
Sparse Output Coding for Large-Scale Visual Recognition

Bin Zhao Eric P. Xing
School of Computer Science, Carnegie Mellon University

{binzhao,epxing}@cs.cmu.edu

Abstract

Many vision tasks require a multi-class classifier to dis-
criminate multiple categories, on the order of hundreds or
thousands. In this paper, we propose sparse output coding,
a principled way for large-scale multi-class classification,
by turning high-cardinality multi-class categorization into
a bit-by-bit decoding problem. Specifically, sparse output
coding is composed of two steps: efficient coding matrix
learning with scalability to thousands of classes, and prob-
abilistic decoding. Empirical results on object recognition
and scene classification demonstrate the effectiveness of our
proposed approach.

1. Introduction
A recent trend in visual recognition is the rapid increase

of concept space. For example, the SUN [26] database for

scene recognition has 899 categories, and ImageNet [10]

spans a total number of 21841 image classes. Moreover,

the number of categories can even grow further in the fu-

ture. With such massive number of classes, it is no sur-

prise that classical algorithms such as one-vs-rest, one-vs-

one, or kNN, often favored for their simplicity [22, 3], will

be brought to their knees not only because of the training

time and storage cost they incur [10], but also because of

the conceptual awkwardness of such algorithms in massive

multi-class paradigms. For example, facing, say, one mil-

lion classes, should we go ahead and build 1 million clas-

sifiers each trained on 1-vs-999999 classes? Just imag-

ine the resultant data imbalance issue at its extreme, let

alone the terrible irregularities of the decision boundaries

of such classifiers. Clearly, large-scale visual recognition

requires new, out-of-box rethinking of classical approaches

and more effective yet simple alternatives.

Our goal in this work is to design a multi-class classifi-

cation method that is both accurate and fast when facing a

large number of categories. Specifically, we propose sparse
output coding (SpOC), which turns the original large-scale

K-class classification into an L-bit code construction prob-

lem, where L = O(log(K)) and each bit can be constructed

in parallel through a binary off-the-shelf classifier; followed

by a decoding scheme to extract the class label.

1.1. Previous Work

The following two lines of research are related to our work.

Large-scale visual recognition: Very recently, we

have seen successful attempts in large-scale visual recog-

nition [19, 18, 2, 11]. Both [19] and [18] focus on de-

signing high-dimensional feature representation for images,

where classifier is trained using conventional one-vs-rest

approach. SpOC serves as an important complement to this

line of research, in the sense that we could very easily com-

bine our classification method with feature representations

learned in [19, 18] to yield even better results. On the other

hand, [2, 11] learn tree classifiers, where multiple classi-

fiers are organized in a tree and a test image traverses the

tree from root to leaf to obtain its class label. However, tree

structured classifiers face the well-known error propagation

problem, where errors made close to the root node are prop-

agated through the tree and yield misclassification. On the

other hand, SpOC is robust to errors in local classifiers, as a

result of the error correcting property of output coding.

Error Correcting Output Coding: For a K class prob-

lem, error correcting output coding (ECOC) [1] consists

of two stages: coding and decoding. An output code B is

a matrix of size K × L over {−1, 0,+1} where each row

of B corresponds to a class y ∈ Y = {1, . . . ,K}. Each

column βl of B defines a partition of Y into three disjoint

sets: positive partition (+1 in βl), negative partition (−1
in βl), and ignored classes (0 in βl). Binary learning algo-

rithms are used to construct bit predictor hl using training

data Zl = {(x1, By1,l), . . . , (xm, Bym,l)} with Byi,l �= 0,

for l = 1, . . . , L (throughout the rest of this paper, we

use “bit predictor” to denote the binary classifier associated

with a column of the coding matrix). Results in [1] sug-

gest that learning a coding matrix in a problem-dependent

way is better than using a pre-defined one. However, strong

error-correcting ability alone does not guarantee good clas-

sification [8], since the performance of output coding is also

highly dependent on the accuracy of the individual bit pre-

dictors. Consequently, several approaches [23, 8, 13] op-

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.430

3348

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.430

3348

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.430

3350

timizing coding matrix and bit predictors simultaneously

have been proposed. However, the coupling of learning

coding matrix and bit predictors in a unified optimization

framework is both a blessing and a curse. On the one hand

it could directly assess the accuracy of each bit predictor

and hence pick the coding matrix that avoids difficult bit

prediction problems; on the other hand, simultaneous opti-

mization often results in expensive computation, hindering

these approaches from being applied to large-scale multi-

class problems. Therefore, SpOC learns coding matrix and

bit predictors separately, but still balances error-correcting

ability and bit prediction accuracy in learning the coding

matrix. Therefore, SpOC is computationally very efficient

compared with [23, 8, 13], without sacrificing accuracy.

Given a test instance x, the decoding procedure finds

the class y whose codeword in B is “closest” to h(x) =
(h1(x), . . . , hL(x)). For binary output coding scenario,

where B ∈ {−1,+1}K×L, either Hamming distance or Eu-

clidean distance could be adopted to measure distance be-

tween two codewords. However, in the ternary case, where

B ∈ {−1, 0,+1}K×L, the special 0 symbol indicating ig-

nored classes could raise problems. Specifically, previous

attempts in decoding ternary codes [12] either (1) treat “0”

bits the same way as non-zero bits, or (2) ignore those “0”

bits entirely and only use non-zero bits for decoding. How-

ever, neither of the above approaches would prove suffi-

cient. Specifically, treating “0” bits the same way as non-

zero ones would introduce bias in decoding, since the dis-

tance increases with the number of positions that contain the

zero symbol. On the other hand, ignoring “0” bits entirely

would discard great amount of information. Probabilistic
decoding utilizes zero bits by propagating labels from non-

zero bits to zero ones subject to smoothness constraints, and

proves effective especially on large scale problems.

