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Abstract

Model-free trackers can track arbitrary objects based on
a single (bounding-box) annotation of the object. Whilst the
performance of model-free trackers has recently improved
significantly, simultaneously tracking multiple objects with
similar appearance remains very hard. In this paper, we
propose a new multi-object model-free tracker (based on
tracking-by-detection) that resolves this problem by incor-
porating spatial constraints between the objects. The spa-
tial constraints are learned along with the object detectors
using an online structured SVM algorithm. The experi-
mental evaluation of our structure-preserving object tracker
(SPOT) reveals significant performance improvements in
multi-object tracking. We also show that SPOT can improve
the performance of single-object trackers by simultaneously
tracking different parts of the object.

1. Introduction
Object tracking is a fundamental problem in computer

vision with applications in a wide range of domains.

Whereas significant progress has been made in tracking spe-

cific objects (e.g., faces [22], humans [11], and rigid ob-

jects [15]), tracking generic objects remains hard. Since

manually annotating sufficient examples of all objects in

the world is prohibitively expensive and time-consuming,

recently, approaches for model-free tracking have received

increased interest [2, 12]. In model-free tracking, the ob-

ject of interest is manually annotated in the first frame of a

video sequence (using a rectangular bounding box). The an-

notated object needs to be tracked throughout the remainder

of the video. Model-free tracking is a challenging task be-

cause (1) little information is available about the object to be

tracked, (2) this information is ambiguous in the sense that

the initial bounding box only approximately distinguishes

the object of interest from the background, and (3) the ob-

ject appearance may change drastically over time.

Most tracking systems comprise three main components:

(1) an appearance model that predicts the likelihood that

the object is present at a particular location based on the

local image appearance, (2) a location model that predicts

the prior probability that the object is present at a particular

location, and (3) a search strategy for finding the maximum

a posteriori location of the object. In our model-free tracker,

the appearance model is implemented by a classifier trained

on histogram-of-gradient (HOG) features [7], the location

model is based on the relative locations of objects, and the

search strategy is a sliding-window exhaustive search.

In many applications, it is necessary to track more than

one object. A simple approach to tracking multiple objects

is to run multiple instances of a single-object model-free

tracker. In this paper, we argue that this is suboptimal be-

cause such an approach fails to exploit spatial constraints

between the objects. For instance, flowers move in the same

direction because of the wind, cars drive in the same direc-

tion on the freeway, and when the camera shakes, all ob-

jects will move in the same direction. We show that it is

practical to exploit such spatial constraints between objects

in model-free trackers by developing a structure-preserving

object tracker (SPOT) that incorporates spatial constraints
between objects via a pictorial-structures framework [8].

We train the individual object classifiers and the structural

constraints jointly using an online structured SVM [3]. Our

experiments show that the incorporation of structural con-

straints leads to substantial performance improvements in
multi-object tracking: SPOT performs very well on Youtube

videos with camera motion, rapidly moving objects, object

appearance changes, and occlusions. In addition, we show

that SPOT may also be used to significantly improve single-
object trackers by using part detectors in addition to the ob-

ject detector, with spatial constraints between the parts.

In summary, our main contributions are: (1) we show

that incorporating spatial constraints between objects in

model-free trackers to improves their performance on

multiple-object tracking and (2) we show that using a part-

based model improves the performance of single-object

model-free trackers. We discuss related work in section 2.

Section 3 introduces our new tracker, section 4 presents our

experimental results, and section 5 concludes the paper.
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2. Related Work

Model-free trackers can be subdivided into (1) trackers

that model only the appearance of the object itself [20] and

(2) trackers that model the appearance of both the object

and the background [2, 9, 12]. Recent results suggest that

the latter type of trackers, which train a classifier to dis-

criminate between the object and the background appear-

ance, outperform the former type of trackers. This result is

supported by theoretical results showing that discriminative

models always outperform their generative counterparts on

a discriminative tasks [17]. Hence, we will focus on learn-

ing discriminative object appearance models in this work.

Much of the recent work in model-free tracking focuses

on exploring different feature representations for the object

that is being tracked: among others, previous studies have

used integral histograms [1], subspace learning [20], sparse

representations [16], and local binary patterns [12]. In this

work, we capitalize on the success of the Dalal-Triggs de-

tector [7] and use HOG features instead.

Recent work on model-free tracking also focuses on de-

veloping new learning approaches to better distinguish the

target object from background. In particular, previous stud-

ies have investigated approaches based on boosting [9], ran-

dom forests [12], multiple instance learning [2], and struc-

tured output learning to predict object transformations [10].

