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Abstract

Tags of image regions are often arranged in a hierar-

chical taxonomy based on their semantic meanings. In this

paper, using the given tag taxonomy, we propose to jointly

learn multi-layer hierarchical dictionaries and correspond-

ing linear classifiers for region tagging. Specifically, we

generate a node-specific dictionary for each tag node in

the taxonomy, and then concatenate the node-specific dic-

tionaries from each level to construct a level-specific dic-

tionary. The hierarchical semantic structure among tags

is preserved in the relationship among node-dictionaries.

Simultaneously, the sparse codes obtained using the level-

specific dictionaries are summed up as the final feature rep-

resentation to design a linear classifier. Our approach not

only makes use of sparse codes obtained from higher lev-

els to help learn the classifiers for lower levels, but also

encourages the tag nodes from lower levels that have the

same parent tag node to implicitly share sparse codes ob-

tained from higher levels. Experimental results using three

benchmark datasets show that the proposed approach yields

the best performance over recently proposed methods.

1. Introduction

Region tagging, whose goal is to assign image regions

with labeled tags, has attracted significant attention in com-

puter vision and multimedia [11, 25, 7, 26, 21, 22]. Region

tagging at a more fine-grained region-level has two benefits.

First, it establishes the correspondences between image re-

gions and semantic labels and thus can handle the diversity

and arbitrariness of Web image content well. Second, ex-

periments in [3, 21] reveal that accurate region-level anno-

tations can effectively boost the performance of image-level

annotations. In order to achieve robust content-based image

retrieval, we focus on improving the accuracy of region tag-

ging.

Recently several proposed region tagging approaches at-

tempt to explore the contextual constraints among image re-

gions using sparse coding techniques [11, 25, 7]. However,

these approaches that simply used all training regions as the

dictionary for spare coding have three main disadvantages.
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Figure 1. A two-layer tag taxonomy and the corresponding

dictionary framework. This tag taxonomy has two levels: super-

class level and basic-class level. At the super-class level, train-

ing samples are divided into three super-classes Animal, Plant and

Vehicle, whereas training samples within each super-class are fur-

ther divided into a few basic classes. We associate each tag node

with a node-specific dictionary and concatenate the node-specific

dictionaries from each level to create a level-specific dictionary.

The level-specific dictionaries for this taxonomy are D(1) and

D(2) while the node-specific dictionaries are {D
(1)
s }s=1...3 and

{D
(2)
k
}k=1...7. We reconstruct each image region using different

level-specific dictionaries and sum up the sparse codes obtained

from different levels as the final feature representation to learn a

linear classifier for region tagging.

First, redundancy in training regions can increase the re-

construction error, which may degrade the effectiveness of

region tagging. Second, the computational complexity of

sparse coding increases with the size of dictionary and it is

impossible to use all the training regions as the dictionary

for large-scale datasets. Thus learning a compact and dis-

criminative dictionary for region tagging is desirable. Third,

for datasets with unbalanced tag classes, the performance of

these approaches may decrease drastically. This is because

unbalanced tag classes result in an unbalanced group struc-

ture in the dictionary such that the computed sparse codes

become less discriminative for classification task. In addi-

tion, tags are often arranged into a hierarchical taxonomy

based on their semantic meanings, such as the tag taxon-

omy shown in Figure 1. However, the tag taxonomy has not

been exploited to improve the accuracy of region tagging,

even though the similar category taxonomy has been shown

to benefit the accuracy as well as the scalability of learning

algorithms [15, 16, 6] for object recognition.

To overcome the above drawbacks, we present a novel

multi-layer hierarchical dictionary learning framework for

region tagging when the tag taxonomy is known. For il-
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lustration, a two-layer tag taxonomy and the correspond-

ing dictionary learning framework is depicted in Figure 1.

To our best knowledge, we are the first to use the super-

vised dictionary learning to explore the semantic relation-

ship among tags. Specifically, we generate a node-specific

dictionary for each tag node in the taxonomy and concate-

nate the node-specific dictionaries in each level to construct

a level-specific dictionary. Thus the hierarchical seman-

tic relationship among tags is preserved in the relationship

among node-specific dictionaries, which enables us to ex-

ploit the discriminative information among regions in a hi-

erarchial way. Moreover, dictionary items from the same

node-specific dictionary are considered as a group so it in-

troduces a group structure for each level-specific dictionary.

