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Abstract

Binary hashing has been widely used for efficient simi-
larity search due to its query and storage efficiency. In most
existing binary hashing methods, the high-dimensional da-
ta are embedded into Hamming space and the distance or
similarity of two points are approximated by the Hamming
distance between their binary codes. The Hamming dis-
tance calculation is efficient, however, in practice, there are
often lots of results sharing the same Hamming distance to
a query, which makes this distance measure ambiguous and
poses a critical issue for similarity search where ranking is
important. In this paper, we propose a weighted Hamming
distance ranking algorithm (WhRank) to rank the binary
codes of hashing methods. By assigning different bit-level
weights to different hash bits, the returned binary codes
are ranked at a finer-grained binary code level. We give
an algorithm to learn the data-adaptive and query-sensitive
weight for each hash bit. Evaluations on two large-scale
image data sets demonstrate the efficacy of our weighted
Hamming distance for binary code ranking.

1. Introduction

High-dimensional similarity search is a fundamental

problem in many content-based search systems [20, 23]

and it has been widely used in many related application

areas, such as machine learning, computer vision and da-

ta mining. To solve this problem efficiently, many meth-

ods have been proposed, such as KD-Tree [2][18] and Lo-

cality Sensitive Hashing (LSH) [1]. Recently, binary hash-

ing [20, 21, 16, 14, 12, 3, 6, 11] is becoming increasingly

popular for efficient approximated nearest neighbor (ANN)

search due to its good query and storage efficiency.

The goal of binary hashing is to learn binary represen-

tations for data such that the neighborhood structure in the

original data space can be preserved after embedded into

Hamming space. Given a dataset, binary hashing gener-

ates binary code for each data point and approximates the

distance or similarity of two points by the Hamming dis-

tance between their binary codes, which means most hash-

ing methods rank the returned results based on their Ham-

ming distances to query. This distance measure is widely

used because of the calculation efficiency. However, since

the Hamming distance is discrete and bounded by the code

length, in practice, there will be a lot of data points sharing

the same Hamming distance to the query and the ranking of

these data points is ambiguous, which poses a critical issue

for similarity search, e.g. k nearest neighbor search, where

ranking is important. As a result, most existing binary hash-

ing methods lack in providing a good ranking of results.

In this paper, we propose a weighted Hamming distance

ranking algorithm (WhRank) to improve the ranking perfor-

mance of binary hashing methods. By assigning different

bit-level weights to different hash bits, it is possible to rank

two binary codes sharing the same Hamming distance to a

query at a finer-grained binary code level, and gives binary

hashing methods the ability to distinguish between the rela-

tive importance of different bits. We also give an algorithm

to learn a set of dynamic bit-level weights of hash bits for a

given query. By taking account of the information provided

by the hash functions and dataset, we learn a set of data-

adaptive and query-sensitive bit-level weights to reveal the

relative importance of different hash bits.

The rest of this paper is organized as follows. The relat-

ed work is discussed in Section 2. The weighted Hamming

distance ranking algorithm is proposed in Section 3 and an-

alyzed in Section 4. Section 5 describes our experiments

and Section 6 concludes this paper.

2. Related Work

With the proliferation of various kinds of data, e.g. mu-

sic, image and video, in content-based search systems, fast

similarity search has attracted a significant attention. One
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classical kind of methods to address this problem is the tree-

