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Abstract

We address the problem of classifying complex videos
based on their content. A typical approach to this problem
is performing the classification using semantic attributes,
commonly termed concepts, which occur in the video. In
this paper, we propose a contextual approach to video clas-
stfication based on Generalized Maximum Clique Problem
(GMCP) which uses the co-occurrence of concepts as the
context model. To be more specific, we propose to represent
a class based on the co-occurrence of its concepts and clas-
sify a video based on matching its semantic co-occurrence
pattern to each class representation. We perform the match-
ing using GMCP which finds the strongest clique of co-
occurring concepts in a video. We argue that, in principal,
the co-occurrence of concepts yields a richer representation
of a video compared to most of the current approaches. Ad-
ditionally, we propose a novel optimal solution to GMCP
based on Mixed Binary Integer Programming (MBIP). The
evaluations show our approach, which opens new oppor-
tunities for further research in this direction, outperforms
several well established video classification methods.

1. Introduction

Classification of complex videos is an active area of re-
search in computer vision. Despite the complicated nature
of unconstrained videos, they can be described as a collec-
tion of simpler lower-level concepts, such as candle blow-
ing, walking, clapping, etc. Therefore, a typical approach
to video categorization is to first apply concept detectors to
different segments of the test video and form a histogram of
concepts occurring therein. Next, a trained classifier deter-
mines which class the histogram may belong to.

In this paper, we propose an approach to complex video
classification that models the context using the pairwise
co-occurrence of concepts. Generalized Maximum Clique
Problem is useful in situations where there are multiple po-
tential solutions for a number of subproblems, along with a
global criterion to satisfy. We use GMCP in order to select
a set of concepts in different clips of the video in a way that
they are holistically in agreement. Thus, a concept that is
out of context in the whole video does not appear in our re-

Figure 1. We represent a video category based on the co-
occurrences of the semantic concepts happening therein and de-
velop a classifier based on cliques of concepts. The nodes repre-
sent semantic concepts and the edges denote the strength of co-
occurrence factor between them for a sample video class.

sults, while they are common when the concept detection is
done in an individual manner. Also, we propose a new so-
lution to GMCP using Mixed Binary Integer Programming.

We develop a class specific co-occurrence model and
propose a method which uses the GMCP as the classifier
and the class-specific co-occurrence models learnt from a
training set as the representation of the classes (shown in
Fig. 1). We argue that this representation is essentially
more semantically meaningful and fast in computation com-
pared to the traditional representations, such as the collec-
tion of concept histograms of class videos [9]. We show
that the proposed classification method significantly outper-
forms the baseline in particular for videos which include
enough contextual cues.

Several methods for concept detection and classification
have been developed during the past few years. Liu and
Huet [12] developed a method for automatic refinement of
concept detectors using the massive amount of available
data on the web. Wei et al. [I5] proposed a concept-
driven approach to fusion of multi-modal information for
an efficient video search. Izadinia and Shah [8] present
a method for modeling the relationship between low-level
events (concepts) in a framework based on latent SVM.
Wang et al. [5] developed a fusion based method for build-
ing an effective training set for video categorization. Jiang
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Figure 2. The block diagram of our concept detection method. The testing and training steps are shown in green and red respectively.

et al. [13] proposed a contextual approach to concept de-
tection using conditional random fields. Each node in the
defined graph represents a concept within one clip, and the
detection probabilities are improved leveraging boosting for
fusion. Discriminative Fusion Model (DMF) [7] is another
two-layer approach to contextual concept detection; first in-
dividual detectors are applied to a clip, then the detection
scores of all individual detectors are fed into a SVM to de-
termine the concept label based on all scores.

What differentiates our approach from the aforemen-
tioned methods is that we represent a class directly based
on co-occurrences of semantic concepts happening therein;
this is different from the majority of the existing methods
which focus on the occurrence of semantic cues more than
their co-occurrence. Also, unlike the existing methods such
as [11], we classify a video directly based on discover-
ing the underlying co-occurrence pattern therein and fitting
it to the learnt co-occurrence patterns of different classes.
In this context, we migrate from the conventional vector-
representations to the richer matrix-representation which
is fundamental to the rest of our clique-based framework.
Moreover, many of the aforementioned methods, such as
[13, 7], perform the fusion of concepts within one shot of
the video. Our method not only incorporates the relation-
ship of all concepts in one clip, but also it fuses the informa-
tion among different clips of the video. This is in particular
important for contextual concept detection in long videos.