Based on each level-specific dictionary and corresponding

group structure, we reconstruct each image region using the

group sparse coding algorithm [27] to obtain level-specific

sparse codes. Compared with single-level sparse codes

in existing sparse coding-based region tagging approaches

[11, 25, 7], our multi-layer sparse codes not only encodes

the contextual constraints among regions, but also encodes

the relationship among tags. Finally, we sum up the sparse

codes obtained from different levels as the final feature rep-

resentation to learn a linear class classifier. For datasets with

unbalanced tag classes, we can create balanced group struc-

ture for higher levels and make use of sparse codes obtained

from higher levels to help design the classifiers for lower

levels. Therefore, our approach is robust to datasets with

unbalanced tag classes in contrast to existing sparse coding-

based region tagging approaches that tend to perform poorly

on datasets with unbalanced tag classes.

1.1. Our Contribution
The main contributions in our paper are four-fold:
• We present a multi-layer supervised dictionary learn-

ing framework that simultaneously learns multi-layer

dictionaries and classifiers.
• We are the first to use the supervised dictionary learn-

ing to explore the semantic structure among tags,

which not only takes advantages of the compactness

and efficiency of dictionary learning, but also explores

different group structures among image regions.
• Our approach proposes to sum up sparse codes from

different levels as the feature representation to learn a

linear classifier, which enables us to make use of dis-

criminative information encoded in sparse codes from

different levels.
• Our approach is robust to datasets with unbalanced tag

classes.

2. Related Work
Recently, several region tagging approaches have used

sparse coding techniques to encode contextual constraints

among image regions for region tagging [11, 25, 7]. [11]

proposed a bi-layer sparse coding framework to reconstruct

image regions from over-segmented image patches that be-

long to a few images, and then propagate image labels of

selected patches to the entire label to obtain region assign-

ment. However, this method ignores the contextual corre-

lations among regions, e.g., co-occurrence and spatial cor-

relations. [25] considered regions within the same image

as a group, and used the group sparse coding with spatial

kernels to jointly reconstruct image regions in the same im-

age from other training regions. However, the contextual

correlations of training regions across images are ignored

due to the group structure of regions-in-image relationship.

[7] extended group sparse coding with graph-guided fusion

penalty to encourage highly correlated regions to be jointly

selected for the reconstruction. However, the performance

of the group sparse coding depends on a balanced group

structure which has the similar number of training regions

in each group so it might not be robust to datasets that have

very unbalanced training regions.

Other techniques have also been proposed to boost the

performance for region tagging or region-based image an-

notation. [21, 22] used multiple-instance learning tech-

niques to learn the correspondence between image regions

and keywords. The idea is that each image is annotated

by the tag that has at least one sample region (seen as ‘in-

stance’) within this image (seen as ‘bag’). [26] regular-

ized segmented image regions into 2D lattice layout, and

employed a simple grid-structure graphical model to char-

acterize the spatial context constraints. [3] used both the

dominant image region and the relevant tags to annotate the

semantics of natural scenes. [9] proposed a unified solution

to tag refinement and tag-to-region assignment by using a

multi-edge graph, where each vertex of the graph is a unique

image encoded by a region bag with multiple image seg-

mentations. [5] proposed a multi-layer group sparse coding

framework to encode the mutual dependence between the

class labels as well as the tag distribution information.

Supervised dictionary learning which combines dictio-

nary learning with classifier training into a unified learning

framework has been extensively studied [24, 17, 14, 28].

[24] performed supervised dictionary learning by minimiz-

ing the training error of classifying the image-level features,

which are extracted by max pooling over the sparse codes

within a spatial pyramid. [14] proposed a novel sparse rep-

resentation of signals belonging to different classes in terms

of a shared dictionary and discriminative models. This ap-

proach alternates between the step of sparse coding and the

step of dictionary update and discriminative model learn-

ing. [28] extended the K-SVD algorithm by incorporating

the classification error into an objective function that allows

the simultaneous optimization of the dictionary and classi-

fiers. In addition, [8, 1] proposed to use proximal meth-

ods for structured sparse learning where dictionary items

are embedded in different structures.
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3. Tag Taxonomy Aware Dictionary Learning
In this section, we first introduce the group sparse coding

algorithm and then describe the formulation of our multi-

layer supervised dictionary learning, its optimization and

how to tag image regions using sparse codes.