1.2. Summary of Contributions

To conclude the introduction, we summarize our main

contributions as follows. (1) We propose an approach for

large-scale visual recognition, with scalability to hundred or

thousand class problems. SpOC is robust to errors in bit pre-

dictors, simple to parallel, and its computational time scales

logarithmically with the number of classes. (2) We pro-

pose a new optimization technique: dual proximal gradient
method, for efficiently solving l1 regularized optimization

with complicated constraints. (3) We propose probabilistic
decoding to effectively utilize semantic similarity between

visual categories for accurate decoding.

2. Coding
For the sake of scalability to large-scale problems, SpOC

decouples the learning processes of coding matrix and bit

predictors. However, our proposed approach still balances

the error-correcting ability of the coding matrix and classifi-

cation accuracy for each resulting bit predictor, by utilizing

training data and structure information among classes.

2.1. Formulation

As its most attractive advantage, the coding matrix in

output coding is usually chosen for strong error-correcting

ability. Besides, since output coding is essentially aggregat-

ing discriminative information residing in each bit, learning

accurate bit predictors is also crucial for its success. Since

the high computational cost associated with methods opti-

mizing coding matrix and bit predictors simultaneously [13]

renders them unfavorable in large-scale problems, we pro-

pose to use training data and class taxonomy, to provide

a measure of separability for each binary partition. Specifi-

cally, if some classes are closely related but are given differ-

ent codes in the l-th bit, the bit predictor hl may not be eas-

ily learnable. However, a binary partition is more likely to

be well solved if the intra-partition similarity is large while

the inter-partition similarity is small. Finally, for large-

scale multi-class problems, it is crucial to introduce ignored

classes, i.e., 0 in the coding matrix. Otherwise, every sin-

gle class will participate in the training of each bit predictor.

As an illustrating example, consider the ImageNet data set

with 20K+ classes. With each of the 20K classes partici-

pating in learning a bit predictor, we will likely be facing a

binary partition problem where both the positive and nega-

tive partitions are populated with data points coming from

thousands of different classes. Clearly, learning bit predic-

tor for such binary partition will be extremely difficult, due

to the huge intra-partition dissimilarity. Therefore, sparse
output coding learns optimal coding matrix as follows,

max
B

Fb(B)−λrFr(B)−λc

L∑
l=1

‖βl‖22 (1)

s.t. B∈{−1, 0,+1}K×L (2)

K∑
k=1

I{Bkl=1}≥1,

K∑
k=1

I{Bkl=−1}≥1, ∀l=1, . . . , L (3)

L∑
l=1

I{Bkl �=0}≥1, ∀k=1, . . . ,K (4)

where I is the indicator function. Fb(B) measures the sep-

arability of each binary partition problem associated with

columns of B, and reflects the expected accuracy of bit pre-

dictors. Moreover, Fr(B) measures codeword correlation,

and minimizing Fr(B) ensures the strong error-correcting

ability of the resulting coding matrix. The l2 regularization

on each column βl of B controls the complexity of each bit

prediction problem. λr and λc are regularization parame-

ters controlling the relative importance of the 3 competing

objectives. Constraints in (2) ensure that each column of

the coding matrix defines a binary partition problem, with

the freedom of introducing ignored classes. Constraints in

(3) ensure that each bit prediction problem has non-empty

positive partition and non-empty negative partition. Finally,

334933493351

constraints in (4) ensure that each class in the original K-

way classification appears in at least one bit prediction prob-

lem, so that we could effectively decode this class.

Before presenting details of each part in problem (1), we

would like to make clear that the goal and contribution of

this work is effective multi-class categorization with large

number of classes, where complex methods would fail, and

simplicity prevails. As a result, motivation for design of

each piece in (1) is balance between effectiveness and effi-

ciency. Although there might be more sophisticated formu-

lations for pieces in (1), they will very likely increase com-

putational cost, ultimately rendering the method incapable

of handling large-scale multi-class problems.

2.1.1 Fb(B): Separability of Binary Problem

One key issue in designing the coding matrix is to ensure

that the resulting bit prediction problems could be effec-

tively solved. The key motivation of our mathematical for-

mulation is to compute the following two measures using

semantic relatedness matrix S (for example, rose is more

similar to tulip than truck) for each binary partition prob-

lem: intra-partition similarity, and inter-partition similarity.

Specifically, in each binary partition problem, both positive

partition and negative partition are composed of data points

from multiple classes in the original problem. To encourage

better separation, those classes composing the positive par-

tition should be similar to each other. The similar argument

goes for those classes composing the negative partition, but

they should be different from the former set which com-

poses the positive partition. Specifically, for the l-th binary

partition defined by βl, its separability is measured as

Fb(βl) =

K∑
k=1

K∑
k′=1

(
I{BklBk′l>0}Skk′−I{BklBk′l<0}Skk′

)

=

K∑
k=1

K∑
k′=1

BklBk′lSkk′ =e�K
[
βlβ

�
l � S

]
eK (5)

where eK ∈ R
K is the all-one vector and� is element-wise

product. Fb(βl) defined above should subtract
∑

k Skk.

