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Abstract

In this paper, we present an approach for scene un-
derstanding by reasoning physical stability of objects from
point cloud. We utilize a simple observation that, by human
design, objects in static scenes should be stable with re-
spect to gravity. This assumption is applicable to all scene
categories and poses useful constraints for the plausible in-
terpretations (parses) in scene understanding. Our method
consists of two major steps: 1) geometric reasoning: recov-
ering solid 3D volumetric primitives from defective point
cloud; and 2) physical reasoning: grouping the unstable
primitives to physically stable objects by optimizing the sta-
bility and the scene prior. We propose to use a novel discon-
nectivity graph (DG) to represent the energy landscape and
use a Swendsen-Wang Cut (MCMC) method for optimiza-
tion. In experiments, we demonstrate that the algorithm
achieves substantially better performance for i) object seg-
mentation, ii) 3D volumetric recovery of the scene, and iii)
better parsing result for scene understanding in compari-
son to state-of-the-art methods in both public dataset and
our own new dataset.

1. Introduction
1.1. Motivation and Objectives

Traditional approaches for scene understanding have

been mostly focused on segmentation and object recogni-

tion from 2D images. Such representations lacks impor-

tant physical information, such as the 3D volume of the ob-

jects, supporting relations, stability, and affordance which

are critical for robotics applications: grasping, manipula-

tion and navigation. With the recent development of Kinect

camera and the SLAM techniques, there has been growing

interest in studying these properties in the literature [17].

In this paper, we present an approach for reasoning phys-

ical stability of 3D volumetric objects reconstructed from

either a depth image captured by a range camera or a large

scale point cloud scene reconstructed by the SLAM tech-

nique [17]. We utilize a simple observation that, by human

design, objects in static scenes should be stable. For exam-

ple, a parse graph is said to be valid if the objects, according

to its interpretation, do not fall under gravity. If an object

is not stable on its own, it must be grouped with attached

neighbors or fixed to its supporting base. In addition, while

objects are stable physically, they should enjoy a movable

space (freedom) for manipulation. Such assumption is ap-

plicable to all scene categories and thus pose quite powerful

constraints for the plausible interpretations (parses) in scene

understanding.

As Fig. 1 shows, our method consists of two main steps.

1) Geometric reasoning: recovering solid 3D volumet-

ric primitives from defective point cloud. Firstly we seg-

ment and fit the input 2.5D depth map or point cloud to

small simple (e.g., planar) surfaces; secondly, we merge

convexly connected segments into shape primitives; and

thirdly, we form 3D volumetric shape primitives by filling

the missing (occluded) voxels, so that each shape primitive

can own its physical properties: volume, mass and support-

ing areas to compute the potential energies in the scene.

Fig. 1.(d) shows the 3D primitives in rectangular or cylin-

drical shapes.

2) Physical reasoning: grouping the primitives to physi-

cally stable objects by optimizing the stability and the scene

prior. We build a contact graph for the neighborhood rela-

tions of the primitives as shown in Fig. 1.(e), coloring this

graph corresponds to grouping them into objects. For exam-

ple, the lamp on the desk originally was divided in 3 primi-

tives and will fall under gravity (see result simulated using a

physics engine), and become stable when they are grouping

into one object – the lamp. So is the computer screen with

its base.

To achieve the physical reasoning goal, we make the fol-

lowing novel contributions in comparison to the most recent

work in dealing with physical space reasoning [8, 16].

• We define the physical stability function explicitly by

studying minimum energy (physical work) need to

change the pose and position of an primitive (or ob-
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Figure 1. Overview of our method. (a) 3D scene reconstructed by SLAM technique, (b) point cloud as Input. In geometric reasoning, (c) a

portion is shown to be segmented by a segment-and-merge approach, with missing voxels, (d) solid primitives by volumetric completion.

In physical reasoning, (e) the contact graph are labeled through stability optimization. (f). Final parsing results with stable objects.

ject) from one equilibrium to another, and thus to re-

lease potential energy.