The contributions of this paper can be summarized as: 1.
A new representation for video categories based on the co-
occurrence of their semantic concepts 2. A novel complex
video classification method based on the proposed represen-
tation and GMCP 3. A novel optimal GMCP solver using
Mixed Binary Integer Programming (MBIP). '

"More details available at the project website: http://crcv.uct.
edu/projects/GMCP_Classifier/.

2. Contextual Concept Detection using GMCP

The block diagram of the proposed concept detection
method is shown in fig. 2. In training, the probability
of concept co-occurrences are computed from an annotated
training set and saved in a reference co-occurrence matrix.

In testing, the query video is divided into clips of fixed
size. Let k and h denote the number of defined concepts
and number of clips in the test video respectively. We ap-
ply k trained concept detectors to each clip and use the re-
sulting kxh confidence values along with a reference co-
occurrence matrix to form the graph G. Each clip is repre-
sented by a cluster of k£ nodes representing concepts in that
clip in G, and the edge weights between nodes specify the
probability of co-occurrence of the corresponding concepts
in the test video based on both SVM confidences and train-
ing data. By solving GMCP (which selects one node from
each cluster) for the graph G, the set of concepts which is
in maximal contextual agreement is found.

2.1. Context Model: Co-occurrence of Concepts

We use the pairwise co-occurrence of concepts as our
means of capturing the context in a video. We define the
kxFk reference co-occurrence matrix based on the condi-
tional probability of coincidence of concepts:

#(a,b)

2(a,) = plalh) = Ty, (1)
where #(a) is the number of training videos which in-
clude the concept a, and #(a, b) represents the number of
videos in which both concepts a and b occur. For the self
co-occurrence elements, i.e. ®(a,a) , the numerator term
#(a, a) is equivalent to the number of videos in which con-
cept a occurs more than once.

The element ®(a, b) is actually equivalent to the condi-
tional probability p(a|b) which is the probability of concept
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Figure 3. Extracted reference co-occurrence matrix, ®, from the
annotations of TRECVID-MED 2011-2012 videos. We have total
number of k = 93 concepts such as: person walking, clapping,
animal eating, vehicle moving.

a happening in a video given concept b happens. Defin-
ing the co-occurrence matrix using the conditional proba-
bility has a number of advantages: it does not penalize the
co-occurrence of concepts which tend to occur less often.
Also, the resulting co-occurrence matrix is asymmetric; this
is of particular importance as in principle, the chance of
concept a happening in a video given concept b happens is
not necessarily the same as vice versa. Fig. 3 shows the
computed co-occurrence matrix from our training set which
includes videos with manually annotated concepts.

We used pairs of concepts for modeling the context as
adopting a higher order, such as triplets or quadruples of
concepts, would require a substantially larger training set’.
In the next subsection, we explain how GMCP can effec-
tively leverage the pairwise reference co-occurrence matrix
to identify the incorrectly detected concepts in a test video
and assign them the right labels.

2.2. Improving Concept Detection using GMCP

We define the input to our contextual concept detection
method as the graph G = {V,L,w} where V, L, and w
represent the set of nodes, edges and edge weights respec-
tively. The nodes in V are divided into disjoint clusters
where each cluster, C, represents one clip of the test video,
and the nodes therein denote the potential concepts for that
particular clip. Thus, C; = {a}, o), ad, ..., o} where o
represents the i*” concept of j*" clip. L includes the edges
between all of the possible pairs of nodes in V as long as
they do not belong to the same cluster. We define w as:

context content

. —T A

w(ag7a;n) = (I)(Oég, o) ("), 2)
where ® (o, ) determines the contextual agreement be-
tween the two concepts o] and o] which are from two dif-

2 Assume the training set includes A videos with average number of
w clips in each. (‘g))\ relationships for concept sets of order o can be
extracted from our training set, which are used for modeling k° possible
concept sets. The ratio of (‘;) .A/k® sharply drops as o increases, there-
fore, a substantially large training set is required when o is increased.

