
Fast Edge-Preserving PatchMatch for Large Displacement Optical Flow

Linchao Bao
City University of Hong Kong

linchaobao@gmail.com

Qingxiong Yang∗

City University of Hong Kong
qiyang@cityu.edu.hk

Hailin Jin
Adobe Research
hljin@adobe.com

Abstract

We present a fast optical flow algorithm that can handle
large displacement motions. Our algorithm is inspired by
recent successes of local methods in visual correspondence
searching as well as approximate nearest neighbor field
algorithms. The main novelty is a fast randomized edge-
preserving approximate nearest neighbor field algorithm
which propagates self-similarity patterns in addition to off-
sets. Experimental results on public optical flow bench-
marks show that our method is significantly faster than
state-of-the-art methods without compromising on quality,
especially when scenes contain large motions.

1. Introduction
Optical flow estimation is one of the most fundamental

problems in Computer Vision. Since the seminal work of
Horn-Schunck global model [12] and Lucas-Kanade local
model [16], there have been tremendous progresses in this
area. We have algorithms that can handle challenging is-
sues such as occlusions, motion discontinuities, textureless
regions, etc. However, there are still outstanding problems
in existing optical flow methods, such as large displacement
motions and motion blur. This paper addresses the issue of
large displacement motions. In particular, we are interested
in fast optical flow algorithms as speed is crucial for practi-
cal applications.

Large displacement motions are an issue in optical flow
estimation since the beginning. The basic formulation of
optical flow is based on a differential form of the brightness
constancy equation which is invalid for motions larger than
the support of the differential operators. In order to han-
dle larger motions, traditional methods resort to the multi-
scale coarse-to-fine framework. However, the coarse-to-fine
framework suffers from an intrinsic limitation that it fails
for fine scale image structures whose motions are larger
than their size. Recently, there are several algorithms pro-
posed to overcome this intrinsic limitation by going beyond

∗Corresponding author. This work was supported in part by a GRF
grant from the Research Grants Council of Hong Kong under Grant U
122212 and an Adobe gift fund.

the basic differential formulation and incorporating addi-
tional correspondence information. For instance, one can
directly search for pixel correspondence [21]. But the com-
plexity of the search step scales quadratically with respect
to the size of the motion. Robust keypoints are one reliable
source of correspondence information that can be matched
efficiently across entire images but are only available at
sparse image locations. Recently, an algorithm called deep-
matching [25] is proposed to produce dense correspondence
field efficiently, but its huge memory consumption prevents
itself from practical applications. Besides, in order to ob-
tain a dense flow field, one needs a global optimization step
which is typically computationally expensive [7, 27].

In this paper, we propose to use approximate nearest
neighbor field (NNF) for large displacement optical flow es-
timation. NNF is a correspondence field indicating pairs of
image patches from two images which are closest in terms
of some patch distance. There is no limitation on the rela-
tive distance between a pair of closest patches which makes
NNF a good source of information for handling large dis-
placement motions. Moreover, although exact NNF is com-
putationally expensive to compute, there exist efficient ap-
proximate algorithms [4, 13, 11].

In order to obtain optical flow using approximate NNFs,
we need to address two fundamental problems. First, there
is no spatial smoothness in a NNF which means neighboring
patches in one image can have arbitrary matching patches
in the other image. This problem is more pronounced in
homogeneous regions where matching is ambiguous. Thus
most approximate NNF algorithms (such as CSH [13] and
KD-Tree [11] based algorithms) will produce messy fields
and are not suitable for optical flow estimation. Second,
occlusions are not respected in NNF computation, i.e., one
will get matching patches in occlusion regions even though
they are meaningless. The second problem can be resolved
by explicitly performing consistency check between for-
ward and backward flow. To address the first problem, one
may attempt to use global optimization to incorporate mo-
tion candidates from a NNF into an optical flow estimation
[9]. However, doing so may lead to a computationally ex-
pensive algorithm which has limited practical applicability.
Instead, motivated by recent successes of local methods in

stereo matching and optical flow [19, 24, 31] where it is
shown that carefully crafted local methods can reach quality
on par with global ones, we address the problem by increas-
ing the local matching support (patch size). But increas-
ing patch size leads to two new problems which are motion
boundary preservation and algorithm speed. We address the
former problem by introducing a novel edge-preserving ver-
sion of PatchMatch [4] and the latter one by developing a
fast approximate algorithm.