• We introduce disconnectivity graph (DG) from physics

(Spin-glass) to represent the energy landscapes.

• We solve the complex optimization problem by the

cluster sampling method Swendsen-Wang cut in image

segmentation [2] to maximize global stability.

• We collect a new dataset for large scenes by depth sen-

sors for scene understanding and will release the data

and annotations to the public.

In experiments, we demonstrate that the algorithm achieve

a substantially better performance for i) object segmenta-

tion, ii) 3D volumetric recovery of the scene, and iii) bet-

ter parsing result for scene understanding in comparison to

state-of-the-art methods in both public dataset [16] and our

own new dataset.

1.2. Related work

Our work is related to 3 research streams in the literature.

1. Geometric reasoning. Our approach for geometry

reasoning is related to a set of segmentation methods (e.g.,

[12, 1, 18]). Most of the existing methods are focused on

classifying point clouds for object category recognition, not

for 3D volumetric completion. For work in 3D geometric

reason, Attene et al. [1] extracts 3D geometric primitives

(planes or cylinders) from 3D mesh. In comparison, our

method is more faithful to the original geometric shape of

object in the point cloud data. There have been also in-

teresting work in constructing 3D scene layouts from 2D

images for indoor scenes, such as Zhao and Zhu [21], Lee

et al. [15, 14], Hedau et al. [11]. Furukawa et al. [7] also

performed volumetric reasoning with the Manhattan-world

assumption on the problem of multi-view stereo. In com-

parison, our volumetric reasoning is based on complex point

cloud data and provides more accurate 3D physical proper-

ties, e.g., masses, gravity potentials, contact area,etc..

2. Physical reasoning. The vision communities have

studied the physical properties based on single image for the

”block world” in the past three decades [3, 8, 9, 21, 15, 14]).

E.g. Biederman et al. [3] studied human sensitivity of ob-

jects that violate certain physical relations. Our goal of in-

ferring physical relations is most closely related to Gupta

et al. [8] who infer volumetric shapes, occlusion, and sup-

port relations in outdoor scenes inspired by physical rea-

soning from a 2D image, and Silberman et al. [16] who in-

fer the support relations between objects from single depth

image using supervised learning with many prior features.

In contrast, our work is the first that defines explicitly the

mathematical model for object stability. Without supervised

learning process, our method is able to infer the 3D objects

with maximum stability.

3. Intuitive physics model. Recent psychology studies

suggested that approximate Newtonian principles underlie

human judgements about dynamics and stability [6, 10].

Hamrick et al. [10] showed that knowledge of Newtonian

principles and probabilistic representations are generally

applied for human physical reasoning, and the intuitive

physics model is an important perspective for human-level

complex scene understanding. However, to our best knowl-

edge, there is little work that mathematically defines intu-

itive physics models for real scene understanding. Physics
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Figure 2. (a) Two 1-degree IAMs f1 and f2 (in blue and red lines

respectively) are fitted to the 3-Layer point cloud. The light red

and blue areas denote in which functions f1, f2 and f3 are minus.

(b) Invisible space estimation and voxel completion. Four types of

voxels are estimated: invisible voxels (light green), empty voxels

(white), surface voxels (red and blue dots), and the voxels filled in

the invisible space (colored square in light red or blue).

engines in graphics can accurately simulate the motion of

objects under gravity, but it is computationally expensive

for the purpose of measuring object stability.

2. Geometric reasoning

Given a point cloud of scene, the goal of geometric rea-

soning is to infer the object primitives (e.g., the colored ob-

jects in Fig. 1 (d)), such as that each primitive can own phys-

ical properties (e.g., volume, mass, supporting area, etc.).

We infer the object primitives with two major steps: 1) point

cloud segmentation and 2) Volumetric completion.