Eventl Eventl5s

Figure 4. The co-occurrence matrices extracted for two sample
classes of TRECVID-MED 2011-2012 datasets. Part of each ma-
trix is magnified on the left to show more details. The class specific
co-occurrence matrices are sparser compared to the one shown in
fig. 3 as some of the concepts occur in particular classes only.

ferent clips. We apply k trained concept detector to each
clip; ¥(af™) denotes the confidence value of the [*" con-
cept detector applied on the m*" clip. Note that the de-
fined edge weight w(a, o)) is equivalent to the probabil-
ity of o/and o™ occurring in the test video: p(a] Naj*) =
p(ad]af™).p(a™), where the first term is from the reference
co-occurrence matrix and the second is the SVM confidence
value (after proper calibration and normalization). There-
fore, a larger edge weight implies a higher probability for
its parent concepts, o] and «}", to occur in the test video.

In order to perform the concept detection, one con-
cept needs to be assigned to each clip of the test video.
Therefore, a feasible solution to this problem can be rep-
resented by a subgraph of G. We call this subgraph G, =
{Vs,Ls, w,} where V, must include one and only one node
from each clip. Hence, V4 C V, and L, and w; are the sub-
sets of L and w which the nodes in Vg induce. A sample
graph G and one of its feasible subgraphs, G, are shown in
Fig. 2.

We define the following utility function which assigns a
score to the feasible solution Gs:

h h

U(Gs>=ﬁz S w(Va(), Va@), @

p=1gq=1,q#p

which is the sum of the edge weights of the subgraph G..

All of the possible pairwise relationships between dif-
ferent concepts in different clips are incorporated in eq. 3;
therefore, by solving the following optimization problem,
the set of contextually consistent concepts is found:

h h
G} = argmax U(G,) = arg max Z Z w(Vs(p), Vs(q)).
Gs Vo p=lg=1,q#p=1
)

We use GMCP for solving the above combinatorial opti-
mization problem.

Generalized Maximum Clique Problem. The objec-
tive of Generalized Maximum Clique Problem is finding
a subgraph within a complete graph with clustered nodes
in a way that the sum of its edge weights is optimized
[6]. More formally, the input graph to GMCP is defined



as G = {V,L,w} where the nodes in V are divided into
disjoint clusters and no intra cluster edge exists. GMCP
finds the subgraph G, = {V,,Ls, w,} within G such that
it selects exactly one node from each cluster to be included
in V, and the summation of values in w, is maximized. As
can be inferred from the definition of GMCP, finding the
generalized maximum clique in our concept detection input
graph G will essentially solve the optimization problem of
eq. 4. Therefore, we solve GMCP to our input graph G in
order to discover the set of concepts in the test video.

Several suboptimal solutions for GMCP have been de-
veloped in different fields such as Communications, Biol-
ogy and Data Association [3, 10, 18, 6]. In sec. 4, we pro-
pose an optimal solution to GMCP.

Note that in this section, we detect concepts in a way that
they are contextually consistent, regardless of what class
the video belongs to. In the next section, we propose to
make the co-occurrence matrix class-specific and utilize it
for video classification using GMCP.

3. Video Classification using GMCP

We propose a representation for a video class based on
the co-occurrence of its concepts and develop a method
which uses GMCP as the classifier. We define the class spe-
cific co-occurrence matrix ®’ as:

#e(a,b)
#e(a) 7

where #.(a) is the number of training videos of class
e which include concept a, and #(a,b) represents the
number of training videos of class € in which both con-
cepts a and b occur. Therefore, ®'(.,.,€) contains the
pattern of concept co-occurrences for class €. Fig. 4
shows the co-occurrence matrices trained for two classes
of TRECVID11,12-MED dataset.

Representing an complex video class using the co-
occurrence of its concepts has several advantages over the
traditional representations such as histogram of concepts:

1. Speed: finding the representation is almost instanta-
neous as it requires counting the coincidence of k£ concepts
in the training set.

2. Concept Interactions: It is based on discovering the
correlation of concepts, yet it captures what concepts typ-
ically occur in a class. This is different from most of the
existing methods such as histogram of concepts which are
mainly based on occurrence information.

3. Semantics: it is semantically meaningful. This en-
ables using alternative resources, such as web documents or
YouTube video labels, to be used for computing the repre-
sentation when video annotations are not available.