However, since this quantity is constant and will not affect

optimization of B, we omit this step. Finally,

Fb(B)=
L∑

l=1

Fb(βl)=
L∑

l=1

e�K
[
βlβ

�
l �S

]
eK

=e�K

[
L∑

l=1

βlβ
�
l �S

]
eK =e�K

[
BB��S

]
eK = tr(BB�S) (6)

where BB� =
∑

l βlβ
�
l and e�(A�B)e = tr(AB).

Semantic Relatedness Matrix: S measures similarity be-

tween classes using training data and class taxonomy. Let

Xi = {X(i)
1 , . . . , X

(i)
|Xi|} and Xj = {X(j)

1 , . . . , X
(j)
|Xj |} be

two classes from the multi-class categorization problem.

Several approaches have been proposed to measure class

similarity / distance, such as Hausdorff distance, match

kernel [14, 20], divergence between probability distribu-

tions [21]. Here we adopt the sum match kernel [14],

and define data similarity SD between classes i and j as

SD
ij = 1

|Xi|
1

|Xj |
∑|Xi|

p=1

∑|Xj |
q=1 KD(X

(i)
p , X

(j)
q), where KD

is a Mercer kernel. Moreover, classes in large-scale multi-

class categorization are rarely organized in a flat fashion,

but rather with a taxonomical structure [10, 6], such as

a tree. Besides, algorithms for learning structure among

classes have also been studied [2], although this is be-

yond the scope of this work. Following [5] we define

structural affinity Aij between class i and class j as the

number of nodes shared by their two parent branches, di-

vided by the length of the longest of the two branches

Aij = intersect(Pi, Pj)/max(length(Pi), length(Pj)),
where Pi is the path from root node to node i and

intersect(Pi, Pj) counts nodes shared by two paths Pi and

Pj . We then construct structural similarity matrix SS =
exp(−κ(E − A)), where κ is a constant controlling the

decay factor, and E ∈ R
K×K is all-one matrix. Fi-

nally, semantic relatedness matrix S is the weighted sum

S = αSD +(1−α)SS with α ∈ [0, 1] being the weight. In

problems without class taxonomy, we simply set α = 1.

2.1.2 Fr(B): Codeword Correlation

Given an example x, the L-dimensional bit predictor

h(x) = [h1(x), . . . , hL(x)] is computed. We then predict

its label y based on which row in B is “closest” to h(x).
To increase tolerance of errors occurred in bit predictions,

a crucial design objective of the coding matrix is to ensure

that the rows in B are separated as far from each other as

possible. Hence, we propose to maximize the distance be-

tween rows in B. Equivalently, we could minimize the in-

ner products of the corresponding vectors. Thus, codeword

correlation of B could be computed as following:

Fr(B) =

K∑
k=1

K∑
k′=1

r�k rk′ = e�K(BB�)eK (7)

where r�1 , . . . , r
�
K are row vectors of coding matrix B.

2.1.3 Relaxing the Integer Constraints

In problem (1), the integer constraint (2) on B makes the

problem NP-hard to solve. To enable efficient solution, we

follow [8] and relax it to B ∈ [−1,+1]K×L. To introduce

ignored classes in bit predictors, we further regularize l1
norm of B. Putting everything together, we get

min
B
−tr(BB�S)+λre

�
KBB�eK+λc

L∑
l=1

‖βl‖22+λ1‖B‖1 (8)

s.t. −1≤Bkl≤1, ∀k=1, . . . ,K; ∀l=1, . . . , L (9)

K∑
k=1

(|Bkl|+Bkl)≥2,
K∑

k=1

(|Bkl|−Bkl)≥2,∀l=1, . . . , L (10)

L∑
l=1

|Bkl|≥1, ∀k=1, . . . ,K (11)

335033503352

where ‖B‖1 =
∑

k,l |Bkl|, and we equivalently reformulate

constraints (3) and (4) to (10) and (11).

2.2. Optimization

The difficulty of solving problem (8) lies in two facts:

non-smoothness of l1 regularization on B, and non-

convexity of objective and constraints. However, prob-

lem (8) has the special structure that the objective is the

difference of two convex functions. Specifically, both

f(B) = λre
�
KBB�eK+ vλc

∑L
l=1‖βl‖22+ λ1‖B‖1 and

g(B) = tr
(
BB�S

)
are convex. Constraints (10) and (11)

could also be formulated similarly. Therefore, we propose a

concave-convex procedure based algorithm, where the non-

convexity is handled by constrained concave-convex proce-
dure (CCCP) [24, 7], and the non-smoothness is handled

using dual proximal gradient method.