3.1. Group Sparse Coding
Given a dictionary D = [D1, D2, ..., DG] ∈ R

d×J

where Dg ∈ R
d×Jg consists of a group of Jg visually cor-

related dictionary items, an image region x ∈ R
d can be

reconstructed from the dictionary with the group LASSO

penalty [27] as follows:

z = argmin
z

1

2
||x−

G∑

g=1

Dgzg||
2
2 + λ

G∑

g=1

βg||zg||2

= argmin
z

1

2
||x−Dz||22 + λ

G∑

g=1

βg||zg||2

(1)

where z = [zT1 , z
T
2 , ..., z

T
G]

T ∈ R
J×1 is the reconstruc-

tion coefficients where zg is the encoding coefficient corre-

sponding to the gth group. And λ ≥ 0 is a trade-off parame-

ter and βg =
√
Jg weights the penalty from the g-th group.

Since the group LASSO uses a group-sparsity-inducing reg-

ularization instead of the l1 norm as in LASSO [20], we can

treat multiple visually similar dictionary items within the

same group as a whole and exploit implicit relations among

these dictionary items to some extent.

3.2. Multi-layer Supervised Dictionary Learning
We consider an image datasetD with a two-layer tag tax-

onomy whose levels from the top to the bottom are called:

super-class level and basic-class level as shown in Figure 1.

Note that extensions to learning multiple level-specific dic-

tionaries for a multi-layer tag taxonomy can be accom-

plished in a similar way. Suppose that each image has been

segmented into regions and a d-dimensional feature vector

has been extracted for each region. Let X ∈ R
d×N denote

N training image regions from K tag classes. According to

the tag taxonomy, image regions from these K classes in the

basic-class level can be merged into S super-classes in the

super-class level, e.g., cat and dog belong to the super-class

animal , whereas grass and tree belong to the super-class

plant (See Figure 1). Thus each image region has one class

label from the basic-class level and one super-class label

from the super-class level. Let H(2) ∈ {0, 1}K×N denote

the class label indicator matrix for all the regions, where

H
(2)
(i,j) = 1 if the jth image region belongs to the ith tag and

H
(2)
(i,j) = 0 otherwise. Similarly, we use H(1) ∈ {0, 1}S×N

to denote the super-class label indicator matrix respectively.

Note that we use the superscript to index the level in the tag

taxonomy and the subscript to index the node-specific dic-

tionary in that level.

Given an underlying tag taxonomy, we associate a sepa-

rate dictionary with each tag node. These individual dictio-

naries are called node-specific dictionaries and they serve as

local viewpoints for exploring the discriminative informa-

tion among training regions from the same class or super-

class. We concatenate the node-specific dictionaries in each

level to construct a new large dictionary which is called

a level-specific dictionary. Suppose that the level-specific

dictionaries in the super-class and basic-class levels are

learned and represented as D(1) = [D
(1)
1 , D

(1)
2 , ..., D

(1)
S ] ∈

R
d×J and D(2) = [D

(2)
1 , D

(2)
2 , ..., D

(2)
K ] ∈ R

d×J , where

D
(1)
s and D

(2)
k are associated with the s-th super-class and

k-th class respectively. Given level-specific dictionaries

D(1), D(2) and a region xn ∈ R
d×1from the s-th superclass

and k-th class, we obtain the group sparse representations

z
(1)
n and z

(2)
n of this region as follows:

z
(1)
n = argmin

z
(1)
n

1

2
||xn −D

(1)
z
(1)
n ||22 + λ1

S∑

s=1

β
(1)
s ||z(1)ns

||2

z
(2)
n = argmin

z
(2)
n

1

2
||xn −D

(2)
z
(2)
n ||22 + λ2

K∑

k=1

β
(2)
k
||z(2)nk

||2.