2.1. Segmentation with implicit algebraic models

We first adopt implicit algebraic models (IAMs) [4] to

separate point cloud into several simple surfaces. We adopt

a split-and-merge strategy as: 1) splitting the point cloud

into simple and smooth regions by IAM fitting, and then 2)

merging the regions which are “convexly” connected each

other. As a 2D example illustrated in Fig. 2.(a), suppose

the 2D point cloud is first split into three line segments with

first-order IAM fitting: f1, f2 and f3, and then f2 and f3
are merged together, since they are “convexly” connected.

Splitting point cloud. The objective in this process can be

considered as to find out the 3D regions, and each of them

can be well fitted by an IAM.

The IAM fitting for each region can be formulated in

least squares optimization using the 3-Layer method pro-

posed by Blane et al. [4]. As shown in Figure 2.(a), it first

generate two extra point layers: Γ−(green points) and Γ+

(light blue points) along the normals of points in the origi-

nal region M (red and blue points). Then an IAM can be fit

to M by linear least-squared method with linear constraints:

f(pi) =

⎧⎨
⎩

0, pi ∈M
+di, pi ∈ Γ+

−di, pi ∈ Γ−
, (1)

where f is an implicit polynomial, ±d is the Euclidean dis-

tance how long the two points move along the normals in

opposite directions. Therefore, as shown in Fig. 2 (a), each

IAM fit can split the space into two parts: “inside” (colored

with negative value) and “outside” (uncolored (white) with

positive value).

For splitting point cloud into pieces, we adopt region

growing scheme [18]. Our method can be described as:

starting from several given seeds, the regions grow until

there is no unlabeled point can be fitted by certain IAM. In

this paper, we adopt the IAM of 1 or 2 degree, i.e., planes

or second order algebraic surfaces and the IAM fitting algo-

rithm proposed by Zheng et al. [22] to select the models in

a degree-increasing manner.

Merging “convexly” connect regions. The splitting strat-

egy seems separating the points to be object faces (e.g., a

box can be split into six faces). However we can further

merge the “convexly” connected regions to better represent

object parts (primitives).

To this end, we first define “convex connection” of two

regions as follow:

Definition 1. for any line segment L whose two ends are in
two connected regions with IAM fits fi and fj respectively,
if the points on this line, {∀pl|pl ∈ L}, satisfy fi(pl) < 0
and fj(pl) < 0, then we say regions i and j are convexly
connected.

To detect the convex connection, as shown in Fig. 2 (a),

we first randomly sample several line points (in dark dot

lines) between connected regions, and then check them if

satisfy the convexly connected relationship defined above.

In practice, we merge the convex connections when the fol-

lowing condition is satisfied:

#{p|pl ∈ L ∧ fi(pl) < 0 ∧ fj(pl) < 0}
#{p|pl ∈ L} > δ, (2)

where the ratio threshold δ is set as 0.6 according the sensor

noise. In Fig 2 (a), since the dark points connecting f2 and

f3 are submerged by both minus regions of them.

2.2. Volumetric space completion

To obtain the physical properties for each object prim-

itive (e.g., size, mass etc.), we need volumetric represen-

tation but not surface segments. Thus, we complete each

surface segment into a volumetric (voxel-based) primitive

under three assumptions: a) Occlusion assumption: voxels

occluded by the observed point cloud could be parts of ob-

jects. b) Solid assumption: hollow object is not preferred
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(e.g., plane should not with holes, or a box should be solid).

c) Manhattan assumption: most object shapes are aligned

with Manhattan axes.

Voxel generation and gravity direction We first generate

voxels for each segment obtained by above point cloud seg-

mentation by 1) detecting Manhattan axes [7], 2) construct-

ing voxels from point cloud along Manhattan axes by octree

construction method [19], and 3) detecting gravity direc-

tion. To detect gravity direction, we simply choose the one

with smallest angle to the vertical axis of sensor coordinate

system.

