17 into Eq. 11, each subproblem now becomes

se(μe) = min
ue

∑
ei∈e

∑
j∈L

(θei;j + μei;j)χ
e
ei;j(ue). (18)

To obtain its solution, we first estimate its initial binary so-
lution by (∀ei ∈ e)

sol
e(ei) =

{
F if θei;F + μei;F ≤ θei;B + μei;B

B otherwise
(19)

In case it is not in the allowed configuration, its projection

into the allowed shape space (Eq. 15) can be easily obtained

by taking the inner product uei = 〈si, sole − s0〉.
Note that the PCA reconstruction given by s0 +

∑l
i=1 u

e
i si outputs a p × p patch with continuous val-

ues. Special care should be taken in defining the mapping

Π{F,B}p×p(·) (Eq. 15), which must guarantee the plausible

F/B configuration space conforms to the shape prior. In the

case of horse segmentation problem as illustrated in Fig. 1,

the following topological constraints are obtained from the

the learnt data: (a) each connected foreground region must

be connected to one of the patch’s four boundaries; (b) there

is at most one hole in the foreground region; (c) each patch

has at most three connected foreground regions. These

conditions can be guaranteed by a binary search for the

optimal threshold that separates the foreground from the

background (with a complexity of only O(p2 log k), where

k = 100 is the discretization level in the continuous space).

Results We evaluate our method on the popular Weiz-

mann horses data set [2] which consists of 328 images of

horses with various backgrounds. The data is randomly

split into 1/3 for training and 2/3 for testing. The patch

size is chosen to be 35 × 35 and we use the first 300 PCA

components (i.e., l = 300 in Eq. 15). The labeling error

is measured by the percentage of mislabeled pixels in the

(a) Example of results with small errors (< 1%)

(b) Example of results with large errors (> 10%)

Figure 3. The results on the Weizmann horses data set [2].

segmented images, as used in [12]. By simply imposing the

topological constraints for each patch as discussed above,

we have achieved 95.34% classification accuracy. A further

improvement is made by constraining the smoothness of the

F/B boundaries for each patch, leading to an 96.77% accu-

racy, which outperforms methods based on learning high-

level structures [12]. The average running time for the test

images is 1.26s. The average number of iterations is 42.

Fig. 2 shows an example of horse segmentation with the

labeling error plotted for each iteration. Fig. 3 shows repre-

sentative results with low and high errors.

4.2. Template-based 3D facial expression tracking
We next look at the problem of template-based 3D

surface tracking. Similar to [31], a template T0, i.e.,
a triangulated mesh consisting of a number of points
(v01 , v

0
2 , . . . , v

0
n), is given at the first frame of a sequence

{M0, . . . ,Mm} of 3D surface data with texture informa-
tion. The goal is to infer the trajectory of the template (Tt)
in each subsequent frame t = 1, 2, . . ., n. This can be rep-
resented probabilistically by

arg min
Ti,i=1,...,m

− log Pr(T1, . . . , Tn|T0,M0, . . . ,Mm). (20)

The MRF model allows us to encode a proper probability

Pr(·) for Eq. 20. This said, let us define a graph G = (V, E)
with V the node set on the template and E the patch set

(Fig. 4 (a)). For each node v ∈ V, the set of candidate

3D positions at time t is obtained by the efficient sampling

method described in [31]. We assume the deformation of

each each patch e ∈ E lies in a subspace which can be

represented by continuous variables ue. Let χe(ue) denote

the mapping from the 3D locations to the discrete labels

for each of e’s nodes and θv(xv) denote the unary potential

that measures the similarity for each correspondence based

on texture/geometry information, the higher-order potential

ψ(ue) can then be similarly defined in the form of Eq. 17.

We refer the reader to [31] for the detailed definition of the

singleton potentials θv(·). In the following, we only discuss

the plausible space of the higher-order configuration χe(ue).
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Figure 4. (Best viewed in color) In the template-based 3D face

tracking problem, a template is constructed for the first frame in a

3D sequence and the locations of its nodes are inferred in the sub-

sequent frames. Our NC-MRF formulation partitions the template

into overlapping patches (colored in (a)), whose deformations are

constrained by its distortions represented by CDCs [30] (b).

Representation of deformation space The challenge of

deformation modeling lies in the characterization of non-

rigid motion. Here, we employ the Canonical Distor-

tion Coefficients (CDCs) proposed in [30] for represent-

ing non-rigid deformation. As shown in Fig. 4(b) top, the

CDCs are defined for each triangular facet that represent

the distortions along its two principle directions, denoted

by (λ1, λ2) ∈ R × R (e.g, if λ1 = λ2 = 1, the deforma-

tion is rigid), which can be efficiently computed in closed

form [30]. In order to apply CDCs to representing the defor-

mation of a patch e ⊂ 2V , we consider a triangulation of the

nodes in e, denoted byFe ⊂ e×e×e. Since the deformation

of each triangle f ∈ Fe can be represented using CDCs,

the non-rigid deformation of the whole patch can then be

represented by the vector de = (λf
1 , λ

f
2 )f∈Fe , d

e ∈ R
|Fe|×2

(Fig. 4(b) bottom). In this way, a prior deformation space

can be represented as d(α) = d0 +
∑l

i=1 αidi, and the in-

trinsic parameters for a patch e are simply ue = αe where

αe ≡ (αe
i )

l
i=1 are the coefficients for PCA. Here we select

the number of components l = 5 ∼ 10, depending on the

size of the patch.