Our tracker is similar to these approaches in that it up-

dates the appearance model of the target object online. Our

tracker differs from previous approaches in that it uses a

learner that aims to identify configurations of objects or ob-

ject parts; specifically, an online structured SVM [3].

Simultaneous tracking of multiple objects has been stud-

ied a lot as well, in particular, in the context of tracking

people (e.g., [4, 18, 23, 25]). These trackers use a model

of what a human looks like, which makes tracking much

easier. By contrast, we aim to develop a model-free tracker

that can track generic objects based on a single annotation

without any prior knowledge. Up to the best of our knowl-

edge, there is no previous work that attempts to perform

such model-free tracking of multiple objects.

3. Structure-Preserving Object Tracker

The basis of our tracker is formed by the popular Dalal-

Triggs detector [7], which uses HOG features to describe

image patches and an SVM to predict object presence.

HOG features measure the magnitude and the (unsigned)

direction of the image gradient in small cells (we used 8×8
pixel cells). Subsequently, contrast normalization is applied

on rectangular, spatially connected blocks of four cells. The

contrast normalization is implemented by normalizing the

L2-norm of all histograms in a block. The advantages of

HOG features are that (1) they consider more edge orienta-

tions than just horizontal or vertical ones, (2) they pool over

relatively small image regions, and (3) they are robust to

changes in the illumination of the tracked object. Together,

this makes HOG features more sensitive to the spatial loca-

tion of the object [7], which is very important because the

identified location of the object is used to update the clas-

sifiers: small localization errors may thus propagate over

time, causing the tracker to drift. Moreover, efficient imple-

mentations can extract HOG features at high frame rates.

We represent the bounding box that indicates object i∈
V (with V representing the set of objects we are tracking)

by Bi = {xi, wi, hi} with center location xi = (xi, yi),
width wi, and height hi; both wi and hi are fixed. The

HOG features extracted from image I that correspond to lo-

cations inside the object bounding box are concatenated to

obtain a feature vector φ(I;Bi). Subsequently, we define a

graph G=(V,E) over all objects i∈V that we want to track

with edges (i, j)∈E. The edges in the graph model can be

viewed as springs that represent spatial constraints between

the tracked objects. Next, we define the score of a config-
uration C = {B1, . . . , B|V |} as the sum of two terms: (1)

an appearance score that measures the similarity between

the observed image features and the classifier weights for

all objects and (2) a deformation score that measures how

much a configuration compresses or stretches the springs

between the tracked objects as follows:

s(C; I,Θ) =
∑
i∈V

wT
i φ (I;Bi)

−
∑

(i,j)∈E

λij‖(xi − xj)− eij‖2. (1)

Herein, the parameters wi represent linear weights on the

HOG features for object i, eij is a vector that represents

the length and direction of the spring between object i and

j, and the set of all parameters is denoted by Θ: Θ =
{w1, . . . ,w|V |, e1, . . . , e|E|}. We treat the parameters λij

as a hyperparameter because we want to learn the spring co-

efficients eij , i.e. we set ∀i, j :λij=λ. The hyperparameter

λ determines the trade-off between the appearance and de-

formation scores. We use Platt scaling [19] to convert the

configuration score to a configuration likelihood p(C|I; Θ).

Inference. Given the parameters of the model, finding

the most likely object configuration amounts to maximizing

Eqn. 1 over C. This maximization is intractable in gen-

eral because it requires searching over exponentially many

configurations, but for tree-structured graphs G, dynamic

programming can be used to perform the maximization in a

time that is linear in the number of parts; see [8] for details.

Learning. Like other model-free trackers [2, 9, 12], we

use the previous images and tracked object configurations

as positive examples to train our model. After observing an

image I and inferring the object configuration C (by maxi-

mizing Eqn. 1), we perform a parameter update that aims to
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minimize the structured SVM loss � [21]:

�(Θ; I, C) = max
Ĉ

(
s(Ĉ; I,Θ)− s(C; I,Θ) +Δ(C, Ĉ)

)
,

where Δ(C, Ĉ) is defined as follows:

Δ(C, Ĉ) =
∑
i∈V

(
1− Bi ∩ B̂i

Bi ∪ B̂i

)
. (2)

The union and intersection of the two bounding boxes is

measured in terms of pixels. The loss can be rewritten as:

�(Θ; I, C) =max
Ĉ

(
vec(Θ)T

(
Ψ̂−Ψ

)
−

∑
(i,j)∈E

λ
(
‖q̂ij‖2 − ‖qij‖2

)
+Δ(C, Ĉ)

⎞
⎠ ,

where Ψ =
[
φ1, . . . , φ|V |, 2λqi1j1 , . . . , 2λqi|E|j|E|

]T
,

vec(·) concatenates all parameters in a column vector, and

qij=xi − xj . Because it is the maximum of a set of affine

functions of Θ, the loss function is convex. The gradient of

the structured SVM loss with respect to θ ∈ Θ is given by:

∇θ�(Θ; I, C) = ∇θs(C
∗; I,Θ)−∇θs(C; I,Θ)

= Ψ∗ −Ψ, (3)

in which the configuration C∗ is given by:

C∗ = argmax
Ĉ

(
s(Ĉ; I,Θ) +Δ(C, Ĉ)

)
. (4)

The configuration C∗ can be computed efficiently by (1)

adding a term to each object filter response that contains

the ratio of overlapping pixels for a bounding box at that

location with the detected bounding box and (2) re-running

exactly the same efficient inference procedure as the one

that was used to maximize Eqn. 1 over configurations.

We use a passive-aggressive algorithm to perform the pa-

rameters updates [5]. The updates take the form:

θ ← θ − �(Θ; I, C)

‖∇θ�(Θ; I, C)‖2 + 1
2K

∇θ�(Θ; I, C), (5)

in which K∈(0,+∞) is a hyperparameter that controls the

“aggressiveness” of the parameter update.

Initialization. The weights wi are initialized by ran-

domly selecting 50 negative examples from the first frame

that have little to no overlap with the initial annotation

B
(init)
i , and training SVMs to discriminate these negative

examples from the positive example given by the initial an-

notation. The parameters eij are initialized based on the

initial object annotations as well: eij ← x
(init)
i − x

(init)
j .

Graph structure. A remaining issue is how we deter-

mine the structure of the graph G, i.e. how we decide on

which objects are connected by an edge. Ideally, we would

employ a fully connected graph G, but this would make in-

ference intractable. Hence, we explore two approaches to

construct a tree on the objects i ∈ V : (1) a star model [8]

and (2) a minimum spanning tree model [24]. In the star

model, each object is connected by an edge with a dummy

object r ∈ V that is always located at the center of all the

objects, i.e. there are no direct relations between the objects.

This requires a minor adaptation of the score function:

s(C; I,Θ) =
∑

i∈V/r

wT
i φ (I;Bi)

−
∑

(i,r)∈E

λi‖(xi − xr)− ei‖2. (6)

The minimum spanning tree model is constructed based on

the object annotations in the first frame; it is obtained by

searching the set of all possible completely-connected tree

models for the tree that minimizes
∑

ij∈E‖xi − xj‖2.

Computational Complexity. The main computational

costs of running our tracker are in the extraction of HOG

features (which are shared between object detectors) and in

the computation of the appearance score per object. After

these appearance scores are computed, the maximization of

Eqn. 1 takes only a few milliseconds. The computational

complexity grows linearly in the number of objects being

tracked (i.e. in |V |). Our Matlab implementation tracks

multiple objects simultaneously in real-time.

4. Experiments

We performed two sets of experiments to evaluate the

performance of our tracker. In the first set of experiments,

we evaluate the performance of the SPOT tracker on a

range of multi-object tracking problems, comparing it to

the performance of various state-of-the-art trackers that do

not employ structural constraints between the objects. In

the second set of experiments, we study the use of SPOT

to improve single-object tracking by tracking parts of an

object and constraining the spatial configuration of those

parts. An implementation of our tracker is available from

http://visionlab.tudelft.nl/spot.

4.1. Experiment 1: Multiple-Object Tracking

We first evaluate the performance of the SPOT tracker on

videos in which multiple objects need to be tracked.

Setup. We used nine videos with multiple objects in this

set of experiments. Three of these videos (Shaking, Basket-
ball, and Skating) were already used in earlier studies [13];

the other six were downloaded from YouTube. The videos

were selected based on characteristics that are challenging
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for current model-free trackers, such as the presence of mul-

tiple, near objects with a very similar appearance. The av-

erage length of the videos is 842 frames. The left column

of Figure 1 shows the first frame of each of the nine videos

along with the corresponding ground-truth annotations of

the objects, i.e. the left column of Figure 1 shows all la-

beled training data that is available to train our tracker.