Invisible (occluded) space estimation. The space behind

the point clouds and beyond the view angles is not visible

from the camera’s perspective. However this invisible space

is very helpful for completing the missing voxels from oc-

clusion. Inspired by Furukawa’s method in [7], the Man-

hattan space is carved by the point cloud into three spaces

(as shown in Figure 2(b)): Object surface S (colored-dots

voxels), Invisible space U (light green voxels) and Visible

space E (white voxels).

Voxels filling. We complete an object primitive from each

labeled surface segment. Suppose each convex surface seg-

ment is the visible part of a primitive, we complete invisible

part by filling voxels in a visual hull which is occluded by

the surface under two assumptions: 1) as lights travel in

lines, the voxels complected are behind the point clouds, as

shown in Fig. 2.(b); 2) a primitive should be completed if it

can be seen from at least two directions of Manhattan axes.

Therefore our algorithm can be simply described as:

Loop: for each invisible voxel vi ∈ U, i = 1, 2, . . .
1) From vi, searching the voxels along 6 directions of

Manhattan axes, to collect six nearest surface voxels {vj ∈
S} (j ≤ 6).

2) Checking the label for each vj , if there exist more than

two same labels, then assign this label to voxel vi.

3. Modelling object stability
3.1. Energy landscapes

A 3D object (or primitive) has a potential energy de-

fined by gravity and its state (pose and center) supported by

neighboring object in 3D space. The object is said to be in
equilibrium when its current state is a local minimum (sta-

ble) or local maximum (unstable) of this potential function

(See Fig 4 for illustration). This equilibrium can be broken

by external work (e.g., nature disturbance) and then the ob-

ject moves to a new equilibrium and releases energy. With-

out loss of generality, we divide the change in two cases.

Case I: pose change. In Fig. 3, the chair in (a) is in a stable

equilibrium and its pose is changed with external work to

raise its center of mass. We define the energy change needed

to the state change x0 → x1 by

Er(x0 → x1) = (Rc− t1) ·mg, (3)
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Figure 3. (a) A chair in a “stable” state x0 is moved to (b) an

“unstable” state x1. (c) The landscape of potential energy is cal-

culated by Eq. (3) over two rotation angles where x0 is a local

minimum and x1 is a saddle point passing which, the chair will

fall to a deeper energy basin (blue).

where R is rotation matrix; c is center of mass, g =
(0, 0, 1)T is the gravity direction, t1 is the lowest contact

point on the support region (its legs). We visualize the en-

ergy landscape on the sphere (φ, θ): S2 → R in Fig. 3.(c)

using the two pose angles (φ ∈ [−π π], θ ∈ [−π/2, π/2]).
Blue color means lower energy and red means high en-

ergy. Such energy can be computed for any rigid objects

by bounding the object with a convex hull. We refer to the

early work of Kriegman [13] for further details.

Case II: position change. Imaging a cup on a desk at stable

equilibrium state x0, one can push it to the edge of the table.

Then it falls to the ground and releases energy to reach a

deeper minimum state x1. The energy change needed to

move the cup is

Et(x0 → x1) = (c− t) ·mg − f, (4)

where t ∈ R
3 is the translation parameter (shortest dis-

tance to the edge of the desk), and f is friction defined as

f = fc
√
(t1 − c1)2 + (t2 − c2)2 given the friction coeffi-

cient fc. Note for common indoor scenes, we choose fc as

0.3 as common material such as wood. Therefore the energy

landscape can be viewed as a map from 3D space R
3 → R.

In both cases, we observe that object stability is only lo-
cal and relative, and can be changed subject to disturbance

(gravity, wind, mild earthquake, and human activity).

3.2. Disconnectivity graph representation

The energy map is continuously defined over the object

position and pose. For our purpose, we are only interested

in how deep its energy basin is at current state (according

to the current interpretation of the scene). Therefore, we

represent the energy landscape by a so-called disconnectiv-

ity graph (DG) which has been used in studying the spin-

glass models in physics [20]. In the DG, the vertical lines

represent the depth of the energy basins and the horizontal

lines connect adjacent basins. The DG can be constructed

by an algorithm scanning energy levels from low to high and

checking the connectivity of components at each level [20].