2.2.1 Constrained Concave-Convex Procedure

Given an initial point B0, the CCCP computes Bt+1 from

Bt by replacing g(B) with its first-order Taylor expansion

at Bt, i.e., g(Bt)+ <∇g(Bt),B−Bt >. For non-smooth

functions, it has been shown that the gradient should then be

replaced by sub-gradient [7, 28]. Hence, the |Bkl| term ap-

pearing in constraints could be replaced with its first-order

Taylor expansion at Bt, i.e., sign(Bt
kl)Bkl. The resulting

optimization problem is as follows,

min
B

−2tr(SBtB�)+λre
�
KBB�eK+λc

L∑
l=1

‖βl‖22+λ1‖B‖1 (12)

s.t. −1 ≤ Bkl ≤ 1, ∀k = 1, . . . ,K;∀l = 1, . . . , L (13)

2+
K∑

k=1

[−1−sign(Bt
kl)]Bkl≤0, ∀l = 1, . . . , L (14)

2+
K∑

k=1

[1−sign(Bt
kl)]Bkl≤0, ∀l = 1, . . . , L (15)

1−
L∑

l=1

sign(Bt
kl)Bkl ≤ 0, ∀k = 1, . . . ,K (16)

Algorithm 1 Learning output coding matrix

Initialize B0

repeat
Find Bt as the solution to problem (12);

Set t = t+ 1 and get the new problem (12)

until stopping criterion satisfied

2.2.2 Dual Proximal Gradient Method

Denote the objective function in problem (12) as F (B).
Although F (B) is convex, it is a non-smooth function of

B due to the l1 regularization imposed on B, making the

problem difficult to solve. Traditional algorithms for non-

smooth convex optimization include smoothing techniques

where the non-smooth term is approximated by a smooth

function, and sub-gradient method. However, smoothing

technique will lose the sparsity inducing property of the l1
regularization, and sub-gradient method is known for slow

convergence and difficulty in picking step size. On the other

hand, proximal gradient method [15] has been the major

workhorse for solving un-constrained non-smooth convex

optimization problems, due to its fast convergence and low

complexity. Unfortunately, the constraints in (12) renders

the problem unsuitable for proximal gradient methods, as

we cannot easily project the solution to constraints in prob-

lem (12). Therefore, to solve problem (12), we first get its

dual, then apply proximal gradient method on the obtained

dual, as the constraints in the dual problem are much easier

for projection. Specifically, define β = vec(B) ∈ R
KL

as the vector obtained by stacking columns of B. Problem

(12) could be equivalently formulated as

min
β

Fs(β) + λ1‖β‖1, s.t. Aβ ≤ b (17)

with Fs(β) = −2tr(SBtB�)+λre
�
KBB�eK+λc

∑L
l=1‖βl‖22,

A ∈ R
(2KL+2L+K)×KL and b ∈ R

2KL+2L+K are ob-

tained by organizing the constraints in problem (12) accord-

ing to β. Due to the difficulty of projection onto constraints

Aβ ≤ b, traditional proximal gradient method cannot be

applied here. To solve this problem, we first split Fs(β) and

‖β‖1 into two parts by introducing an additional variable z

min
β,z

Fs(β) + λ1‖z‖1, s.t. Aβ ≤ b, z− β = 0 (18)

The Lagrange for the above problem is:

g(γ,μ)= inf
β,z

{
Fs(β)+λ1‖z‖1+γ�(Aβ−b)+μ�(z−β)

}
= inf

β

{
Fs(β)+(A�γ−μ)�β

}
+inf

z

{
λ1‖z‖1+μ�z

}
−γ�b

= −sup
β

{
−Fs(β)−(A�γ−μ)�β

}
+inf

z

{
λ1‖z‖1+μ�z

}
−γ�b

= −F ∗s(−(A�γ−μ))+inf
z

{
λ1‖z‖1+μ�z

}
−γ�b (19)

where F ∗
s is the conjugate function of Fs. Moreover, since

the dual norm of ‖ · ‖1 is ‖ · ‖∞
inf
z

(
λ1‖z‖1+ μ�z

)
=

{
0 ‖μ‖∞ ≤ λ1

−∞ otherwise
(20)

Therefore, we get the following dual problem for (17):

min
γ≥0,‖μ‖∞≤λ1

h(γ,μ) = F ∗s (−(A�γ−μ))+γ�b (21)

Clearly, the constraints in problem (21) are much easier to

project than those in (17). In order to utilize projected gra-

dient method to solve problem (21), we need to compute the

gradient of the objective function h(γ,μ) w.r.t. γ and μ:

∂h(γ,μ)

∂γ
= −A∇F ∗s (−(A�γ−μ)) + b (22)

∂h(γ,μ)

∂μ
= ∇F ∗s (−(A�γ−μ)) (23)

where∇F ∗
s(−(A�γ−μ))=argminβ

{
Fs(β)+(A

�γ−μ)�β
}

.

Moreover, we could reformulate Fs(β) as follows:

Fs(β)=
L∑

l=1

{
−2(SBt)�l βl+λrβ

�
l eKe�Kβl+λcβ

�
l βl

}
(24)

335133513353

where (SBt)l denotes the l-th column of matrix SBt.

Therefore, β̂ = ∇F ∗
s (−(A�γ−μ)) could be calculated as

β̂ = [β̂
�
1 . . . β̂

�
L]

�, with

β̂l =
1

2
(λreKe�K + λcI)

−1[2(SBt)l − (A�γ−μ)l] (25)

where (A�γ−μ)l is the l-th column of the matrix formulated

by resizing A�γ−μ into K × L matrix. Finally, the pro-

jected gradient algorithm for solving problem (12) is shown

in Algorithm 2, where P represents projection onto the cor-

responding constraints.