We experiment with three variants of the SPOT tracker:

(1) a baseline tracker that does not use structural constraints

(i.e. a SPOT tracker with λ = 0; no-SPOT), (2) a SPOT

tracker that uses a star model (star-SPOT), and (3) a SPOT

tracker that uses a minimum spanning tree (mst-SPOT). We

compare the performance of our SPOT trackers with that of

two state-of-the-art (single-object) trackers, viz. the OAB

tracker [9] and the TLD tracker [12], which we use to sep-

arately track each object. The OAB and TLD trackers were

run using the implementations provided by their developers.

We evaluate the performance of the trackers by measur-

ing (1) average distance error (Err.): the average distance

of the center of the identified bounding box to the center

of the ground-truth bounding box and (2) precision (Prec.):

the average percentage of frames for which the overlap

between the identified bounding box and the ground-truth

bounding box is at least 50 percent. For each video, these

two measurements are averaged over all target objects, over

all frames, and over five separate runs of the tracker. In

all experiments with star-SPOT and mst-SPOT, we fixed

λ=0.001 and K=1. In preliminary experiments, we found

that are results are very robust under changes of λ and K.

Results. The performance of the five trackers on all nine

videos is presented in Table 1. The results in the table show:

(1) that our baseline no-SPOT tracker performs on par with

state-of-the-art trackers such as TLD and OAB, and (2) that

the use of spatial constraints between objects leads to sub-

stantial performance improvements when tracking multiple

objects, in particular, when minimum spanning trees (mst-

SPOT) are used. The performance improvements are par-

ticularly impressive for videos in which objects with a sim-

ilar appearance are tracked, such as the Car Chase, Parade,

and Red Flowers videos, because the structural constraints

prevent the tracker from switching between objects. Struc-

tural constraints are also very helpful in videos with a lot of

camera shake (such as the Air Show video), because camera

shake causes all objects to move in the same direction in the

image. The SPOT tracker even outperforms single-object

trackers when perceptually different objects are tracked that

have a relatively weak relation in terms of their location,

such as in the Hunting video, because it can share informa-

tion between objects to deal with, e.g., motion blur. The

mst-SPOT tracker outperforms star-SPOT in most videos,

presumably, because a minimum spanning tree imposes di-

rect (rather than indirect) constraints on the object locations.

Figure 1 shows five frames of all videos with the

tracks obtained by mst-SPOT (colors correspond to ob-

jects). Videos showing the full tracks are provided online.

We qualitatively describe the results on four of the videos.

Air Show. The video contains a formation of four vi-

sually similar planes that fly very close to each other; the

video contains a lot of camera shake. Whereas the base-

line trackers (OAB, TLD, and no-SPOT) confuse the planes

several times during the course of the video, star-SPOT and

mst-SPOT track the right plane throughout the entire video.

Car Chase. This video is challenging because (1) the

two cars are very small and (2) both cars are occluded for

around 40 frames, while various other cars are still visible.

Whereas this occlusion confuses the baseline trackers, the

two SPOT trackers do not lose track because they can use

the location of one car to estimate the location of the other.

Red Flowers. The video shows several similar flowers

that are moving and changing appearance due to the wind,

and that sometimes (partially) occlude each other; we track

four of these flowers. The baseline trackers lose track very

quickly because of the partial occlusions. By contrast, the

two SPOT trackers flawlessly track all flowers during the

entire length of the video (2249 frames) by using the struc-

tural constraints to distinguish the different flowers.

Hunting. The cheetah and gazelle in this video clip are

very hard to track, because their appearance changes sig-

nificantly over time and because their relative location is

changing (the cheetah passes the gazelle). Nevertheless, the

SPOT trackers can exploit the fact that both animals move in

a similar direction, which prevents them from losing track.

4.2. Experiment 2: Single Object Tracking

With some minor modifications, our SPOT tracker may

also be used to improve the tracking of single objects. The

problem of using a global appearance model is that it is sus-

ceptible to partial occlusions of the object. By contrast, the

appearance of (most of the) parts of the object remains un-

altered by such occlusions. SPOT may be used to track the

parts of a single object (treating them as individual objects

in V ) with structural constrains between the parts. This

makes the tracker more robust to partial occlusions. In-

spired by [8], we experiment with a SPOT tracker that has a

single “global” object detector and a number of “local” part

detectors. We experiment with a star model in which the

global detector forms the root of the star (star-SPOT), and

with a model that constructs a minimum spanning tree over

the global object and the local part detectors (mst-SPOT).