based index, such as KD-Tree [2][18]. However, this kind

of methods cannot work well for high-dimensional data s-

ince the performance degrade significantly to linear scan

as the dimensionality increases. Recently, hashing based

methods [5, 3, 24] has been widely used for efficient simi-

larity search in a large variety of applications due to its effi-

ciency in terms of query speed and storage space. The goal

of binary hashing is to map each dataset point to a compact

binary code such that similar data points in the original data

space can be mapped to similar binary codes in Hamming

space. One of the representative methods is Locality Sensi-

tive Hashing (LSH) [1] and its variants [15, 9, 14, 6]. The-

oretically, LSH-related methods usually require long code

to achieve good precision. However, long code results in

low recall since the collision probability of similar points

mapped to similar binary codes decreases exponentially as

the code length increases. As a result, LSH-related methods

usually construct multi-tables to ensure a reasonable proba-

bility that a query will collide with its near neighbors in at

least one of the tables, which leads to a long query time and

increases the memory occupation. To generate more com-

pact binary code, many algorithms have been proposed. Se-

mantic Hashing [17] adopts a deep generative model based

on restricted Boltzmann machine to learn the hash function-

s that map similar points to similar binary codes. Spectral

Hashing (SPH) [21] uses spectral graph partitioning strate-

gy for hash function learning and uses the simple analytical

eigenfunction solution of 1-D Laplacians as the hash func-

tion. In PCA-Hashing (PCAH)[20], the eigenvectors corre-

sponding to the largest eigenvalues of the dataset covariance

matrix are used to get binary codes. In [3], Iterative Quan-

tization (ITQ) is proposed to learn an orthogonal rotation

matrix to refine the initial PCA-projection matrix of PCAH

to minimize the quantization error of mapping the data from

original data space to Hamming space. To minimize the re-

construction error between the distances in the original data

space and the Hamming distances of the corresponding bi-

nary codes, the Binary Reconstruction Embedding (BRE)

is proposed in [8]. Moreover, to exploit the spectral prop-

erties of the data affinity to generate better binary codes,

many other algorithms, such as Semi-Supervised Sequen-

tial Projection Hashing [19], Anchor Graph Hashing [12]

and Kernel-Based Supervised Hashing [11] have been de-

veloped and give commendable search performances.

In most existing binary hashing methods, including those

methods discussed above, the returned results of a given

query are simply ranked based on their Hamming distance

to the query. The calculation of Hamming distance is ef-

ficient, however, since this distance metric gives each hash

bit the same weight, it unable to distinguish between the

relative importance of different bits and causes ambiguity

for ranking. One way to alleviate this ambiguity is assign-

ing different bit-level weights to different hash bits. The

weighted Hamming distance has been used for image re-

trieve, including Hamming distance weighting [4] and the

AnnoSearch [20]. In [20], each bit of the binary code is

assigned with a bit-level weight, while in [4], the aim is

to weight the overall Hamming distance of local features

for image matching. In these works, only a single set of

weights is used to measure either the importance of each

bit in Hamming space [20], or to rescale the Hamming dis-

tance for better image matching [4]. In [7], Jiang et al. pro-

pose a query-adaptive Hamming distance for image retrieve

which assigns dynamic weights to hash bits, such that each

bit is treated differently and dynamically. They harness a

set of semantic concept classes that cover most semantic el-

ements of image content. Then, different weights for each

of the classes are learned with a supervised learning algo-

rithm. To compute the bit-level weights for a given query, a

k nearest neighbor search is performed based on the origi-

nal Hamming distance first, then a linear combination of the

weights of classes contained in the result list is used as the

query-adaptive weights.

In [22], the authors propose a query-sensitive hash code

ranking algorithm (QsRank) for PCA-based hashing meth-

ods. Given a query, QsRank assigns two weights to each

hash bit and defines a score function to measure the confi-

dence of the neighbors of a query mapped to a binary code.

The returned codes are ranked based on the their scores.

Experimental results demonstrate the efficacy of QsRank.

There are three key differences between QsRank and our

method WhRank. First, QsRank is developed only for PCA-

based binary hashing while WhRank can be applied to most

existing binary hashing methods. Second, QsRank is devel-

oped for ε-neighbor search, which requires the structure of

the original data space maintained well after dimension re-

duction, while WhRank does not. Third, QsRank makes a

strong assumption about the data distribution (uniform dis-

tribution), while WhRank only makes an assumption about

the distribution of the differences between a query and its

neighbors, which is more appropriate in most cases.