Algorithm 2 Dual proximal gradient for problem (12)

Choose step size t > 0, choose initial γ and μ
repeat

Compute β̂ using Eq. (25)

γ = Pγ≥0(γ − t(b−Aβ̂)); μ = P‖μ‖∞≤λ1
(μ− tβ̂)

until convergence

3. Probabilistic Decoding

For large-scale multi-class categorization, a sparse out-

put coding matrix is necessary to ensure the learnability of

each bit predictor. However, the zero bits in coding ma-

trix also bring difficulty in decoding. For example, con-

sider a 5-class problem in Figure 1. Given a test image

from class Husky, if we treat zero bits the same way as non-

zero ones, Hamming decoding would prefer Shepherd over

Husky. However, Husky is only worse than Shepherd as its

codeword has more zero. This effect occurs because the

decoding value increases with the number of positions that

contain the zero symbol and hence introduces bias. On the

other hand, ignoring zero bits entirely would discard pre-

cious information for decoding. This is especially important

when K is large, where we expect a very sparse coding ma-

trix. For example, in Figure 1, classes Husky and Tiger have

only two non-zero bits in their codewords. Since we cannot

always have perfect bit predictors, classification errors on

bit 1 and bit 4 would severely impair the overall accuracy.

Fortunately, the semantic class similarity S computed us-

ing training data and class taxonomy, provides venue for

effectively propagating information from non-zero bits to

zero ones. For the example in Figure 1, class Husky is more

similar to (Shepherd, Wolf) than (Fox, Tiger). The second bit

predictor in Figure 1 solves a binary partition of (Shepherd,
Wolf) against Fox. Even though class Husky is ignored in

training for this bit, the binary partition on images from this

class will have a higher probability of being +1, due to the

fact that the two positive classes in this binary problem are

closely related to class Husky. Therefore, those classes with

non-zero bits in the coding matrix, should effectively prop-

agate their label to those initially ignored classes. In this

section, we propose probabilistic decoding, to effectively

Figure 1. Motivation for probabilistic decoding: (Left). one pos-

sible coding matrix for 5-class categorization, with red = +1,

black = −1, and green = 0; (Right). one test image from class

Husky, with its codeword shown in the bottom and Hamming dis-

tance with codewords for the 5 classes shown to the left. For the

second bit (highlighted in dash box), although the first node (class

Husky) is ignored during learning the bit predictor, it has a prefer-

ence of being colored black, rather than red. Best viewed in color.

utilize semantic class similarity for better decoding. Specif-

ically, we treat each bit prediction (without loss of gener-

ality, say, the l-th bit) as a label propagation [29] problem,

where the labeled data corresponds to those classes whose

codeword’s l-th bit is non-zero, and unlabeled data corre-

sponds to those whose l-th bit is zero. The goal of label

propagation is to define a prior distribution indicating the

probability of one class being classified as positive in the l-
th binary partition. Combining this prior with the available

training data, we formulate the decoding problem in ternary

ECOC as maximum a posteriori estimation.

3.1. Formulation

Given output coding matrix B ∈ {−1, 0,+1}K×L, our

decoding method estimates conditional probability of each

class k given input x and L bit predictors {h1, . . . , hL}.
Without loss of generality, we assume the bit predictors con-

structed in the coding stage are linear classifiers, each pa-

rameterized by a vector w as hl(x) = sign(w�
l x). Define

(c1, . . . , cL) ∈ {−1,+1}L as a random vector of binary

values, representing one possible codeword for instance x.

The decoding problem is then to find the class k, which

maximizes the following conditional probability:

P(y=k|{wl},x,μ)=
∑
{cl}

P(y=k|{wl},x,μ, {cl})·P({cl}|{wl},x,μ)

=
∑
{cl}

P(y=k|μ, {cl})
∏
l

P(cl|wl,x)

∝
∑
{cl}

∏
l

P(cl|y = k, μkl)
∏
l

P(cl|wl,x)

=
∑
{cl}

∏
l

μ
cl
kl(1− μkl)

1−cl
∏
l

P(cl|wl,x)

=
∏
l

{μklP(cl = 1|wl,x) + (1− μkl)(1− P(cl = 1|wl,x))} (26)

where {cl} = {c1, . . . , cL}, {wl} = {w1, . . . ,wL}, and
μkl∈ [0, 1] is the parameter in Bernoulli distribution P (cl =
1|y = k) = μkl. Moreover, given the learned bit predic-

tors, P (cl = 1|wl,x) could be computed using a logistic

link function as P (cl = 1|wl,x) = 1/(1 + exp(−w�
l x)).

Therefore, we need to learn the Bernoulli parameters {μkl},

335233523354

which measures the probability of the l-th bit being +1
given the true class as y = k. Specifically, for the l-th
column of the coding matrix, those classes corresponding to

+1 in the l-th bit, i.e., Bkl = 1, will have μkl = 1, and simi-

larly those classes corresponding to−1, i.e., Bkl = −1, will

have μkl = 0. However, originally ignored classes (those

corresponding to 0 in the coding matrix) will also be likely

to have a preference on the value of the l-th bit. For the ex-

ample in Figure 1, the second bit predictor separates (Shep-
herd, Wolf) from Fox. Clearly, P (cl = 1|Shepherd) =
P (cl = 1|Wolf) = 0 and P (cl = 1|Fox) = 1. Since

class Husky is not directly involved in this binary classifi-

cation problem, a non-informative prior would put P (cl =
1|Husky) = 0.5. However, if the true class for an instance

x is Husky, this bit clearly has a much higher probability of

being−1 than +1, due to the fact that Husky is much closer

to Shepherd and Wolf semantically, than Fox. Therefore,

we should have P (cl = 1|Husky) < 0.5, and in such way

those classes with non-zero values in the l-th bit effectively

propagate their labels to those initially ignored classes.