Setup. Because a single bounding box is used to anno-

tate the object in the first frame of the video, we need to

determine what parts the model will use. As a latent SVM

[8] is unlikely to work well on a single training example, we

use a heuristic that assumes that relevant parts correspond to

discriminative regions inside the object bounding box. We

initialize part i at the location in which the weights of the
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Figure 1. Tracking results obtained by mst-SPOT on all nine videos used in Experiment 1 (from top to bottom: Air Show, Car Chase,

Parade, Red Flowers, Hunting, Sky Diving, Shaking, Basketball, and Skating). The colors of the rectangles indicate the different objects

that are tracked. Figure best viewed in color. Videos showing the full tracks are presented in the supplementary material.
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Table 1. Performance of five model-free trackers on multiple-object videos measured in terms of (1) average distance in pixels between

centers of the predicted and the ground-truth bounding box (Err.; lower is better) and (2) precision (Prec.; higher is better). To measure the

precision, a detection is considered correct if the overlap between the identified bounding box and the ground truth bounding box is at least

50%. The results are averaged over five runs and over all target objects in each video. The best performance on each video is boldfaced.

OAB [9] TLD [12] no-SPOT star-SPOT mst-SPOT
Err. Prec. Err. Prec. Err. Prec. Err. Prec. Err. Prec.

Air Show 9.3 0.86 31.3 0.53 8.8 0.92 6.9 0.92 10.7 0.68

Car Chase 121.8 0.57 11.2 0.76 24.8 0.78 11.2 0.82 9.2 0.89
Parade 12.7 0.82 8.8 0.71 62.3 0.29 19.4 0.35 8.6 0.69

Red Flowers 79.7 0.09 33.3 0.30 50.6 0.38 8.6 0.98 8.2 0.99
Hunting 104.9 0.25 166.4 0.08 171.7 0.07 29.2 0.72 17.9 0.87

Sky Diving 15.5 0.76 35.3 0.13 51.4 0.48 6.73 0.98 13.6 0.95

Shaking 61.9 0.47 14.3 0.47 58.3 0.47 28.7 0.38 9.8 0.97
Basketball 24.4 0.63 15.6 0.67 63.3 0.67 50.9 0.54 12.7 0.85

Skating 100.2 0.05 90.3 0.42 122.2 0.35 98.9 0.27 14.9 0.85
Avg. rank 3.8 3.4 2.9 3.3 4.3 3.1 2.4 2.9 1.4 1.7

initial global SVM w are large and positive:

Bi = argmax
B′

i⊂B

∑
(x′,y′)∈B′

i

(max(0, wx′y′))
2
, (7)

where Bi and B denote the bounding box of the part and of

the global object, respectively. We fix the number of parts

|V |−1 in advance, setting it to 2. We fix the width and

height of the part bounding boxes Bi to 40% of the width

and height of the bounding box B, and we ensure that the

selected part cannot have more than 50% overlap with the

other parts. Unlike [8], we extract the features for the part

detectors on the same scale as the features for the global

detector. In preliminary experiments, we also tried using

finer-scale HOG features to represent the parts, but this did

not lead to performance improvements. In addition, using

the same features for all detectors has computational advan-

tages because the features only need to be computed once.

The experiments are performed on a publicly available

collection of twelve videos [2]. The videos contain a wide

range of objects that are subject to sudden movements and

(out-of-plane) rotations, and have cluttered, dynamic back-

grounds. The videos have an average length of 556 frames.

Each video contains a single object to be tracked, which is

indicated by a bounding box in the first frame of the video.

(First-frame annotations for all movies are shown in [2].)

Again, we evaluate the performance of the trackers by

measuring the average distance error and the precision of

the tracker, and averaging over five runs. We compare the

performance of our tracker with that of three state-of-the-art

trackers, viz., the OAB tracker [9], the MILBoost tracker

[2], and the TLD tracker [12]. All trackers were run on a

single scale; results with multi-scale trackers are presented

in the supplemental material. We could not run the imple-

mentation of the MILBoost tracker as it is outdated (the

MILBoost tracker was not considered in Experiment 1 for

this reason), but because we use exactly the same experi-

mental setup as in [2], we adopt the results presented there.