3. Ranking with Weighted Hamming Distance
In this section, we present the weighted Hamming dis-

tance ranking algorithm. In most binary hashing algorithms,

the distance between two points is simply measured by the

Hamming distance between their binary codes. This dis-

tance metric is somewhat ambiguous, since for a K-bits bi-

nary code H(p), there are
(
K
m

)
different binary codes shar-

ing the same distance m to H(p). In most binary hash-

ing algorithms, each hash bit takes the same weight and

makes the same contribution to distance calculation. On

the contrary, in our algorithm, we give different bits differ-

ent weights. With the bit-level weights, the returned binary

codes can be ranked by the weighted Hamming distance at
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a finer-grained binary code level rather than at the original

integer Hamming distance level. The bit-level weight asso-

ciated with hash bit k is denoted as ωk. In the following, we

will show that an effective bit-level weight is not only data-

dependent, but also query-dependent. Note that, our algo-

rithm is not to propose a new binary hashing method, but to

give a ranking algorithm to improve the search accuracy of

most existing binary hashing methods. Some notations are

given below to facilitate our discussion.

Given a dataset X = {x(i)}Ni=1 ∈ R
d, the neighbor set

of x is denoted as N(x). The paradigm of binary hashing

is to first use a set of linear or non-linear hash functions

F = {fk : Rd → R}Kk=1 to map x ∈ X to F (x) ∈ R
K ,

and then binarize F (x) = (f1(x), · · · , fK(x))
T

by com-

paring each fk(x) with a threshold Tk to get a K-bit binary

code H(x) ∈ {0, 1}K . Hence, the binary hash function is

hk(x) = sgn(fk(x) − Tk). We call fk(x) the unbinarized
hash value. Each dimension of H(x) is called a hash bit,

and for a query q and its neighbor p, if the k-th bit of H(q)
and H(p) is different, we call there is a bit-flipping on hash

bit k. The weighted Hamming distance between two binary

codes h(1) and h(2) is denoted as Dw
H(h(1),h(2)).

3.1. Data-Adaptive Weight

We introduce a term discriminating power to denote the

ability of a hash function hk(x) mapping similar data points

to the same bit (0/1). A hash function hk(x) is called dis-

criminative if the probability of similar data points mapped

to the same bit by hk(x) is not small (> 0.5). The more

discriminative hk(x), the more discriminative hash bit k.

Obviously, the discriminating power of a hash function is

dependent on the algorithm generates it and the dataset used

for training. In many binary hashing methods, e.g. PCAH

[20], SPH [21], ITQ [3] and AGH [12], the discriminating

power of different hash function is intrinsically different.

For a hash function with a stronger discriminating power,

it’s less likely for this hash function to generate different

bits for two neighbor points. In other word, for a query q
and two data points p(1), p(2) sharing the same Hamming

distance (1) to q, where H(p(1)) and H(p(2)) are different

with H(q) on hash bits k1 and k2 respectively. If hash bit k1
is more discriminative than k2, then p(1) is considered to be

less similar with q than p(2), since the bit-flipping on hash

bit k1 gives a higher confidence that p(1) is not a neighbor

of q than that on k2. To make Dw
H(H(q), H(p(1))) larger

than Dw
H(H(q), H(p(2))), ωk1 should be larger than ωk2 ,

which means the more discriminative a hash bit k is, the

larger the associated weight ωk is.

As the discriminating power of a hash bit k (i.e. hash

function hk(x)) is related to the probability of similar

points mapped to the same bit by hk(x), given a hash func-

tion hk(x), we can use the distribution of hk(p) − hk(q),
where p ∈ N(q), to reveal how discriminative hash bit k is.
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Figure 1. Histograms of the differences between the unbinarized

hash values of a query and its neighbors, generated by ITQ [3] and

SPH [21]. Dataset for illustration is ANN-SIFT1M [5].