1.1. Related work

It is beyond the scope of this paper to review the entire
literature on optical flow. Instead, we will only discuss the
closely related papers. In particular, we will focus on the
work that addresses large displacement motions. The clas-
sical coarse-to-fine framework for large displacement mo-
tions that is used by most optical flow algorithms was orig-
inally formulated in [1]. It generally works well for rela-
tively large objects but performs poorly on fine scale image
structures which may disappear in coarse scales. This is
an intrinsic limitation of the coarse-to-fine framework. To
overcome this limitation, Steinbruecker et al. [21] proposed
to incorporate correspondence searches in a framework that
avoids warping and linearization. However, the search part
is exhaustive for every pixel in the image which makes the
algorithm potentially slow for large search ranges. Instead
of an exhaustive search at every pixel, the LDOF framework
[7] is to only consider robust keypoints which serve as con-
straints in an energy-based formulation. Because keypoints
can be matched across entire images, the algorithm does
not suffer from the search range problem. To further im-
prove the reliability of keypoint matching, the MDP-Flow
[27] incorporated a discrete optimization step before diving
into the variational optical flow solver.

Regarding NNFs, PatchMatch [4] was a seminal work
and generated a lot of interests recently because of its com-
putational efficiency and ability to match patches across
large distance. But most algorithms in this area are pro-
posed for the NNF problem in terms of reconstruction er-
ror [13, 11], which is different from the dense correspon-
dence problem. Exceptionally, the work [6] applied Patch-
Match to stereo matching for computing aggregation with
slanted support windows, but they did not address the com-
putational efficiency after adopting a weighting scheme on
the support windows. A recent work employing NNF for
optical flow estimation is [9], which computes an initial
noisy but dense matching which is cleaned up through mo-
tion segmentation.

Our algorithm is closely related to the local methods in
stereo matching and optical flow. Local methods have a
long history in stereo matching. They used to be known
as fast but less accurate compared to globally optimized
methods. But [31] showed that a good local method can
perform equally well. Rhemann et al. [19] successfully
applied this principle to optical flow and obtained an algo-

rithm that ranks high on the Middlebury flow benchmark.
The SimpleFlow [24] followed the same direction but to-
wards a less accurate yet faster solution. The PatchMatch
Filter [15] adapted the PatchMatch algorithm onto super-
pixels and employed the algorithm from [19] to refine the
matching correspondence between superpixels.

1.2. Contributions
The main contribution of this work is a fast local opti-

cal flow algorithm that can handle large displacement mo-
tions. Our method is local, i.e., it does not involve opti-
mization over the entire image and therefore fast. On the
other hand, our method does not sacrifice on quality. We
compare our method against existing ones on MPI Sintel,
KITTI, and Middlebury benchmarks. Our ability to handle
large displacement motions is clearly demonstrated by the
top performance on the MPI Sintel benchmark. In terms
of quality, our method outperforms all other fast methods
without compromising on the speed. In fact, the quality of
our method is on par with that of global ones but the speed
is significantly faster.

Our main technical novelty is a fast randomized edge-
preserving approximate nearest neighbor field algorithm.
The key insight is that in addition to similar offsets, neigh-
boring patches have similar self-similarity patterns. There-
fore, we can propagate self-similarity patterns in a way sim-
ilar to propagating offsets as done in [4]. This significantly
reduces the computational complexity. We hope this idea to
inspire other work in generalizing [4] to other applications.