3.1.1 Prior Distribution via Label Propagation

Since each column βl in coding matrix has its own labeling

(different composition of positive classes, negative classes,

and ignored classes), label propagation for each column is

independent of others. For l-th column βl, consider a con-

nected graph G = (V, E) with K nodes V = L ∪ U cor-

responding to the K classes, where L corresponds to the

labeled classes, and U corresponds to ignored classes. Our

task is then to assign probabilities of being labeled as pos-

itive to nodes in U . Define μl = (μ1l, . . . , μKl) as labels

on nodes V , where μkl = 1 for those classes labeled as +1
and μkl = 0 for those classes labeled as −1 in βl. Con-

sequently, for any node k ∈ V , μkl = P (cl = 1|y = k).
Intuitively, we want unlabeled nodes that are nearby in the

graph to have similar labels, and this motivates the choice

of the following quadratic energy function [29]: E(μl) =
1
2

∑
i,j Sij(μil − μjl)

2, where S is the semantic similar-

ity matrix. To assign probability distribution on μl, we

form Gaussian field pC(μl) = 1
ZC

exp(−CE(μl)) [29],

where C is inverse temperature parameter, and ZC =∫
μl|∀k∈L:μkl=

1
2 (Bkl+1)

exp(−CE(μl))dμl is a normaliz-

ing constant. Define diagonal degree matrix D as Dii =∑
j Sij and graph Laplacian Δ = D − S, the Gaussian

field defined on μl could be equivalently formulated as

pC(μl) =
1

ZC
exp(−Cμ�

l Δμl), with μkl clamped to 1 on

positive classes and 0 on negative classes.

3.1.2 Parameter Learning

Given L bit predictors, and training data Z = (X,Y) =
{(x1, y1), . . . , (xm, ym)}, we have that

logP(Y |{wl},X,μ)=
m∑
i=1

L∑
l=1

log
{
μyilPli+(1−μyil)(1−Pli)

}
(27)

where Pli = P(cl = 1|wl,xi). Combining data likelihood

with prior distribution, we get the following optimization

problem for learning parameters μ using MAP estimation

min
μ

−
m∑
i=1

L∑
l=1

log
{
μyilPli+(1−μyil)(1−Pli)

}
+C

L∑
l=1

μ�l Δμl(28)

s.t. 0 ≤ μkl ≤ 1, k = 1, . . . ,K, l = 1, . . . , L (29)

μkl = 1, if Bkl = +1; μkl = 0, if Bkl = −1 (30)

where μ = [μ1, . . . ,μL]. Clearly, μl in the above opti-

mization problem is independent of each other, and could

therefore be optimized separately. We use projected gradi-

ent descent to solve the above optimization problem.

3.2. Decoding

Given the learned Bernoulli parameters μ, the infer-

ence problem targets to find the label k∗ that maxi-

mizes the conditional probability: k∗ = argmaxkP (y =
k|w1, . . . ,wL,x,μ). Clearly, given μ, decoding takes lin-

ear time with the number of columns in coding matrix,

which could be as small as L = O(logK). Hence, our pro-

posed probabilistic decoding is very efficient, and promis-

ing for large-scale multi-class categorization.

4. Experiments
In this section, we test the performance of sparse output

coding on two data sets: ImageNet [10] for object recogni-

tion, and SUN database [26] for scene recognition.

Object recognition on ImageNet. We use two subtrees in

ImageNet, with the root node being “flower” and “food”,

respectively. The flower image collection contains a total of

0.34 million images covering 462 categories, and the food
data set contains a total of 0.93 million images covering

1308 categories. For both data sets, we randomly pick 50%
of images from each class as training data, and test on the

remaining 50% images.

Scene recognition on SUN database. The SUN database is

by far the largest scene recognition data set, with 899 scene

categories. We use 397 well-sampled categories to run the

experiment [26]. For each class, 50 images are used for

training and the other 50 for test.

Feature representations. For each data set, we start with

computing dense SIFT descriptors for each image, and then

run k-means clustering on a random subset of 1 million

SIFT descriptors to form a visual vocabulary of 8192 visual

words. Using the learned vocabulary, we employ Locality-
constrained Linear Coding (LLC) [25] for feature coding.

Finally, a single feature vector is computed for each image

using max pooling on a spatial pyramid [17].

4.1. Experiment Design and Evaluation

We compare SpOC against one-vs-rest (OVR), one of

the most widely applied frameworks for large-scale visual

recognition. Since class taxonomy exists for all data sets,

335333533355

Data set #Class #Train #Test #Feature

Flower 462 169691 169691 170006

Food 1308 467374 467374 170006

SUN 397 19850 19850 170006

Table 1. Data sets details.

we also test two hierarchical classifiers. The first hierar-

chical classifier (HieSVM-1) follows a top-down approach,

and trains a multi-class SVM at each node in the class tax-

onomy [16]. The second one (HieSVM-2) adopts the strat-

egy in [9]. Moreover, we also compare with several output

coding based methods. Specifically, we compare with the

random dense code output coding (RDOC) proposed in [1],

where each element in the coding matrix is chosen at ran-

dom from {−1,+1}, with probability 1/2 for −1 and +1
each. Also, we provide results for the random sparse code
output coding (RSOC) in [1], where each element in the

coding matrix is chosen at random from {−1, 0,+1}, with

probability 1/2 for 0, and probability 1/4 for −1 and +1
each. Furthermore, we also report results of the algorithm

in [27], which builds dense output codes using spectral de-

composition (SpecOC) of the graph Laplacian constructed

using the class taxonomy. Finally, to test the impact of prob-
abilistic decoding on SpOC, we report results of SpOC us-

ing a simple Hamming distance based decoding strategy,

denoted as SpOC-H.

