Accurate Localization and Pose Estimation for Large 3D Models

Linus Svarm, Olof Enqvist, Magnus Oskarsson, Fredrik Kahl; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 532-539

Abstract


We consider the problem of localizing a novel image in a large 3D model. In principle, this is just an instance of camera pose estimation, but the scale introduces some challenging problems. For one, it makes the correspondence problem very difficult and it is likely that there will be a significant rate of outliers to handle. In this paper we use recent theoretical as well as technical advances to tackle these problems. Many modern cameras and phones have gravitational sensors that allow us to reduce the search space. Further, there are new techniques to efficiently and reliably deal with extreme rates of outliers. We extend these methods to camera pose estimation by using accurate approximations and fast polynomial solvers. Experimental results are given demonstrating that it is possible to reliably estimate the camera pose despite more than 99% of outlier correspondences.

Related Material


[pdf]
[bibtex]
@InProceedings{Svarm_2014_CVPR,
author = {Svarm, Linus and Enqvist, Olof and Oskarsson, Magnus and Kahl, Fredrik},
title = {Accurate Localization and Pose Estimation for Large 3D Models},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2014}
}