Human Action Recognition Based on Context-Dependent Graph Kernels
Baoxin Wu, Chunfeng Yuan, Weiming Hu; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 2609-2616
Abstract
Graphs are a powerful tool to model structured objects, but it is nontrivial to measure the similarity between two graphs. In this paper, we construct a two-graph model to represent human actions by recording the spatial and temporal relationships among local features. We also propose a novel family of context-dependent graph kernels (CGKs) to measure similarity between graphs. First, local features are used as the vertices of the two-graph model and the relationships among local features in the intra-frames and inter-frames are characterized by the edges. Then, the proposed CGKs are applied to measure the similarity between actions represented by the two-graph model. Graphs can be decomposed into numbers of primary walk groups with different walk lengths and our CGKs are based on the context-dependent primary walk group matching. Taking advantage of the context information makes the correctly matched primary walk groups dominate in the CGKs and improves the performance of similarity measurement between graphs. Finally, a generalized multiple kernel learning algorithm with a proposed l12-norm regularization is applied to combine these CGKs optimally together and simultaneously train a set of action classifiers. We conduct a series of experiments on several public action datasets. Our approach achieves a comparable performance to the state-of-the-art approaches, which demonstrates the effectiveness of the two-graph model and the CGKs in recognizing human actions.
Related Material
[pdf]
[
bibtex]
@InProceedings{Wu_2014_CVPR,
author = {Wu, Baoxin and Yuan, Chunfeng and Hu, Weiming},
title = {Human Action Recognition Based on Context-Dependent Graph Kernels},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2014}
}