However, since hk(p) and hk(q) are binarized, too much

useful information is lost. An alternative is to use the dis-

tribution of the difference between their unbinarized hash

values, i.e. sk(p, q) = fk(p)−fk(q), to reveal the discrim-

inating power. If sk(p, q) is distributed in a small interval

centered around 0, then the probability of hk(p) = hk(q) is

high, yielding a high discriminative hash bit k. Fig. 1 gives

the distribution of sk(p, q) for ITQ [3] and SPH [21] using

32 bits binary code. As can be seen from this figure, the

distributions are all Bell-shaped, as all these binary hash-

ing methods try to minimize the distances between similar

points after hashing. As a result, ωk is a function of the dis-

tribution of sk, which is parameterized by the its mean μk

and standard deviation σk:

ωk = g(μk, σk) (1)

Note that, hash bit k is more discriminative if σk is smaller,

therefore, ωk = g(μk, σk) should be monotonically non-

increasing w.r.t. σk. An illustration for ITQ is given in the

Right of Fig. 2, as shown, the probability of bit-flipping on

hash bit k increases with the standard deviation σk.

3.2. Query-Sensitive Weight

Meanwhile, for a specified data point q, the probabili-

ty of its neighbor p mapped to a bit different from Hk(q)
by hash function hk(x) is also dependent on q itself. Intu-

itively, if |fk(q)− Tk| is small, then after adding a random

noise ñ to q, it’s more likely that fk(q + ñ) lies on the op-

posite side of Tk as compared to fk(q), which means the

probability of hk(p) differs from hk(q) for p ∈ N(q) is

high. A simple example of this intuition is shown in the

Left of Fig. 3. A query q is mapped to “101”, the binary

codes of p1, p2 and p3 are “001”, “111”, “110” respective-

ly. Based on the Hamming distance, the result list of q is

“001”, “111”, “110”. However, it’s more suitable to rank

the hash code “110” and “111” before “001” because q is

far from the threshold of hash function h1, it’s less likely

for a near neighbor of q lies on the opposite side of h1.

Moreover, as shown in the Left of Fig. 2, the probability of
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Figure 2. The probability of a query q’s neighbor, p, mapped to a

bit different from h(q) by hash function h(x) = sgn(f(x)− T ).
The abscissa of the Left is |f(q)−T |, and the abscissa of the Right

is the standard variance of the distribution of f(p)− f(q).

bit-flipping increases with |fk(q) − Tk| for the most part.

As a result, ωk (1) is not only dependent on the hash func-

tion hk(x), but also dependent on the specified data point q,

and on this account, ωk is also a function of q. As a result,

eq. (1) can be rewritten as:

ωk(q) = g(μk, σk, q) (2)

Moreover, the smaller |fk(q)−Tk|, the larger the probabil-

ity of bit-flipping on hash bit k, thus the smaller ωk. There-

fore, ωk(q) should also be monotonically non-decreasing

w.r.t. |fk(q)− Tk|.
3.3. Dynamic Bit-level Weighting

In the previous sections 3.1 and 3.2, we show that an

effective bit-level weight is not only data-dependent, but

also query-dependent. In this section, we give a simple

method to calculate the data-adaptive and query-sensitive

bit-level weight ωk(q) of each hash bit k for a given query

q, and we will show that ωk(q) satisfies the abovemen-

tioned constraints theoretically. The intuition behind our

method is: given a query q and two binary codes h(1), h(2),

after adding a random noise ñ to q, if the probability of

H(q + ñ) = h(1), denoted as Pr(h(1)|H(q)), is larger

than Pr(h(2)|H(q)), then the data points mapped to h(1)

are considered to be more similar neighbors of q rather than

those mapped to h(2), which means the weighted Hamming

distance Dw
H(H(q),h(1)) is smaller than Dw

H(H(q),h(2)).
Therefore, given a query q and a binary code h, a func-

tion parameterized by Pr(h|H(q)) is used as a probabilis-

tic interpretation of Dw
H(H(q),h). This function should be

monotonically non-increasing w.r.t. Pr(h|H(q)). Further-

more, if Pr(h|H(q)) ≈ 1, Dw
H(H(q),h) should be small,

and if Pr(h|H(q)) ≈ 0, Dw
H(H(q),h) should be relative-

ly large. A famous function satisfies these constraints is

the Information Entropy. As a result, given a query q, the

weighted Hamming distance between H(q) and a binary

code h is defined as follows:

Dw
H(H(q),h) ≈ − log Pr(h|H(q)) (3)

fk(x)fk(q)Tk

sk=fk(p)-fk(q)

Pr(Δhk(q)≠0) Pr(Δhk(q)=0)

qp1

p2

p3

111

001 101

h2

h3

h1

110

Figure 3. The Left gives an example where Hamming distance

causes ambiguity for binary code ranking. The Right illustrates

the probability of a neighbor of q mapped to a different bit by

hash function fk(x), Tk is the binary threshold.

Assume all the hash bits are independent [22], we have:

Pr(h|H(q)) =
∏
k

Pr(hk �= hk(q)) ∗
∏
k

Pr(hk = hk(q)) (4)

where Pr(hk �= hk(q)) (denoted by Pr(Δhk(q) �= 0))
is the probability of hash bit k of h flipped as compared

with that of H(q), and Pr(hk = hk(q)) (denoted by

Pr(Δhk(q) = 0)) is the probability of hash bit k of h not

flipped . Apparently, these two probabilities are dependent

on the specified query q and the hash function hk(x).

Since the weighted Hamming distance is used for rank-

ing, the ranking of each Dw
H(H(q),h) is more crucial

than their actual values. Therefore, by dividing each

Pr(h|H(q)) by
∏K

k=1 Pr(Δhk(q) = 0) without chang-

ing the ranking of each Dw
H(H(q),h), we get a modified

weighted Hamming distance:

Dw
H(H(q),h) =

∑
k∈S

λk(q) (5)

where S is the set of hash bits in h differ from H(q), and

λk(q) = log
Pr(Δhk(q) = 0)

Pr(Δhk(q) �= 0)
= log

1− Pr(Δhk(q) �= 0)

Pr(Δhk(q) �= 0)
(6)

Equation (6) is a monotonically decreasing function w.r.t.

Pr(Δhk(q) �= 0). The smaller Pr(Δhk(q) �= 0), the s-

maller the probability of a data point p ∈ N(q) mapped to

a different bit by hk(x), thus the more discriminative hash

bit k. Therefore, λk(q) satisfies the constraints for data-

adaptive weight introduced in Section 3.1.

To calculate Pr(Δhk(q) �= 0) or Pr(Δhk(q) = 0), the

distribution of hk(q + ñ) − hk(q) is essential. Based on

our discussion in Section 3.2, we can use the distribution of

s(q + ñ, q) = fk(q + ñ) − fk(q) with density function

pdfk(s) to estimate Pr(Δhk(q) �= 0). The Right of Fig. 3

shows the probability of a neighbor of q, p, mapped to a bit
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different from hk(q). If fk(q) > Tk, we have:

Pr(Δhk(q) �= 0) = Pr(fk(p) < Tk)

= Pr(sk(p, q) ≤ Tk − fk(q))

=

∫ Tk−fk(q)

−∞
pdfk(s)ds (7)

The Gaussian distribution assumption for pdfk is used

for PCAH, LSH and ITQ in our experiments, since they are

all Gaussian-like distributions as shown in Fig. 1. There-

fore, pdfk(s) = N (μk, σk), and if fk(q) > Tk, we have:

Pr(Δhk(q) �= 0) =
1

2

[
1 + erf(

Tk − fk(q)− μk

σk

√
2

)

]
(8)

Similarly, for fk(q) < Tk:

Pr(Δhk(q) �= 0) =
1

2

[
1− erf(

Tk − fk(q)− μk

σk

√
2

)

]
(9)

where erf is the Gauss error function. For SPH and AGH,

we use the Laplace distribution assumption for pdfk, thus

pdfk = exp {|x− μk|/bk} /2bk, where bk = σk/
√
2.