2. Our Approach
Our method follows the traditional local correspondence

searching framework [20] which consists of 4 steps: (1)
matching cost computation, (2) cost aggregation, (3) cor-
respondence selection, and (4) refinement. It is shown that
the framework can produce high-quality optical flow [19],
but its computational complexity is linear in search range.

While reducing the correspondence search range may
be a potential solution, we in this paper address this prob-
lem from another point of view. We notice that, if we use
squared error as the matching cost and use box filtering to
perform the cost aggregation, then steps (1) to (3) are actu-
ally equivalent to searching the nearest neighbors for image
patches using the patch Euclidean distance, which is known
to have fast approximate algorithms that are independent
of search range, such as PatchMatch [4]. However, a di-
rect use of PatchMatch to estimate optical flow can handle
large displacement motions but tend to introduce visible er-
rors around motion discontinuities as shown in Fig. 1a. To
overcome the problems, we propose a new edge-preserving
version of PatchMatch (Sec. 2.1) and a corresponding fast
algorithm (Sec. 2.2).

The techniques used in [19] for the refinement step (i.e.,
consistency check and weighted median filtering [29, 17])
are also employed in this paper except that we suggest to

(a) Original PatchMatch (b) Ours (c) Ours (refined)

Figure 1: PatchMatch results (cropped) on the “Army” dataset from Mid-
dlebury benchmark [2]. The proposed edge-preserving PatchMatch can
preserve details in the NNF results. Note that the outliers in NNF result
can be easily removed by refinement.

produce subpixel accuracy with a more efficient technique
– paraboloid fitting, which is a 2D extension from the 1D
parabola fitting – a commonly adopted technique in stereo
matching [30]. Details are presented in Sec. 2.3 and 2.4.

2.1. Edge-Preserving PatchMatch

The main idea of original PatchMatch [4] is to initialize
a random correspondence field and then iteratively propa-
gate good guesses among neighboring pixels. In order to
avoid trapping into local minima, several random guesses
are additionally tried for each pixel during the propagation.
The matching cost between two patches is originally de-
fined as the patch Euclidean distance. Specifically, suppose
two patches with radius r are centered at location a(xa, ya)
in image A and location b(xb, yb) in image B, respectively.
The matching cost between the two patches is

d(a,b) =
∑

∆(∆x,∆y):|∆x|6r,|∆y|6r

‖IA(a+∆)−IB(b+∆)‖2, (1)

where IA and IB denote the CIELab color appearances of
image A and B, respectively.

In order to make the NNF preserve details of input im-
age, we add bilateral weights [31] into the matching cost
calculation . Moreover, similar to the data term employed
in variational optical flow estimation [5, 22], we replace the
L2 norm in the above formulation with a robust loss func-
tion (such as the negative Gauss function or the Lorentzian
function [5]) to reject outliers. Further more, in addition to
color cue, we can add more cues that can better deal with
repetitive patterns and textureless regions, e.g., image gradi-
ent or the census transform [32]. Specifically, the matching
cost in our approach is defined as follows,

d(a,b) =
1

W

∑
∆

w(a,b,∆)C(a,b,∆), (2)

where W is the normalization factor (sum of all the weight
w), w(·) is the bilateral weighting function and C(·) is the
robust cost between two pixels (suppose K cues are in-
volved in the cost calculation):

w(a,b,∆) = exp(−‖∆‖
2

σ2
s

) exp(−‖I
A(a+∆)− IA(a)‖2

σ2
r

)

exp(−‖I
B(b+∆)− IB(b)‖2

σ2
r

), (3)

C(a,b,∆) =

K∑
i=1

ρi(C
A
i (a + ∆)− CB

i (b + ∆)), (4)

where σs and σr are controlling spatial and range influ-
ences, respectively (typically, we set σs = 0.5r (r is patch
radius) and σr = 0.1. The cost contributed by each cue
Ci is controlled by a robust loss function ρi(·) for rejecting
outliers and balancing between different cues (for simplic-
ity, we use the same loss function for all the cues used in
our experiments, see Sec. 3).