(2)

Here we introduce q
(1)
n and q

(2)
n to denote the ‘ideal’ group

sparse codes of xn corresponding to D(1) and D(2) re-

spectively. In particular, the non-zero values of q
(1)
n or

q
(2)
n occur at those indices where the dictionary items be-

long to the node-specific dictionary D
(1)
s or D

(2)
k . We use

Z(1) = [z
(1)
1 , ..., z

(1)
N ] ∈ R

J×N to denote the group sparse

codes of all regions at the super-class level. The matrices

Z(2), Q(1), Q(2) are defined in a similar way.

Based on the sparse representations from the super-class

and basic-class levels, we aim to learn two linear classi-

fiers denoted as f (1)(z,Ws) = Wsz and f (2)(z,W ) = W z

for the two levels respectively, where Ws ∈ R
S×J and

W ∈ R
K×J . The objective function for learning all the

dictionaries and classifiers are formulated as:

min
D(i)2

i=1,Ws,W
||H(1) −WsZ

(1)||2 + ||H(2) −W (Z(1) + Z(2))||2

+ ν(||Q(1) − Z(1)||2 + ||Q(2) − Z(2)||2)

+ μ(||Ws||
2
2 + ||W ||

2
2) (3)

where Z(1) = [z
(1)
1 , ..., z

(1)
N ], Z(2) = [z

(2)
1 , ..., z

(2)
N ]

Q(1) = [q
(1)
1 , ...,q

(1)
N ], Q(2) = [q

(2)
1 , ...,q

(2)
N ].

Note that this is a constrained optimization problem where

the constraint is that matrices Z(1) and Z(2) are obtained

by minimizing the reconstruction error with group LASSO

penalty from the basic-class and super-class levels as shown

in (2). This objective function consists of two parts:

1. The first part is the classification error from each level

as shown in the first line of (3). The two classifiers Ws

and W are learned by the linear regression. Note that
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Figure 2. An example of the ideal sparse codes matrices Q(1)

and Q(2) for classification task. Given nine image regions (on the

leftmost) come from four basic-classes and two super-classes, we

learn two level-specific dictionaries for the super-class and basic-

class levels respectively. The super-class level dictionary is de-

fined as: D(1) = [D
(1)
1 , D

(1)
2 ] while the basic-level dictionary is

D(2) = [D
(2)
1 , D

(2)
2 , D

(2)
3 , D

(2)
4 ]. For each region from one la-

beled tag, we aim to use only the node-specific dictionary that is

associated with the same tag to reconstruct the region. This is be-

cause image regions from the same basic-class or super-class are

more likely to share visual features and thus can be used to recon-

struct each other.

Ws is not used for final region tagging. Ws is learned

to guarantee that the sparse codes obtained from the

super-class level are discriminative and thus can be

used to help learn W for the basic-class level.

2. The second part is the regularization of sparse codes

from two levels as shown in the second line of (3).

The ideal sparse codes matrices Q(1) and Q(2) are

block-diagonal as shown in Figure 2. We call sparse

codes matrices Q(1) and Q(2) ideal because they are

ideal for classification task. We minimize the differ-

ence between the true sparse codes and the correspond-

ing ideal sparse codes to encourage the true sparse

codes to be close to the ideal sparse codes. It means

that for training regions Xk from the k-th class and

Xs from the s-th super-class, we encourage the cor-

responding node-dictionaries D
(1)
s and D

(2)
k to be se-

lected for group sparse coding. In addition, the non-

zeros in Q(2) are a subset of non-zeros in Q(1). Note

that this fixed and structured relationship between Q(1)

and Q(2) regularizes the relationship between Z(1) and

Z(2) from two levels, which makes it possible to use

sparse codes from different levels to improve classifi-

cation accuracy.

Note that we use the sum of sparse codes from two levels

as the features to design the class classifier W for two rea-

sons. First, we make use of the discriminative information

encoded in the sparse codes obtained from the super-class

level to learn W . Second, it encourage classes within the

same super-class to implicitly share sparse codes obtained

from super-class level. This can handle the situation where

the training classes are very unbalanced. For example, there

are many training regions for the tag cat but little training

regions for dog. Given the feature of an image region from

dog, it can be reconstructed using the level-specific dictio-

nary from the basic-class level, which may activate multi-

ple node-specific dictionaries in the basic-class level. This

is due to the little training regions for the tag dog and it will

be difficult to classify the class label of this image region.