In our experiments, we set ωk(q) = λk(q) and de-

note this weighting scheme as WhRank. Given a query

q, first the unbinarized hash value fk(q) of each hash bit

k is calculated. Then, the adaptive weight ωk(q) is calcu-

lated using eq. (8)(9)(6). Apparently, the larger σk, the

smaller ωk(q). Moreover, the smaller |fk(q) − Tk|, the

larger Pr(Δhk(q) �= 0), thus the smaller ωk(q). There-

fore, ωk(q) satisfies the constraints for data-adaptive and

query-sensitive weight introduced in Section 3.1 and 3.2.

For the Laplace distribution assumption and the Student’s t-
distribution assumption used in our experiments, these dis-

cussions still hold. Another straightforward dynamic bit-

level weighting is setting ωk(q) = |Tk − f(q)| /σk. In

our experiments, we use this weighting scheme as a natu-

ral baseline and denote it as WhRank1. Note that, since we

make no assumption about the hashing method used in the

bit-level weights learning, our algorithm, WhRank, can be

applied to different kinds of hashing methods.

4. Analysis
As shown in eq. (5), given a query q and a bina-

ry code h, Dw
H(H(q),h) can be calculated efficiently as:

ωT (q)(H(q) ⊗ h), where ⊗ means the xor of two binary

codes and ω(q) = (ω1(q), ω2(q), · · · , ωK(q))T . While

the weighted distances can now be calculated by inner-

product operation, it is actually possible to avoid this com-

putational cost by computing the traditional Hamming dis-

tance first, and then ranking the returned binary codes based

on their weighted-Hamming distances to H(q). Therefore,

the ranking of the returned binary codes can be obtained

with minor additional cost.

To learn the μk and σk of a hash function hk(x), we

construct a training set consists of s query points, each of

which has m neighbors. The complexity of calculating the

unbinarized hash values of each query and its neighbors is

almost O(s(m+1)d), and the complexity of calculating μk

and σk is bounded by O(3sm). Therefore, the overall train-

ing complexity of our parameters learning stage is bounded

by O(K ∗ s(md+ d+ 3m)) ≈ O(Ksmd).

5. Experiments
5.1. Experimental Setup

Our experiments are carried out on two benchmark

datasets: MINST70K and ANN-SIFT1M. The MNIST70K

[10] consists of 70K 784-dimensional images, each of

which is associated with a digit label from ‘0’ to ‘9’, and is

split into a database set (i.e. training set, 60K) and a query

set (10K). The ANN-SIFT1M [5] consists of 1M images

each represented as a 128-dimensional SIFT descriptors

[13]. It contains three vector subsets: learning set (100K),

database set (1M) and query set (10K). The learning subset

is retrieved from Flickr images and the database and query

subsets are extracted from the INRIA Holidays images [4].

As stated in Section 3.3, our methods can be applied

to different kinds of binary hashing methods. In our ex-

periments, some representative hashing methods, Locality

Sensitive Hashing (LSH) [1], PCA Hashing (PCAH) [20],

Iterative Quantization (ITQ) [3], Spectral Hashing (SPH)

[21] and Anchor Graph Hashing (AGH) [12], are chosen

to evaluate the effectiveness of WhRank. The source codes

generously provided by the authors and the recommended

parameters settings in their papers, are used in our experi-

ments. For AGH, the number of anchors is set to 500 and the

number of nearest neighbors for anchor graph constructing

is set to 2 for MINST70K and 5 for ANN-SIFT1M, respec-

tively. Note that, the hash functions of LSH, PCAH and

ITQ are linear, while those of SPH and AGH are nonlin-

ear. Experimental results in Section 5.2 show that, WhRank

is applicable to both linear and nonlinear hashing method-

s. Moreover, we also compare our algorithm with QsRank

[22], a novel ranking algorithm for binary code. Since Qs-

Rank is developed only for PCA-based hashing methods,

the comparisons are carried out on PCAH and ITQ.