Results. Table 2 presents the performance of all six

trackers on all twelve videos. Figure 2 shows the tracks

obtained with the MIL, OAB, TLD, and mst-SPOT track-

ers on seven of the twelve videos. The results reveal the

potential benefit of using additional part detectors when

tracking a single object: mst-SPOT is the best-performing

tracker on eight of the twelve videos in terms of average

distance between centers, and on nine of the twelve videos

in terms of precision. The performance improvements are

particularly impressive in challenging movies such as the

Tiger videos, in which parts of the object are frequently

occluded by leaves; in such situations, the SPOT trackers

benefit from the presence of part detectors that can accu-

rately detect the non-occluded part(s) of the object. The re-

sults also show that mst-SPOT generally outperforms star-

SPOT, which suggests that for object detection in still im-

ages, pictorial-structure models with a minimum spanning

tree [24] may be better than those with a star tree [8].

5. Conclusion and Future Work
In this paper, we have developed a new model-free

tracker that simultaneously tracks multiple objects by com-

bining multiple single-object trackers via constraints on the

spatial structure of the objects. Our experimental results

show that the resulting SPOT tracker substantially outper-

forms traditional trackers in settings in which multiple ob-

jects need to be tracked. Moreover, we have showed that

the SPOT tracker can also improve the tracking of single

objects by including additional detectors for object parts in

the tracker. The computational costs of our tracker only

grow linearly in the number of objects (or object parts) that

is being tracked, which facilitates real-time tracking. Of

course, the ideas presented in this paper may readily be im-
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Table 2. Performance of six model-free trackers on single-object videos measured in terms of (1) average distance in pixels (Err) between

the centers of the predicted and the ground-truth bounding box (lower is better) and (2) precision (higher is better). To measure the

precision, a detection is counted as correct if the overlap between the identified bounding box and the ground truth bounding box is at least

50%. The results are averaged over five runs. The best performance on each video is boldfaced.

OAB [9] MIL [2] TLD [12] no-SPOT star-SPOT mst-SPOT
Err. Prec. Err. Prec. Err. Prec. Err. Prec. Err. Prec. Err. Prec.

Sylvester 20.1 0.42 10.9 0.73 20.0 0.91 9.6 0.88 9.3 0.90 7.1 0.93
David 45.0 0.34 22.9 0.61 4.5 1.00 4.3 1.00 4.5 1.00 3.5 1.00

Cola Can 11.2 0.37 20.9 0.22 16.3 0.52 28.5 0.27 21.4 0.37 7.1 0.75
Occl. Face 1 17.9 0.92 27.2 0.78 16.8 0.99 5.7 1.00 5.5 1.00 4.6 1.00
Occl. Face 2 22.5 0.85 20.2 0.82 22.1 0.77 9.7 0.99 12.1 0.85 7.4 1.00

Surfer 23.7 0.61 9.2 0.76 7.9 0.84 9.8 0.46 189.2 0.26 13.4 0.43

Tiger 1 43.1 0.25 15.3 0.58 28.7 0.13 7.8 0.90 22.1 0.37 6.1 0.89

Tiger 2 21.6 0.44 17.1 0.64 37.5 0.27 25.9 0.42 26.5 0.39 7.6 0.88
Dollar 24.7 0.79 14.8 0.95 3.9 1.00 3.8 1.00 4.5 1.00 5.5 1.00

Cliff bar 33.2 0.67 11.6 0.77 12.3 0.36 36.3 0.42 67.6 0.35 12.1 0.79
Tea Box 8.6 0.94 10.2 0.86 39.0 0.18 15.8 0.74 28.6 0.43 41.9 0.40

Girl 13.5 0.97 32.0 0.57 24.7 0.78 14.7 0.97 10.5 1.00 10.4 1.00
Avg. rank 4.3 3.9 3.7 4.1 4.0 3.8 3.2 2.8 3.6 3.1 2.0 1.8

plemented in other model-free trackers that are based on

tracking-by-detection, such as the TLD tracker. It is likely

that including structural constraints in such trackers will im-

prove their performance in tracking of multiple objects, too.

In future work, we aim to explore the use of different

structural constraints between the tracked objects; for in-

stance, for tracking certain deformable objects it may be

better to use a structural model based on PCA (as is done

in, e.g., constrained local models [6]) or on GPLVMs [14].

We also plan to investigate whether it is possible to identify

the relevant parts of a deformable object in a more princi-

pled way during (model-free) tracking by developing online

learning algorithms for latent SVMs, and we intend to in-

vestigate whether online structured SVMs can be used to

adapt deformable template models during tracking.
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