However, when using the level-specific dictionary from the

super-class level to reconstruct this image region, it may

only activate the node-specific dictionary associated with

the super-class animal. This is because other tags within

the same super-class animal may share some features with

dog and can help to represent this image region better other

than dog itself. Even if we cannot classify this image re-

gion as dog, we can at least classify this image regions as

other tags that belong to the super-class animal instead of

totally uncorrelated tags from other super-classes. Thus us-

ing the sum of sparse codes from two levels as features for

designing the class classifiers can support this implicit fea-

ture sharing among classes within the same super-class.

3.3. Optimization Algorithm
Motivated by [12], we propose a stochastic gradient de-

scent algorithm for optimizing the objective function. We

first rewrite the objective function in (3) as follows:

min
D(i)2

i=1,Ws,W

N∑

i=1

�n(D(1), D(2),Ws,W ) + μ(||Ws||
2
2 + ||W ||

2
2)

where

�n = ν(||q(1)n − z(1)n ||2 + ||q(2)n − z(2)n ||2)

+ ||h(1)n −Wsz(1)n ||2 + ||h(2)n −W (z(1)n + z(2)n )||2.
(4)

Note that the sparse codes z
(1)
n and z

(2)
n are functions

of D(1) and D(2) respectively. We use the notation

�n(D(1), D(2),Ws,W ) to emphasize that the loss function

associated with the n-th region is also a function of D(1)

and D(2) . We use the following procedure to optimize the

objective function: first, we randomly select a training in-

stance (xn, h(1)n , h(2)n ) for the t-th iteration; next, we com-

pute the sparse codes z
(1)
n and z

(2)
n using D(1) and D(2) by

(2); finally, we update D(1), D(2),Ws and W by the gradi-

ents of the loss function �n with respect to them.

We next describe the methods for computing the gradi-

ents of the loss function �n with respect to the level-specific

classifiers and dictionaries. When the sparse codes z
(1)
n and

z
(2)
n are known, we can compute the gradient of �n with

respect to Ws and W as follows:

∂�n

∂Ws
= −2(h(1)n −Wsz(1)n )z(1)Tn

∂�n

∂W
= −2(h(2)n −W (z(1)n + z(2)n ))(z(1)n + z(2)n )T .

(5)
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We use the chain rule to compute the gradient of �n with

respect to D(1) and D(2) as follows:

∂�n

∂D(1)
=

∂�n

∂z
(1)
n

∂z
(1)
n

∂D(1)
,

∂�n

∂D(2)
=

∂�n

∂z
(2)
n

∂z
(2)
n

∂D(2)
(6)

where

∂�n

∂z
(1)
n

=− 2WT
s (h

(1)
n −Wsz(1)n )

− 2WT (h(2)n −W (z(1)n + z(2)n ))− 2ν(q(1)n − z(1)n )

∂�n

∂z
(2)
n

=− 2WT (h(2)n −W (z(1)n + z(2)n ))− 2ν(q(2)n − z(2)n ).

To compute the gradient of z
(1)
n and z

(2)
n with respect to D(1)

and D(2), we use implicit differentiation on the fixed point

equation similar to [12, 24, 23]. We first establish the fixed

point equation of (2) by calculating the derivatives of z
(1)
n

and z
(2)
n on both sides and have:

D
(1)T
Λ (xn −D

(1)
Λ z

(1)
nΛ) = λ1Γ

(1)[
z
(1)T
n1Λ

||z
(1)
n1Λ
||2

, ...,
z
(1)T
nSΛ

||z
(1)
nSΛ||2

]T

D
(2)T
Λ (xn −D

(2)
Λ z

(2)
nΛ) = λ2Γ

(2)[
z
(2)T
n1Λ

||z
(2
n1Λ
||2

, ...,
z
(2)T
nKΛ

||z
(2)
nKΛ||2

]T

(7)

where Λ denote the index set of non-zero sparse coefficients

in z
(1)
n and z

(2)
n . Both Γ(1) and Γ(2) are block-diagonal. The

s-th block in Γ(1) is β
(1)
s Is while the k-th block in Γ(2) is

β
(2)
k Ik, where Is, Ik are the corresponding identity matri-

ces. We calculate the derivatives of D(1) and D(2) on both

sides of (7), and have

∂z
(1)
nΛ

∂D
(1)
Λ

= (D
(1)T
Λ D

(1)
Λ + λ1Γ

(1)
A

(1)
)
−1
[
∂D

(1)T
Λ xn

∂D
(1)
Λ

−
∂D

(1)T
Λ D

(1)
Λ

∂D
(1)
Λ

z
(1)
nΛ]

∂z
(2)
nΛ

∂D
(2)
Λ

= (D
(2)T
Λ D

(2)
Λ + λ2Γ

(2)
A

(2)
)
−1
[
∂D

(2)T
Λ xn

∂D
(2)
Λ

−
∂D

(2)T
Λ D

(2)
Λ

∂D
(2)
Λ

z
(2)
nΛ]

where the matrices A(1) and A(2) are block-diagonal and

the s-th block in A(1) is
||z

(1)
nsΛ||Is−z

(1)
nsΛz

(1)T
nsΛ

||z
(1)
nsΛ||

2
2

while the k-th

block in A(2) is
||z

(2)
nkΛ||Ik−z

(2)
nkΛz

(2)T
nkΛ

||z
(2)
nkΛ||

2
2

. Therefore, (6) can be

rewritten as

∂�n

∂D(1)
= −D(1)s(1)n z(1)Tn + (xn −D(1)z(1)n )s(1)Tn

∂�n

∂D(2)
= −D(2)s(2)n z(2)Tn + (xn −D(2)z(2)n )s(2)Tn

(8)

where the auxiliary variables s
(1)
n and s

(2)
n are defined as

follows:

s
(1)

ΛC = 0, s
(1)
Λ = (D

(1)T
Λ D

(1)
Λ + λ1Γ

(1)A(1))−1
∂�n

∂z
(1)
nΛ

s
(2)

ΛC = 0, s
(2)
Λ = (D

(2)T
Λ D

(2)
Λ + λ2Γ

(2)A(2))−1
∂�n

∂z
(2)
nΛ

.

The steps 1− 15 in Algorithm 1 summarize our joint learn-

ing algorithm.

Algorithm 1 Multi-layer Supervised Dictionary Learning

for Region Tagging (MSDL)

1: Part 1: Dictionary Learning

2: Input: X (training regions), H(1) (super-class label indicator matrix), H(2)

(class label indicator matrix), D (initial dictionary), T (number of iterations), N
(number of training samples), ρ (initial learning rate), ν, μ, n0 =

T
10 .

3: Output: classifiers Ws and W ; dictionaries D(1) and D(2)

4: for t = 1...T do

5: Permute training samples (X,H(1), H(2));
6: for n = 1...N do

7: Evaluate the group sparse codes z(1)n and z(2)n of the region xn;

8: Choose the learning rate ρt = min(ρ, ρ ∗ n0/n)
9: Update the classifiers and dictionaries by a projected gradient step

10: Ws ←
∏

Ws
[Ws − ρt(

∂�n

∂Ws
+ μWs)];

11: W ←
∏

W [W − ρt(
∂�n

∂W
+ μW )];

12: D(1) ←
∏

D(1) [D
(1) − ρt

∂�n

∂D(1)
]

13: D(2) ←
∏

D(2) [D
(2) − ρt

∂�n

∂D(2)
]

14: end for

15: end for

16: Part 2: Region Tagging

17: Input: x̂ (test region)

18: Output: ŷ (predicted tag class)

19: Evaluate the group sparse codes ẑ(1) and ẑ(2) of the test region x̂;

20: The predicted tag for this test region is ŷ = argmaxj W (ẑ(1) + ẑ(2)).