312831283130
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Figure 5. Example of illustrating the Swendsen-Wang sampling process. (a) Initial state with corresponding contact graph. (b) shows the

grouping proposals accepted by SWC at different iterations. (c) convergence under larger disturbance W and consequently the table is

fixed to the ground. (d) shows two curves of Energy released v.s. number of iteration in SWC sampling corresponding to (b) and (c).

energy barrier
unstable equilibrium

local minimum
stable equilibrium

(a) Energy funtion (b) Disconnectivity graph

current state

Figure 4. (a) Energy landscapes and its corresponding disconnec-

tivity graph (b).

From the DG, we can conveniently calculate two quanti-

ties: Energy absorption and Energy release during the state

changes.

Definition 2. The energy absorption ΔE(x0 → x̃) is the
energy absorbed from the perturbations, which moves the
object from the current state x0 to an unstable equilibrium
x̃ (say a local maximum or energy barrier).

For the chair in Fig.3, its energy absorption is the work

needed to push it in one direction to an unstable state x1.

For the cup example, its energy barrier is the work needed

(to overcome friction) to push it to the edge. In both cases,

the energy depends on the direction and path of movement.

Definition 3. Energy release ΔE(x̃ → x′0) is the poten-
tial energy released when an object moves from its unsta-
ble equilibrium x̃ to a minimum x′0 which is lower but con-
nected by the energy barrier.

For example, when the cup falls of from the edge of the

table to the ground. The higher the table, the larger the

released energy.

With DG, we define object stability in 3D space.

Definition 4. The stability S(a,x0,W ) of an object a at
state x0 in the presence of a disturbance work W is the
maximum energy that it can release when it moves out the

energy barrier by the work W .

S(a,x0,W )

= max
x′

0

�E(x̃→ x′0)δ([min
˜x
�E(x0 → x̃)] ≤W ),(5)

where δ() is an indicator function and δ(z) = 1 if condition

z is satisfied otherwise δ(z) = 0. �E(x0 → x̃) is the

energy absorbed, if it is overcome by W , then δ() = 1,

and thus the energy �E(x̃ → x′0) is released. We find the

easiest direction x̃ to minimize the energy barrier and the

worst direction x′0 to maximize the energy release.

4. Physical reasoning
Given a list of 3D volumetric primitives obtained by

our geometric reasoning step, we first construct the con-

tact graph, and then the task of physical reasoning can be

posed as a well-known graph labelling or partition prob-

lem, through which the unstable primitives can be grouped

together and assigned the same label to achieve global sta-

bility of the whole scene at a certain disturbance level W .

4.1. Contact graph and group labelling

The contact graph is an adjacency graph G =< V,E >,

where V = {v1, v2, ..., vk} is the set of nodes representing

the 3D primitives, and E is a set of edges denoting the con-

tact relation between the primitives. An example is shown

in Fig.1.(e) where each node corresponds to a primitive in

Fig. 1.(c). If a set of nodes {vj} share a same label, that

means these primitives are fixed to a single rigid object, de-

noted by Oi, and the stability is re-calculated according to

Oi.

The optimal labelling L∗ can be determined by the opti-

mization of a global energy function, for a work level W

E(L|G;W ) =
∑
Oi∈L

(S(Oi,x(Oi),W ) + F(Oi)) (6)

where x(Oi) is the current state of grouped object Oi. The

new term F represents a penalty function expressing the

scene prior and can be decomposed into parts.