For all algorithms, we train linear SVM using stochastic
gradient descent [4]. For output coding based methods, we

set code length L = 200 for flower and SUN, and L = 300
for food. For SpOC and SpOC-H, we simply set λr = 1,

λc = λ1 = K and κ = 5 for all data sets. Data sim-

ilarity matrix SD is pre-computed with linear kernel and

α = 0.5. For RDOC and RSOC, 1000 random coding ma-

trices are generated for each scenario and the one with the

largest minimum pair-wise Hamming distances between all

pairs of codewords and does not have any identical columns

is chosen. To decode the label for OVR using learned binary

classifiers, we pick the class with the largest decision value.

For RDOC, RSOC, SpecOC and SpOC-H, we pick the class

whose codeword has minimum Hamming distance with the

codeword of test data point. Specifically, for decoding in

RSOC and SpOC-H, we test both strategies of treating zero

bits the same way as non-zero ones and ignoring zero bits

entirely, and report the best result of these two methods.

For every data point, each algorithm will produce a list

of 10 classes in the descending order of confidence (except

HieSVM-1, which only provides the most confident class

label), based on which the top-n accuracy is computed, n =

L = 100 L = 200 L = 300 L = 400

Top 1 (%) 25.36 30.48 31.39 31.34

Top 5 (%) 58.77 65.72 66.02 66.16

Top 10 (%) 69.91 76.38 78.15 78.46

Table 3. Classification accuracy of SpOC vs. code length.

1, 5, 10 in our case. Specifically, accuracy equals 1 if the

true class is within the n most confident predictions, and 0
otherwise. The overall accuracy for each algorithm is the

average over the entire test data set.

4.2. Results

Classification results for various algorithms are shown in

Table 2, with the following observations: (1) SpOC system-

atically outperforms OVR. More interestingly, SpOC con-

sists of much less binary classifiers than OVR. This shows

that for large-scale visual recognition problems, output cod-

ing with a carefully designed coding matrix could outper-

form OVR, while maintaining cheaper computational cost,

due to the error-correcting property introduced in the cod-

ing matrix. (2) Both SpOC and OVR beat RDOC and RSOC,

revealing the importance of enforcing learnability of each

bit predictor, since randomly generated coding matrix could

very likely generate difficult binary separation problems.

(3) SpOC performs better than SpecOC, which employs

a dense coding matrix. The margin between SpOC and

SpecOC is even more severe on food, revealing the impor-

tance of having ignored classes in each bit predictor. (4)

SpOC and OVR both outperform HieSVM-1, where errors

made in the higher level of the class hierarchy get propa-

gated into the lower levels, with no mechanism to correct

those early errors. On the other hand, the error-correcting

property in SpOC introduces robustness to errors made in

bit predictors. (5) SpOC-H generates inferior results than

SpOC across the board, indicating the necessity of proba-
bilistic decoding. Finally, HieSVM-2 runs into out of mem-

ory problems on all three data sets.

Effect of code length: To investigate the effect of code

length on classification accuracy of SpOC, we test SpOC
on the flower data set with various L. According to Table 3,

classification accuracy of SpOC improves as the code length

increases, as stronger error-correcting ability is accompa-

nied with longer codes. However, the fact that L = 200 per-

forms almost as well as L = 400 demonstrates that SpOC
usually requires much less bit predictors compared to the

number of classes in the multi-class categorization problem.

Time complexity: We compare the time complexity of

SpOC with OVR in Table 4. Specifically, computational

time for SpOC consists three parts: (1) time for learning

output coding matrix, (2) time for training bit predictors,

and (3) time for probabilistic decoding. We implement

SpOC using MATLAB 7.12 on a 3.40 GHZ Intel i7 PC with

16.0 GB main memory. Bit predictors or binary classifiers

are trained in parallel on a cluster composed of 200 nodes.

Time for training bit predictors is the summation of time

spent on each node. According to Table 4, time for learning

coding matrix and probabilistic decoding is almost negligi-

ble compared to the time spent on training bit predictors.

Moreover, the total CPU time spent for training bit predic-

335433543356

Flower (%) Food (%) SUN (%)

Algorithm Top 1 Top 5 Top 10 Top 1 Top 5 Top 10 Top 1 Top 5 Top 10

OVR 27.23 60.05 72.57 24.98 53.41 65.77 16.62 30.28 38.17

HieSVM-1 23.81 – – 17.24 – – 12.40 – –

RDOC 13.09 45.22 59.13 11.07 32.53 43.14 11.76 24.91 29.55

RSOC 12.88 46.31 60.96 13.48 33.12 42.55 11.89 24.88 28.17

SpecOC 21.37 52.25 64.09 18.06 41.88 54.30 14.09 27.37 35.62

SpOC-H 27.14 61.26 74.33 27.61 55.38 67.32 16.93 29.46 35.83

SpOC 30.48 65.72 76.38 29.03 56.28 67.84 18.31 31.73 39.02

Table 2. Classification accuracy (%) comparison.