4. Experiments

4.1. Datasets and Feature Extraction

We evaluated our approach for region tagging using sev-

eral benchmarks, including MSRC-v1, MSRC-v2 [19], and

SAIAPR TC-12 datasets [2]. Images in these datasets have

been segmented into regions and their ground truth of re-

gion masks are also provided. MSRC-v1 contains 240 im-

ages that are segmented into 562 regions associated with

13 tags, whereas MSRC-v2 has 591 images and 1482 re-

gions associated with 23 tags. And SAIAPR TC-12 con-

tains 99,535 regions segmented from 20,000 images. The

associated 276 tags for this dataset are organized into a hi-

erarchy.

We follow the protocol in [7] to extract RGB color fea-

tures and sample training and test regions. We use 8 bins

for each color channel and count the ratio of pixels whose

RGB values fall into each bin to construct a 3D histogram.

Thus each image region is represented as a 512-dimensional

RGB color histogram. For the MSRC-v1 dataset, we ran-

domly sample 200 images and the corresponding regions as

the training set, whereas for the MSRC-v2 dataset, 471 im-

ages are randomly sampled to form the training set. The

remaining regions are used for testing. For SAIAPR TC-12

dataset, we select the same 27 localized tags out of 276 tags

as in [7] for evaluation. Then we randomly select 2500 re-

gions whose tags are within the selected subset of 27 tags

as the training set and another 500 regions as the test set.
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Figure 3. The effect of parameters λ1 and λ2 on the region tagging performance of our method on three datasets.

Methods MSRC-v1 MSRC-v2 SAIAPR

Lasso[20] 0.612 0.448 0.652

Group Lasso[27] 0.636 0.458 0.598

Sparse Group Lasso[4] 0.625 0.433 0.561

SGSC[24] 0.726 0.460 -

G2SRRT(kNN)[7] 0.727 0.473 0.646

G2SRRT(kNN+Tag)[7] 0.739 0.533 0.667

SSDL 0.830 0.560 0.704

MSDL 0.926 0.634 0.772

Table 1. The average accuracies of region tagging by different

methods on MSRC-v1, MSRC-v2 and SAIAPR TC-12 datat-

sets.

4.2. Comparing Methods and Parameter Setting

As in [25, 7], we choose LASSO [20], Group LASSO

[27] and Sparse Group LASSO [4] as baselines and use the

implementation of these methods in SLEP package [10].

We compare our mutli-layer supervised dictionary learn-

ing method (MSDL) with two state-of-the-art approaches:

SGSC [25], G2SRRT [7]. In order to demonstrate that the

super-class level can help improve the accuracy of region

tagging, we use single-layer supervised dictionary learning

(SSDL) corresponding to the basic-class level as another

baseline. The performance of tagging accuracy (number of

correctly classified regions over the total test regions) is re-

ported as the average over 5 different trials corresponding

to different partitions of training and test sets.

There are two important parameters in our model: λ1
and λ2 that are used to balance the reconstruction error and

the sparse penalty for two levels. The ranges of both λ1
and λ2 for all datasets are {0.005,0.01,0.05,0.1,0.5,1}. For

other parameters in all experiments, we set the parameters

ν = 0.1 and μ = 0.001 for the regularization of sparse

codes and classifiers respectively. In addition, the initial

learning rate ρ is set to be 0.001 and the level-specific dic-

tionaries are initialized using the software SPAMS [13].

The performance of region tagging by our method with dif-

ferent λ1 and λ2 on three datasets are illustrated in Figure 3.

We see that the highest performance is achieved at different

values of the two parameters for the three datasets.

4.3. Experimental Results

The accuracies of region tagging using different methods

on three datasets are summarized in Table 1. We can see

that for all the datasets, both SSDL and our method outper-

form all the other methods. In particular, when compared

with other sparse coding-based algorithms, SSDL and our

method significantly improve the performance for region

tagging on MSRC-v1 dataset—by a margin close to 10%
and 20% respectively. This is because the labeled tag dis-