In order to preform the classification using GMCP, we
define the input graph G’ = {V,L,w’, €} to represent the
test video. The set of nodes, V, and edges, L, are the same

®'(a,b, €) = p(alb,e) = )

as in G, by definition. We define the edge weights as:

w'(of, af", €) = '(af, ", ) P(ef"), (6)
where € is the class its co-occurrence matrix is being used
for computing the edge weights. Hence, assuming E classes
exist in our dataset, we form E different input graphs G’
for a test video. Similar to the concept detection method
described in sec. 2.2, a feasible solution to the classifica-
tion problem can be represented by a subgraph of G’ which
we define as G, = {V,,L,, w’, e}. The class-assignment
utility function of a feasible solution is defined as:

h
UG = e 2o 3 W) Vela).o)

p=1g=1,p#q
@)

which assigns E different scores to the feasible solution
G’,. Each score represents how well the feasible solution
fits the co-occurrence pattern of the corresponding class as
well as the confidence score of the concept detectors. Thus,
by solving the following optimization problem, we can find
which class the test video belongs to as well as its concepts:

{G%, "} = argmax U'(G%, €), (8)
G’ e

where €* and G represent the found class and the optimal
subgraph found using the co-occurrence matrix of class €*.

In summary, we represent a test video E times using E
different co-occurrence matrices and solve GMCP for each.
The class which yields the highest score is selected as the
recognized class. In sec. 5, we show that this approach
outperforms the existing methods such as using a multiclass
SVM classifier.

4. Solving GMCP using Mixed Binary Integer
Programming (MBIP)

A number of approximate solutions have been proposed
for GMCP, such as local neighborhood search and branch-
and-cut [0, 18, 3, 17]. However, no efficient method for
solving GMCP in an optimal manner has been developed to
date. We propose an MBIP solution to GMCP which guar-
antees the optimal answer. Finding the optimal solution is
in particular important for us as in the GMCP-based classi-
fier, the class-specific co-occurrence matrices are typically
sparse; this makes getting stuck in suboptimal regions more
likely as there is no gradient in the solution space to preform
the descending on.

First, we formulate GMCP through Binary Integer Pro-
gramming; then, we show the problem can be reduced to
Mixed Binary Integer Programming:

4.1. Solving GMCP using Binary Integer Program-
ming (BIP)

The standard form of a Binary Integer Programming
problem is [1]:



maximize wTx,
subject to AX =B,
and MX <N,

where X is a column vector of a number of boolean vari-
ables which is supposed to represent a feasible solution of
GMCP. Therefore, for each node and edge in our GMCP
input graph G, we put a variable in X which take the value
of 1 if the corresponding node or edge is included in the
feasible solution G4. Let l/j denote the boolean variable
of i*" node in j** cluster, and eJ:,be the boolean vari-
able representing the edge between the nodes ] and o'
Note that the defined edge weights in eq. 2 are asym-
metric, ie. w(al,a™) # w(a”, al). However, if the
nodes o' and az are selected to be in G, then both
w(al, o) and w(a™, o ) are included in G,. Hence, both
edges can be represented by a single edge with the weight
w(al, ) + w(al ) Therefore, we put one variable
for such pairs in X so et 57z , and we use them inter-
changeably. X which is of the size (h.k + ( ).k?) x 1is
defined to have the following general form:

23 k=1 ]T

X = [t A 21 22
*[Vla’/zw Vk 17Vk7€lla€117€117"' (h— 1)k75(h 1k

X should satisfy the following three constrains in order to
be a valid GMCP solution:

Constraint 1 enforces that the summation of node vari-
ables of one cluster has to be one, which ensures that one
and only one node from each cluster is selected:

k
{vj1 gjgh}:zug:L )
i=1
Constraint 2 states if one node is selected to be in G,
then exactly (h — 1) of its edges should be included in G,
(this is because each node should be connected to all other
(h — 1) clusters):

h k
{vmnl<m<h1<n<k}:» > e =
i=1j=1

vt (h=1). (10)

Constraint 3 ensures if an edge is included in G, then
the variables of the nodes incident to it are 1 and vice versa:

{Ym,n,i, 51 <m,j < h,1<n,i<k}:v"Av =ell .
¢ 1)
Any X which satisfies the aforementioned three constrains
represents a valid solution to GMCP. However, the second
constraint implies the third, since it does not allow selecting
an edge without selecting its respective nodes. Therefore,
the first two constraints are sufficient.
We enforce these constrains using AX = B term in BIP
formulation. A and B are matrices of sizes (h + h.k) X
(h.k + (5).k?) and (h + h.k) x 1 respectively. Let B be:

1 ifl<i<h,

1<i<h+hk}:B()=
{lsish+ } (®) {0 otherwise.

