Automatic Face Reenactment

Pablo Garrido, Levi Valgaerts, Ole Rehmsen, Thorsten Thormahlen, Patrick Perez, Christian Theobalt; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 4217-4224

Abstract


We propose an image-based, facial reenactment system that replaces the face of an actor in an existing target video with the face of a user from a source video, while preserving the original target performance. Our system is fully automatic and does not require a database of source expressions. Instead, it is able to produce convincing reenactment results from a short source video captured with an off-the-shelf camera, such as a webcam, where the user performs arbitrary facial gestures. Our reenactment pipeline is conceived as part image retrieval and part face transfer: The image retrieval is based on temporal clustering of target frames and a novel image matching metric that combines appearance and motion to select candidate frames from the source video, while the face transfer uses a 2D warping strategy that preserves the user's identity. Our system excels in simplicity as it does not rely on a 3D face model, it is robust under head motion and does not require the source and target performance to be similar. We show convincing reenactment results for videos that we recorded ourselves and for low-quality footage taken from the Internet.

Related Material


[pdf]
[bibtex]
@InProceedings{Garrido_2014_CVPR,
author = {Garrido, Pablo and Valgaerts, Levi and Rehmsen, Ole and Thormahlen, Thorsten and Perez, Patrick and Theobalt, Christian},
title = {Automatic Face Reenactment},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2014}
}