Given a query, by ranking with traditional Hamming dis-

tance and our weighted Hamming distance, the returned

top N nearest neighbors and the rankings are both dif-

ferent. The efficacy of WhRank can be measured by the

Precision@N , Recall@N and the distance error ratio@N
[15] defined as:

Precision@N =
the number of similar points in top N

N

Recall@N =
the number of similar points in top N

the number of all similar points
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Figure 4. Evaluations of Precision@N of WhRank, WhRank1 and

QsRank on MINST70K using 32 bits binary code. As shown in

this figure, by applying WhRank for query results ranking, the re-

trieve accuracy of each method is improved.

error ratio@N =
1

N |Q|
∑
q∈Q

N∑
k=1

d(q,nk)− d(q,n∗k)
d(q,n∗k)

where q ∈ Q is a query, nk is the k-th nearest neighbor in

the ranked results, and n∗k is the actual k-th nearest neighbor

of q in the database set. For MINST70K, a returned point

is considered as a true neighbor of a query if they share

the same digit label. For ANN-SIFT1M, we use the same

criterion as in [19]: a returned point is considered to be a

true neighbor if it lies in the top 1% points closest to the

query in terms of Euclidean distance in the original space.

5.2. Experimental Results

To demonstrate the efficacy of applying our weighted

Hamming distance for ranking, given a query, the returned

results of each baseline hashing method are ranked by their

traditional Hamming distance and the weighted Hamming

distance to the query respectively. The Precision@N and

distance error ratio@N of each ranked result list are re-

ported to show the efficacy of WhRank (the number of

returned results is predefined in our experiments, a high-

er Precision@N means a higher Recall@N , thus only the

Precision@N is reported.). Note that, ranking with the

weighted Hamming distance is only performed to the result-

s returned by computing the traditional Hamming distance,

so the additional computational cost is minor.

Since MINST70K is fully annotated, we can use the

Precision@N and Recall@N to show the efficacy of

WhRank. The dataset is first embedded into Hamming s-

pace using each baseline hashing method. After that, from

each digit class, we randomly sample 50 images from the

query set constituting a subset contains 500 images. For

each training image, we find its 1,000 neighbors in the

dataset based on their digit labels. The training set and the

corresponding neighbors are used for distribution parame-

ters estimation. The rest of the query set is used as queries

in our experiments. For LSH, PCAH and ITQ, the Gaussian

distribution is used as the distribution assumption, while for

SPH and AGH, the Laplace distribution is used as the dis-

tribution assumption.

Fig. 4 gives the Precision@N on MINST70K using 32

bits binary code. For clarity, the results are shown in t-

wo parts. It is easy to find out that, by ranking with our

weighted Hamming distance (WhRank), all baseline hash-

ing methods achieve a better search performance. On aver-

age, we get a 5% higher precision for each hashing method.

For SPH and PCAH, the improvements are even higher (al-

most 10%). Meanwhile, as shown in this figure, each base-

line method combined with WhRank1 also achieves a rea-

sonable good performance improvement, and the improve-

ment is a little inferior than that of WhRank (2% on aver-

age). In our subsequent experiments, this result still holds.

Therefore, the results of WhRank1 are not given in subse-

quent figures for the sake of clarity.

Fig. 5 gives the Precision@N on MINST70K under d-

ifferent code lengths. Once again, we can easily find out

that the performance of each baseline hashing method is

improved when combined with WhRank. Moreover, as can

be seen from Fig. 4 and Fig. 5(c), even with a relative-

ly short binary code (32 bits), the retrieval accuracy of each

baseline method combined with WhRank is almost the same

as, sometimes better than, that of the baseline method itself

with a binary code of larger size (64 bits, 96 bits).

In the experiments on ANN-SIFT1M, for distribution pa-

rameters estimation, we randomly sample 100 points from

the query set as the training set, and for each training sam-

ple, we find its top 5,000 nearest neighbors in the database

set, measured by the Euclidean distance. For LSH, PCAH

and ITQ, we still use the Gaussian distribution as the dis-

tribution assumption. For SPH, the Laplace distribution is

used as the distribution assumption. For AGH, the Student’s

t-distribution is used as the distribution assumption.