tribution in MSRC-v1 is very unbalanced and the tag with

most training regions is more likely to be selected for recon-

struction of test regions when using the group sparse coding

algorithm. On the contrary, both SSDL and our method can

reduce the reconstruction error to some extent by learning

a more reconstructive and discriminative dictionary. Fur-

thermore, for the MSRC-v2 and SAIAPR TC-12 datasets,

our method improves the tagging accuracy by 10% that is

twice than the improvement obtained by SSDL. And this

good performance by our method demonstrates that, we ef-

fectively explored the semantic relationship among tags and

make the super-class level help improve the performance

for region tagging. In addition, different from the MSRC

datasets, images in the SAIAPR TC-12 dataset are more ar-

bitrary and image regions from the same tag vary drasti-

cally; the better performance by our method further demon-

strates that our approach can handle the diversity and ar-

bitrariness of image content by exploiting hierarchial re-

lationships among tags. Finally, note that the algorithm

SGSC [25] needs to build a spatial kernel for regions within

each image, which requires regions within each image to be

jointly selected and included in the training and test sets.

Since we randomly sampled image regions of the SAIAPR

TC-12 dataset and the spatial kernel might not be built, the

performance for region tagging by SGSC is not reported in

Table 1 as in [7].

Figures 4 and 6 illustrate two tag taxonomies associ-

ated with MSRC-v1 and MSRC-v2 respectively while Fig-

ures 5 and 7 display the corresponding confusion matrices

obtained by SSDL and our method under the two datasets.

Since we obtain similar results in MSRCv1 and MSRCv2

datasets, for simplicity we take MSRC-v1 dataset for anal-

ysis. Comparing the confusion matrix obtained by SSDL

with our method in Figure 5, we can see that tags build-

ing, tree, cow, aeroplane, bicycle have large improvements

in tagging accuracy using our proposed method. Moreover,

instead of classifying regions from the tag horse as face by

SSDL, our method classifies them as cow which is also in

the same super-class as horse. This demonstrates how our

method takes advantages of implicit sharing of sparse codes
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MSDL (right) on the MSRC-v1 dataset.
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Figure 7. Confusion matrices for SSDL (left) and our method

MSDL (right) on the MSRC-v2 dataset.

obtained from the super-class level to help improve the ac-

curacy of tag nodes from the basic-class level. It is also

interesting to note that the tag car has a slight decrease in

tagging accuracy because some regions from car are mis-

classified as bicycle which is also in the same-super class.

Thus, different tags benefit in different degrees from the im-

plicit sharing of sparse codes and a similar phenomenon has

also been observed in [18] which uses a parameter sharing

strategy.

To further investigate the performance of region tag-

ging by SSDL and our method, we select nine tags in each

dataset and report the corresponding tagging accuracy of

each tag in Figure 8. From the detailed tagging perfor-

mance, we can see that our method obtains better tagging

performance for most of the tags. However, it is also in-

teresting to note that SSDL obtains a slightly better perfor-

mance for some tags such as car in MSRC-v1 dataset and

water in SAIAPR TC-12 dataset. One possible reason is

that the visual appearances of image regions from these tags

are very different from other tags within the same super-

class which introduces a negative transfer. Similar facts are

also observed in [18].
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Figure 8. The performance comparison using SSDL and

MSDL for nine selected tags on each dataset.

Figure 9 shows some examples of region tagging results

on three datasets. We see that our method correctly classi-

fies those regions that are misclassified by [7] and SSDL.

5. Conclusion

In this paper, we have proposed a multi-layer hierar-

chical supervised dictionary learning framework for region

tagging by exploring the given tag taxonomy. Specifically,

we associate each tag node in the taxonomy with one node-

specific dictionary and concatenate the node-specific dic-

tionaries in each level to construct a level-specific dictio-

nary. Using the level-specific dictionary and correspond-

ing level-specific group structure, we obtain level-specific

sparse codes that are also close to the ideal sparse codes.

The sparse codes from different levels are summed up as the

final feature representation to learn the level-specific classi-

fier. This enables us to simultaneously take advantages of

the robust encoding ability of group sparse coding as well as

the semantic relationship in the tag taxonomy. We have ex-

tensively tested our approach on three benchmark datasets

and results clearly confirm the effectiveness of our approach

for region tagging. Although in this paper we select region

tagging to evaluate our proposed method, we believe that

it is a general method and can be developed and applied to

object and activity recognition.
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