We enforce constrains 1 in A using the following equation;
the first h row of A enforce the summation of the node vari-
ables of the A clusters to be one:

{1§i§h,1§j§(h.k+<g>.k2)}:

e ld=1l) _ .
A(z‘,j){1 L5 =iml, (12)

0 otherwise,

where | .| indicates the floor function. The following equa-
tion enforces constraint 2 using the rest of the rows of A:

{(h+1)<i<(h+hk),1<j<(hk+ <Z).k2)} :
—(h—1) ifj=1i—h,
A(i,j) =41 ifA(i,j) € X, (13)
0 otherwise.

The i*" row of A enforces constraint 2 for the (i — h)!"

element in X. In the matrix multiplication AX = B, the

element A(¢,% — h) is multiplied with the node variable
i—h—1

(Li_,’;_lJllod k)41- Hence, we setA(i,i —h) = —(h—1),

and define X as the set of elements corresponding to the

i— h 1

edges of the node I/(l' e 1J;10d k)1

W is a matrix with the same size as X defined as:

1%

{1<z<(hk—|—< )k@)}

N )0 if1<i<hk,
W(Z) - o l h .
w(wh,vpt) +w(y,vh)  otherwise,

(14)

where in the lower equation, we assumed i element in X
and W corresponds to the edge variable £/ ; hence we put
W(i) equal to the sum of the corresponding edge weights.

Finally, by maximizing W”X, the optimal vector X
which satisfies the above constrains is found. Therefore, we
have formulated GMCP as a BIP problem which is guaran-
teed to yield the optimal GMCP answer as a BIP problem
can be optimally solved.

4.2. Reduction from BIP to Mixed Binary Integer
Programming (MBIP)

All the variables are forced to be binary in a BIP prob-
lem. We show that forcing the node variables to be binary
guarantees the convergence of edge variables to binary val-
ues provided they range from O to 1; therefore, our prob-
lem can be reduced to Mixed Binary Integer Programming
(MBIP) which is less complex than BIP:



Proposition 1
if {¥m,n,i,j|1 <m,j < h,1<n,i<k}:vte{0,1}
and 0 <el' <1, thenel’ € {0,1}.

Constraint 1 is still valid, which enforces exactly one
node from each cluster should be selected. Constraint 2 im-
plies a non-zero edge cannot be connected to a zero node;
therefore, combined with constraint 1, it yields all non-zero
edges in one cluster should belong to one node. Addition-
ally, no more than (h — 1) non-zero edges can be connected
to the selected node of one cluster, since based on pigeon-
hole principle, there would have to be at least one cluster
with more than one selected node which violates constraint
1. Finally, since constraint 2 enforces the summation of
edge values, which are smaller or equal to one, to be ex-
actly (h — 1), and there cant be more than (h — 1) non-zero
edges, thus the edge values have to be exactly 1. B

Therefore, we need to enforce only the node variables
to be binary and allow the edge variables to be continues,
ranging from O to 1. We enforce this using MX < N, where
M is defined as:

(1<i S(Z)'kQ’l <j<(hk+ (Z).lf)} :

. 1 ifj=hk+i,
M(m)—{ J

. (15)
0 otherwise,

and N=1. Enforcing a variable to accept only binary values
implies an additional constraint in an Integer Programming
framework. Hence, by decreasing the number of binary
variables, the complexity of our GMCP solver significantly
reduces while the optimal solution is yet guaranteed.

The main contributing factors to the complexity of
GMCP are the number of clusters and the number of nodes
therein. We used Cplex [!] to solve our MBIP instances
on a quad core 2.4 GHz machine. Utilizing the proposed
solver, the GMCP instances corresponding to about 10,000
TRECVID-MED 2011-2012 videos could be solved in the
negligible time of 2.04 seconds on average. In order to have
a comparison with existing approximate GMCP solvers,
we tested a method based on Local Neighborhood Search
(LNS) [17, 6, 18] on the same instances. LNS and our
method converged to the optimal answer in 83% and 100%
of the cases respectively which confirms the optimality of
our solver. The average search time by LNS was shorter
(0.14 seconds); however, regarding the negligible time of
solving a GMCP compared to the other required steps such
as feature extraction, and codebook search, the solving time
is not a crucial factor in our framework.