F(Oi) = λ1f1(Oi) + λ2f2(Oi) + λ3f3(Oi), (7)
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where f1 is the total number of voxels in object Oi; f2 is the

geometric complexity of Oi, which can be simply computed

as the summation of the difference of normals for any two

connected voxels on its surface; and f3 is designed by the

freedom of object movement on its support area. f3 can be

calculated as the ratio between the support plane and the

contact area #S
#CA of each pair of primitives {vj , vk ∈ Oi},

where one of them is supported by the other. After they are

regularized to the scale of objects, the parameters λ1, λ2 and

λ3 are set as 0.1, 0.1, and 0.7 in our experiment. Note, the

third penalty is designed from the observation that, e.g., a

cup should have freedom of movement supported by a desk,

and therefore the penalty arise if the mouse is assigned by

same label to the table.

4.2. Inference of Maximum stability

As the label of primitives are coupled with each other,

we adopt the graph partition algorithm Swendsen-Wang Cut

(SWC) [2] for efficient MCMC inference. To obtain glob-

ally optimal L∗by the SWC, the next 3 main steps works

iteratively until convergence.

(i) Edge turn-on probability. Each edge e ∈ E is as-

sociated with a Bernoulli random variable μe ∈ {on, off}
indicating whether the edge is turned on or off, and a weight

reflecting the possibility of doing so. In this work, for each

edge e =< vi, vj >, we define its turn-on probability as:

qe = p(μe = on|vi, vj) = exp(−(F (vi, vj)/T ), (8)

where T is temperature factor and F (·, ·) denotes the fea-

ture between two connected primitives. Here we adopt a

feature using the ratio between contact area (plane) and ob-

ject planes as: F = #CA
max(#Ai,#Aj)

, where CA is the con-

tact area, Ai and Aj are the areas of vi and vj on the same

plane of CA.

(ii) Graph Clustering. Given the current label map, it

removes all edges between nodes of different categories.

Then all the remaining edges are turned on independently

with the probability qe. Thus, we have a set of connected

components (CCPs) Π’s, in which all nodes have the same

category label.

(iii) Graph Flipping. It randomly selects a CCP Πi from

the set formed in step (ii) with a uniform probability, and

then flips the labels of all nodes in Πi to a category c ∈
{1, 2, ..., C}. The flip is accepted with probability [2]:

α(L→ L′) = min (1,
Q(L′ → L)E(L′|G;W )

Q(L→ L′)E(L|G;W )
). (9)

Fig. 5 illustrates the process of labeling a number of

primitives of a table into a single object. SWC starts with

an initial graph in (a), and some of the sampling proposals

are accepted by the probability (9) shown in (b) and (c), re-

sulted the energy v.s. iterations in (d). It is worth noticing
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Figure 7. Segmentation accuracy comparison of three methods:

Region growing method [18], result of our geometric reasoning

and physical reasoning by one “Cut Discrepancy” and three “Ham-

ming Distance”.

that 1) in case of 5 (b), the little chair is not grouped to

floor, since the penalty term A3 penalize the legs to fix to

floor. 2) On the other hand, we increase the disturbance W
in (5), the chair is fixed to floor.

5. Experimental result
We quantitatively evaluate our method in terms of 1) sin-

gle depth image segmentation, 2) volumetric completion

evaluation, 3) physical inference accuracy evaluation, and

4) intuitive physical reality (by videos in supplementary).

All these evaluations are based on three datasets: i) NYU

depth dataset V2 [16] including 1449 RGBD images with

manually labeled ground truth, ii) a set synthesized depth

map and volumetric images simulated from CAD scene

data. iii) 13 reconstructed 3D scene data captured by Kinect

Fusion [17] gathered from office and residential rooms with

ground truth labeled by a dense mesh coloring.

Evaluating Single depth image segmentation. Two eval-

uation criterion: “Cut Discrepancy” and “Hamming Dis-

tance” mentioned in [5] are adopted. The former measures

errors of segment boundaries to ground truth, and the lat-

ter measures the consistency of segment interiors to ground

truth. As result shown in Fig. 7, our segmentation by phys-

ical reasoning is with lower error rate than the another two:

region growing segmentation [18], and our geometric rea-

soning.