Subproblem optimization Given the above representa-

tion of deformation space, each subproblem e then becomes

searching for the optimal ue given current dual variables

μe. To facilitate fast computation, similar to our approach

to the image segmentation problem (Sec. 4.1), we obtain

an initial solution by solving sole(ei) = argminj{θei;j +
μei;j}, ∀ei ∈ e, which also gives us an initial correspon-

dence for each node in e. A deformation vector de is then

computed based on this initial correspondence. It follows

that the PCA coefficients can be sufficiently computed by

αe
i = 〈de, dei 〉, where dei is the ith PCA basis. Given the

desired CDCs of the patch, the optimal deformation of the

patch can be solved by employing the higher-order MRF

optimization proposed in [30], providing the final corre-

spondence for each node. Note that the optimization in-

volves significantly smaller graph size and usually it can be

solved exactly due to small tree-width of the subproblem.
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Figure 5. (Best viewed in color) A comparison between our

method and the pairwise MRF approach [31] for a difficult case

with unreliable texture information. (a) shows error evaluations

based on Average Texture Differences (ATD) between the current

frame and the first frame (down), and the Bidirectional Tracking

Error (BTE) proposed in this paper (up). BTE is able to reflect the

consistency in structure as illustrated in (b).

Data set and experimental setting Similar to [24], we

train our model from the tracking results obtained from

data with high quality geometry and texture, which are

captured using the high resolution 3D scanning system

described in [31]. Our algorithm is tested on the BU-

4DFE database [27], consisting of 101 different persons

(58 females and 43 males) each with 6 different expres-

sions (angry, disgust, fear, happy, sad, surprise) and around

100 frames/expression. A generic template with 74 nodes

(Fig. 4(a)) is first semi-automatically attached to the first

frame of each sequence, and then tracked in the subsequent

frames. We choose 62 overlapping patches with various

sizes (6 ∼ 20) for the higher-order deformation constraints.

For each node, we sample |L| = 64 matching candidates

in each frame. Fig. 6 shows some representative tracking

results [28] on the BU database.
Quantitative evaluation Quantitatively evaluating the

accuracy of the tracking results is challenging since the
dense correspondence ground truth are usually unavailable.
We first measure the texture differences between correspon-
dences as in [31], leading to an improvement (Fig. 5 (a)).
Meanwhile, we observe that such a measurement is unable
to reflect the consistency in global structure (Fig. 5 (b)).
Thus, we perform an additional quantitative evaluation as
follows: (1) given a sequence with t frames, we first obtain
the tracking result at frame t by directly tracking it from
frame 1; (2) then we track the whole sequence in two direc-
tions: forward (1 → t) and backward (t → 1); (3) let us
denote by p→v;t/2(p

←
v;t/2) ∈ R

3 the 3D position of node v at

frame t/2 computed by direction 1 → t (t → 1), V and P
the sets of all nodes and edges in the template, respectively,
then the tracking error, called the Bidirectional Tracking Er-
ror (BTE), for a sequence with t frames is defined by

∑
v∈V |p→v;t/2 − p←v;t/2|

min{∑(v,w)∈P |p→v;t/2 − p→w;t/2|,
∑

(v,w)∈P |p←v;t/2 − p←w;t/2}|}
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Figure 6. Facial expression tracking results on BU database [27].

Intuitively, the BTE gives us a good quantitative measure of

the stability (amount of drifts) of the tracking results. For

all the 101 × 6 sequences we tested, the average BTE is

0.0103. For comparison, we randomly pick 10 sequences

from the BU database and evaluate the errors obtained

by the latest pairwise MRF based method [31]. It turns

out that the smallest BTE achieved by [31] is 0.0285 and

our method achieves significantly smaller errors for every

case, although a slight overhead is added in optimizing the

higher-order cliques (∼ 1s / frame for 62 cliques on CPU).

5. Conclusion
We have proposed a new representation of higher-order

MRFs, namely NC-MRFs, by specifically dealing with the

intrinsic dimensions of higher-order cliques. NC-MRFs

provide a compact representation of higher-order MRFs

by introducing additional latent variables to represent the

plausible configurations of higher-order cliques, and allow

flexible design of efficient inference algorithms by decom-

posing the energy function into less coupled terms. No-

tably, we have achieved state-of-the-art results for the chal-

lenging problems of class-specific image segmentation and

template-based 3D facial expression tracking. The pro-

posed modeling/inference framework provides a practical

way of incorporating sophisticated higher-order constraints

into graphical models, which has promising potential of

solving numerous challenging problems in computer vision.
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