Since the neighborhood relationship of a data pair in

ANN-SIFT1M is defined based on the Euclidean distance,

we use Precision@N and distance error ratio@N to show

the efficacy of ranking with our weighted Hamming dis-

tance. Fig. 6 and Fig. 7 give the evaluations of Recall@N
and Distance error ratio@N on ANN-SIFT1M under differ-

ent code lengths, respectively. As shown in these two fig-

ures, when combined with WhRank, each methods achieves

a 10% higher precision on average. Moreover, the distance

error ratio of each baseline method reduces 40% as com-

pared with the original. The experimental results demon-

strate that applying WhRank to existing hashing methods

yielding a more accurate similarity search result.

We also compare our algorithm with QsRank [22]. Since

QsRank is developed only for PCA-based hashing method,

The comparisons are carried out on PCAH [20] and ITQ

[3]. As QsRank is designed for ε-neighbor search, in our

experiments on MINST70K, given a query q and N , the
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Figure 5. Evaluations of Precision@N of WhRank and QsRank on MINST70K. Code lengths: (a) 48 bits; (b) 64 bits; (c) 96 bits. As

shown, the retrieve accuracy of each baseline method is improved when combined with WhRank under different code lengths.
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Figure 6. Evaluations of Precision@N of WhRank and QsRank on ANN-SIFT1M. Code lengths: (a) 32; (b) 48; (c) 64; (d) 96. The

retrieve accuracy of each baseline method is improved when combined with WhRank under each code length setting. Moreover, the

retrieve accuracy of each method combined with WhRank is as good as, sometimes better than, that of combined with QsRank.

search radius is set to the mean of the distance between q
and its all neighbors. On ANN-SIFT1M, the radius is set to

the distance between q and its actual N -th nearest neighbor

in the database set. The comparison results are reported in

Fig. 4(b) to Fig. 7. As shown in these figures, the perfor-

mance improvements of our algorithm are as good as, some-

times better than, those of QsRank. One remarkable advan-

tage of WhRank over QsRank is that, the ranking model of

WhRank is more general, thus WhRank is also applicable to

other non-PCA-based hashing methods, e.g. SPH and AGH.

Furthermore, WhRank can be easily applied to ε-neighbor

search, while QsRank is not very effective for nearest neigh-

bor search since the distance between a query and its nearest

neighbor is often unknown in practice.

6. Conclusion
Most existing binary hashing methods rank the returned

results of a query simply with the traditional Hamming

distance, which poses a critical issue for similarity search

where ranking is important, since there can be many re-

sults sharing the same Hamming distance to the query.

This paper proposes a weighted Hamming distance rank-

ing algorithm (WhRank) to alleviate this ranking ambigu-

ity. When applied to existing hashing methods, different

bit-level weights are assigned to different hash bits, and the

returned results can be ranked at a finer-grained binary code

level rather than at the original integer Hamming distance

level. We demonstrate that an effective bit-level weight is

not only data-dependent but also query-dependent, and give

a simple yet effective algorithm to learn the weights.

The experimental results on two large-scale image

datasets containing up to one million high-dimensional data

points demonstrate the efficacy of WhRank. The search per-

formances of all evaluated hashing methods are improved

when combined with WhRank. Moreover, as compared

with QsRank, a novel ranking algorithm for binary code,

the performance improvements of WhRank are as good as

(sometimes better than) those of QsRank. There are two

remarkable advantages of WhRank over QsRank. First,

WhRank can be applied to various kinds of hashing method-

s while QsRank is only developed for PCA-based hashing

methods. Second, as QsRank is developed for ε-neighbor

search, it’s not very effective for nearest neighbor search

since the distance of a query to its nearest neighbor is un-

known in practice. On the contrary, WhRank can be easily

applied to ε-neighbor search.
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