5. Experimental Results

Our method is suitable for multiclass classification, and
not detection, since our class utility values (eq. 7) are mean-
ingful on a comparative manner. Therefore, our method is
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Figure 5. Performance evaluation of concept detection using the
GMCP-based method and the baselines.

unsuitable for solving the binary detection problem such as
the one addressed in the TRECVID-MED task. However,
even though we do not solve the TRECVID problem, we
use the TRECVID-MED videos as our dataset. That is due
to the complexity of such videos, their typical length and the
intra-class variability which provide a good basis for eval-
uating a contextual co-occurrence based video classifica-
tion method. Additionally, a broad range of annotations for
semantic concepts are available for TRECVID-MED data
which facilitates the evaluation process.

TRECVID11-MED and TRECVID12-MED [2] are cur-
rently among the most challenging datasets of complex
events. We evaluate the proposed framework on ECl11,
EC12 and DEVT datasets. DEVT (8100 videos) is part
of TRECVID-MED 2011 with of fifteen complex events
of Boarding trick, Feeding animal, Landing fish, Wedding,
Wood working project, Birthday party, Changing tire, Flash
mob, Vehicle unstuck, Grooming animal, Making sand-
wich, Parade, Parkour, Repairing appliance, and Sewing
project. EC11 and EC12 are subsets of TRECVID-MED
2011 and 2012 datasets and include 2,062 videos with anno-
tated clips; in each video, the beginning and end of the video
segments in which one of our 93 concepts occur are marked
manually resulting in total number of 10,950 annotated
clips. EC12 includes additional ten events of TRECVID-
MED 2012. Note that the annotated clips (shots) are used
only for training concept detectors and evaluating the con-
cept detection results. The annotated clips in query videos
are not used during test; we employ a sliding window ap-
proach for detecting the concepts in them (see sec. 5.2).

In order to train concept detectors, we extracted Motion
Boundary Histogram (MBH) [14] features from the anno-
tated clips and computed a histogram of visual words for
each. Then, we trained 93 binary SVMs [4] with x? kernel
using the computed histogram of visual words.

5.1. Concept Detection Evaluation

We evaluated the proposed GMCP-based concept detec-
tion method on EC11 and EC12 using 10-fold cross vali-
dation scenario. We extracted the reference co-occurrence
matrix, shown in fig. 3, utilizing the annotated clips of 9



folds and used the rest of the videos for testing.

As the first baseline, we applied the 93 individual SVM
concept detectors to each annotated clip and picked the class
with the highest confidence as the detected concept; this ap-
proach results in the average accuracy of 29%. In order to
compute the accuracy, first we divide the number of cor-
rectly recognized clips by the total number of clips for each
of the 93 concepts; the average of the resulting 93 values
yields the average concept accuracy reported in fig. 5. The
proposed GMCP-based concept detection method yields the
average accuracy of 41%. Fig. 5 illustrates the accuracy of
the baselines and the proposed method along with the break-
down with respect to the size of the test videos. As apparent
in the chart, the improvement made by the proposed method
increases as the size of the video grows, resulting in an im-
provement of over 16% for videos with more than 15 clips
(about 1.6 minutes long). This is due to the fact that there
are more clips in longer videos, and therefore, more con-
textual information to utilize; this shows that the proposed
method is successfully leveraging the context.

We also provide the results of employing linear chain
conditional random fields for concept detection, as CRF is a
common approach to exploiting the context [13]. Addition-
ally, fig. 5 shows the performance of using Discriminative
Model Fusion (DMF) [7]; the negligible improvement made
by DMF is consistent with observation made in other works
[13], specially for large concept lexicons. Fig. 6 shows the
confusion matrix of concept detection using the individual
detectors and the proposed method; a notable improvement
is observed on the main diagonal of GMCP results.

The improvement GMCP yields over CRF (and gener-
ally standard graphical models) is mainly due to not en-
forcing any specific structure on the graph, such as being
acyclic, and preserving its generality. Moreover, our graph
is complete; thus, a graphical model equivalent to our input
would have to be complete and consequently contain lots
of loops while common graphical models’ inference meth-
ods, such as belief propagation, are known to have a degrad-
ing performance in the presence of loops [16], whereas our
optimization method does not deteriorate with inclusion of
loops in its input. Note that the concepts which are typically
confused by GMCP, such as no. 34 jumping over obstacles,
have too small scores from their SVM detectors, so they can
not be completely fixed by incorporating the context.