Fig. 6 shows some examples for comparing point cloud

segmentation result [18] and our result. However it is worth

noticing that, beyond the segmentation task, our method can

provide richer information such as volumetric information,

physical relations, and stabilities etc.

Evaluating volumetric completion. For evaluating the ac-

curacy of volumetric completion, we densely sample point

clouds from a set of CAD data including 3 indoor scenes.

We simulate the volumetric data (as ground truth) and depth

images from a certain view (as test images). We calculate

the precision and recall which evaluates voxel overlapping

313031303132
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Figure 6. Segmentation result for single depth images. (a) RBG images for reference. (b) segmentation result by region growing [18]. (c)

stable volumetric objects by physical reasoning.

Octree [19] Invisible space Vol. com.

Precision 98.5% 47.7% 94.1%
Recall 7.8% 95.1% 87.4%

Table 1. Precision and recall of Volumetric completion. Compar-

ison of three method: 1) voxel-based representation generated by

Octree algorithm [19], 2) voxels in surface and invisible space

(sec. 2.2), and 3) our volumetric completion.

relations Discriminative Greedy SWC

fixed joint 20.5% 66% 81.8%
support 42.2% 60.3% 78.1%

Table 2. Results of inferring the fixed joints and support relations

between primitives. Accuracy is measured by nodes of contact

graph whose label is correctly inferred divided by the total number

of labeled nodes.

between ground truth and the volumetric completion of test-

ing data. Tab. 5 shows the result that our method has much

better accuracy than traditional Octree method such as [19].

Evaluating physical inference accuracy. Because the

physical relations are defined in terms of our contact graph,

we map the ground-truth labels to the nodes of contact

graphs obtained by geometric reasoning. Than we evalu-

ate our physical reasoning against two baselines: discrimi-

native methods of using 3D feature priors as similar as one

in [16], and greedy inference method such as marching pur-

suit algorithm for physical inference. The result shown in

Tab. 5 is evaluated by the average over 13 scene data cap-

tured by Kinect Fusion.

Figure 8 (a)-(d) and (e)-(j) show two examples from the

results. Here we discuss some irregular cases by close-ups

in the figures.

Case I: Figure 8 (c) the ball is fixed onto the handle of sofa.

The reason can be considered as: stability of the “ball” is

very low measured by Eq. (5). The unstable state is cal-

culated out as that it trends to release much potential en-

ergy (draw from the sofa) by absorbing little possible en-

ergy (e.g., the disturbance by human activity).

Case II: Figure 8 (d) the “air pump” unstably stands on

floor but is an independent object, because although its sta-

bility is very low, the penalty designed in Eq.(7) penalized

it to be fixed onto floor. So is the lamp not fixed to table in

Figure 8 (h).

Case III: Figure 8 (g) the “empty Kinect box” with its base

is fixed together onto the shelf, because of the miss segmen-

tation of base, i.e., the lower part of base is miss merged to

top of shelf.

Case IV: Figure 8 (i) voxels under the “chair” are com-

pleted with respect to stability. The reasons are: 1) our al-

gorithm reasons the hidden part occluded in invisible space.

2) the inference of hidden part is not accurate geometrically,

but it helps to form a stable object physically. In contrast,

original point cloud shown in Figure 8 (j) misses more data.

6. Conclusion

We presented a novel approach for scene understand-

ing by reasoning the stability and unsafeness using intuitive

mechanics with the novel representations of disconnectivity

graph and disturbance field. Our work is based on a seem-

ingly simple but power observation that objects, by human

design, are created to be stable and have maximum utility

(such as freedom of move). We demonstrated its feasibil-

ity in experiments and show that this provides an interest-

ing way for object grouping when it is hard to pre-define all

possible object shapes and appearance in an object category.
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Figure 8. Example result. (a) and (e): data input. (b) and (f): volumetric representation of stable objects. (c): the ball is fixed onto the

handle of sofa. (d): the “pump” is unstable (see text). (i): a irregular case of (g). (j): hidden voxels under chair compared to (h).
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