Flower Food SUN

OVR 1.68E8 2.63E8 1.71E7
SpOC 189.4|3.25E7 489.4|5.14E7 182.1|3.73E6

Table 4. Time complexity comparison. For SpOC, the time (sec-

onds) before | is for learning coding matrix and decoding, and the

time after | is for learning bit predictors. (1E6 = 1× 106)

tors in SpOC is systematically shorter than OVR, revealing

the advantage of SpOC on large-scale problems.

5. Conclusions

Sparse output coding provides an initial foray into large-

scale visual recognition, by turning high-cardinality multi-

class classification into a bit-by-bit decoding problem. We

also propose probabilistic decoding to decode the optimal

class label. Effectiveness of SpOC is demonstrated on ob-

ject recognition and scene classification, with hundreds or

thousands of classes. The fact that SpOC takes less bit pre-

dictors than OVR while achieving better accuracy, renders it

especially promising for large-scale visual recognition.

Acknowledgements

This research is supported by Google, NSF IIS-

0713379, and NSF DBI-0640543, ONR N000140910758

and AFOSR FA9550010247.

References
[1] E. Allwein, R. Schapire, and Y. Singer. Reducing multiclass to bi-

nary: a unifying approach for margin classifiers. JMLR, 1:113–141,

2001. 1, 7

[2] S. Bengio, J. Weston, and D. Grangier. Label embedding trees for

large multi-class tasks. In NIPS, 2010. 1, 3

[3] O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-

neighbor based image classification. In CVPR, 2008. 1

[4] L. Bottou. Large-scale machine learning with stochastic gradient

descent. In COMPSTAT, 2010. 7

[5] A. Budanitsky and G. Hirst. Evaluating wordnet-based measures of

lexical semantic relatedness. Comput. Linguist., 32:13–47, 2006. 3

[6] L. Cai and T. Hofmann. Hierarchical document categorization with

support vector machines. In CIKM, 2004. 3

[7] P. Cheung and J. Kwok. A regularization framework for multiple-

instance learning. In ICML, 2006. 4

[8] K. Crammer and Y. Singer. On the learnability and design of output

codes for multiclass problems. Machine Learning, 2:265–292, 2002.

1, 2, 3

[9] O. Dekel, J. Keshet, and Y. Singer. Large margin hierarchical classi-

fication. In ICML, 2004. 7

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Ima-

geNet: A Large-Scale Hierarchical Image Database. In CVPR, 2009.

1, 3, 6

[11] J. Deng, S. Satheesh, A. Berg, and L. Fei-Fei. Fast and balanced:

Efficient label tree learning for large scale object recognition. In

NIPS, 2011. 1

[12] S. Escalera, O. Pujol, and P. Radeva. On the decoding process in

ternary error-correcting output codes. PAMI, 32(1):120–134, 2010.

2

[13] T. Gao and D. Koller. Multiclass boosting with hinge loss based on

output coding. In ICML, 2011. 1, 2

[14] D. Haussler. Convolution kernels on discrete structures. Technical
report, 1999. 3

[15] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods

for hierarchical sparse coding. JMLR, 12:2297–2334, 2011. 4

[16] A. Kosmopoulos, E. Gaussier, G. Paliouras, and S. Aseervatham. The

ecir 2010 large scale hierarchical classification workshop. SIGIR Fo-
rum, 44(1):23–32, 2010. 7

[17] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features:

Spatial pyramid matching for recognizing natural scene categories.

In CVPR, 2006. 6

[18] Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado,

J. Dean, and A. Ng. Building high-level features using large scale

unsupervised learning. In ICML, 2012. 1

[19] Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and T. Huang.

Large-scale image classification: fast feature extraction and svm

training. In CVPR, 2011. 1

[20] M. Parsana, S. Bhattacharya, C. Bhattacharyya, and K. Ramakrish-

nan. Kernels on attributed pointsets with applications. In NIPS, 2007.

3

[21] B. Póczos, L. Xiong, and J. Schneider. Nonparametric divergence

estimation with applications to machine learning on distributions. In

UAI, 2011. 3

[22] R. Rifkin and A. Klautau. In defense of one-vs-all classification.

JMLR, 5:101–141, 2004. 1

[23] R. Schapire. Using output codes to boost multiclass learing prob-

lems. In ICML, 1997. 1, 2

[24] A. J. Smola, S. Vishwanathan, and T. Hofmann. Kernel methods for

missing variables. In AISTATS, 2005. 4

[25] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-

constrained linear coding for image classification. In CVPR, 2010.

6

[26] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. Sun database:

Large-scale scene recognition from abbey to zoo. In CVPR, 2010. 1,

6

[27] X. Zhang, L. Liang, and H. Shum. Spectral error correcting output

codes for efficient multiclass recognition. In ICCV, 2009. 7

[28] B. Zhao, F. Wang, and C. Zhang. Efficient multi-class maximum

margin clustering. In ICML, 2008. 4

[29] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning

using gaussian fields and harmonic functions. In ICML, 2003. 5, 6

335533553357