5.2. Classification using GMCP

In this experiment, we evaluate the performance of the
method described in section 3 where both concept detection
and event classification are performed by GMCP. In order to
keep the test and training set totally disjoint, we extracted
the event-specific co-occurrence matrices, samples shown
in fig. 4, from the annotations of EC11 clips, and used
DEVT videos as the test set. We applied the SVM con-
cept detectors to sliding windows of 180 frames (average
size of clips in the annotated set) with displacement size of

GMCP Raw SVM

Figure 6. Confusion matrices of concept detection. Left and right
show GMCP and the baseline results, respectively.

B SVM Event Classifier o

B GMCP Event Classifier !
B 06
. 05
. 04
o 03
» 02
. 01

0 T T T T 3 N
All < 1 0< 25< 2 4 6 8 10 12 14 o

5 0< 15< 2
Video Size (no. of Clips)

NowW A g @
S © & o o

Average Accuracy %

[
o

Figure 7. Performance evaluation of event classification using
GMCP vs. SVM. Left and right show the bar chart of average
accuracy and confusion matrix of GMCP respectively .

30 frames in each step. Therefore, each uniform clip of 180
frames has over 50% of overlap with six windows on which
the SVM concept detectors were applied. We pick the win-
dow in which the highest SVM confidence value falls to
represent the clip. We employ this approach since the be-
ginning and end of the concept shots in a test video are un-
known, and they are often overlapping. We ignore the clips
for which the highest SVM confidence is less than 10%.

The video classification results of applying the GMCP-
based classifier on these clips with the aforementioned con-
cept detection scores are shown in Fig. 7-left. We use a
multiclass SVM which performs the classification using the
histogram of concepts occurring in the video as the baseline.
This multiclass SVM is trained on the concept histograms
extracted from the annotations of EC11. For the test videos,
the concept with the highest score (by the individual con-
cept detectors) is selected for each clip, and a histogram of
all of the concepts found in the video is formed. This his-
togram is then classified using the multiclass SVM.

The bar chart in Fig. 7-left illustrates the average classi-
fication accuracy of GMCP and the baseline; the confusion
matrix of GMCP results is shown on the right. As apparent
in the bar chart, the proposed GMCP-based event classifier
outperforms SVM, in particular for longer videos. This is
consistent with the basis of the proposed approach as the
event classification is being done in a contextual manner.
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Figure 8. Evaluation of event recognition using the concepts de-
tected by GMCP and SVM. Part (a) compares the results on DEVT
and EC11-EC12 datasets. Part (b) provides the mAP values.

5.3. Event Recognition using GMCP Concepts

We performed an experiment to verify how much im-
provement the concepts detected by GMCP cause in the
overall performance of event recognition. We computed the
histogram of 93 concepts for the annotated videos in EC11
and EC12 and used them for training fifteen binary classi-
fiers representing fifteen TRECVID-MED11 events.

In one experiment, we used DEVT videos as the test set.
As an standard baseline method, the histogram of the de-
tected concepts by the raw SVMs in the test video was clas-
sified using the fifteen binary SVM event classifiers. We
applied the GMCP-based concept detection method on each
test video and formed the histograms using the improved
concepts; the resulting histogram was classified using the
trained SVM event classifiers. The bar chart of fig. 8 (a)-
left compares the performance of the baseline and the pro-
posed method. The GMCP concepts improve the overall
performance of event recognition by 8% to 14% in terms
of average event recognition accuracy. Fig. 8 (b) compares
the results of the same experiment in terms of mAP (mean
average precision). As apparent in the table, a notable im-
provement is seen as the size of the videos increases.

We performed a similar experiment on EC11 and EC12
datasets which include 25 events, using 10-fold cross vali-
dation scenario; the results are provided in fig. 8 (a)-right.

Note that in this experiment, the event recognition was
always performed using SVM (unlike sec. 5.2) while the
concepts were detected using GMCP or the baseline.

6. Conclusion

We proposed a contextual approach to complex video
classification using generalized maximum clique graphs.
We defined a co-occurrence model based on conditional
probability, and proposed to represent an event using the
co-occurrence of its concepts. Then, we classified a video
based on matching its co-occurrence pattern, represented by
a clique, to the class co-occurrence patters. We also devel-

oped a novel optimal solution for GMCP using Mixed Bi-
nary Integer Programming. The proposed approach opens
new opportunities for further research in this direction, and
the evaluations showed our method significantly outper-
forms well established baseline.
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