Fig. 1 shows a comparison of the NNF results pro-
duced by the original PatchMatch and the proposed edge-
preserving PatchMatch. The details in input image can
be much better preserved in NNF when using our edge-
preserving version. Note that in order to perform flow re-
finement (in particular, the consistency check [19]), we need
to compute the NNFs between two images in both direc-
tions. Thus we use the symmetric bilateral weight in Eq.
(3), so that during the PatchMatch we can symmetrically
update both NNFs after calculating one matching cost.

2.2. Approximate Algorithm
While PatchMatch can effectively reduce computational

complexity in terms of search range, its complexity still
depends on patch size. In order to produce high-quality
flow fields, however, a large patch size is usually preferred
for eliminating matching ambiguities (note that the edge-
preserving feature plays an important role for maintaining
flow accuracy when increasing patch size). In this section,
we propose an algorithm that utilizes a self-similarity prop-
agation scheme and a hierarchical matching scheme to ap-
proximate the exact edge-preserving PatchMatch.

2.2.1 Self-Similarity Propagation

We notice that, due to the range kernel employed in the
matching cost computation (Eq. (3)), the major portion of
the matching cost is contributed by pixels that are similar to
the center pixel. This suggests a natural way to accelerate
the matching cost computation which is that we simply ig-
nore dissimilar pixels to center pixel. To be more specific,
for each pixel, we precompute the n (n�M = (2r+ 1)2)
most similar pixels from its neighborhood, store their posi-
tions and only use the stored pixels to compute the cost.

We performed experiments on the Middlebury training
datasets [2] to validate this idea. For each pixel, the neigh-
boring n most similar pixels are used for computing patch
matching cost. Table 1 shows the optical flow accuracy and
the corresponding runtime on Middlebury training datasets
when n is with different value (patch size is fixed to 35×35).

Average Error EPE AAE CPU Timing (sec)
Patch (35× 35) 0.31 3.35 97.8

n = 200 0.32 3.45 19.1
n = 100 0.33 3.50 10.2
n = 50 0.33 3.56 5.4
n = 30 0.49 5.08 3.5
n = 10 0.91 9.94 1.6

Table 1: Average optical flow accuracy on the Middlebury training datasets
when using selected pixels (the n most similar pixels for each pixel) to
compute matching cost. The time is recorded for running bidirection
PatchMatch algorithm (computing two NNFs) on 640× 480 images. Ac-
curacy is evaluated after refinement. Note that the CostFilter [19] takes
about 430 seconds on the same CPU to produce bidirectional optical flow
with search range 61× 61.

Surprisingly, the result gives a very good support for apply-
ing this idea to optical flow estimation – upon balancing
between quality and efficiency, n = 50 can be a very good
choice for 35 × 35 patch, which is much smaller than the
number of pixels inside each patch. By involving much
less pixels when computing matching cost, the runtime of
PatchMatch algorithm can be substantially reduced, while
only sacrificing very little quality performance.

Then a problem raised is that the brute-force pre-
selection of n similar pixels for each pixel actually can be
too slow, especially when patch size is large, which may
cancel out a large portion of the speed gain of the Patch-
Match. For example, selecting n = 50 out of 35 × 35
for 640 × 480 image takes about 12 seconds in our experi-
ments (on CPU). Note that the straightforward implementa-
tion of the selection process takes O(Mn) complexity for
each pixel. With a complex data structure (like a max-
heap), the computation complexity can only be reduced to
O(M log n), which is still too high. Fortunately, inspired
by the spirit of PatchMatch itself, we designed an self-
similarity propagation algorithm to roughly select similar
pixels for each pixel in a much faster way.

Our self-similarity propagation algorithm utilizes the
fact that adjacent pixels tend to be similar to each other,
just like the PatchMatch itself. Specifically, the algorithm
is as follows: for each pixel, we randomly select n pixels
from its surrounding region and store them into a vector in
the order of their similarity to the center pixel (namely, self-
similarity vector); then we scan the image from top-left to
bottom-right, and, for each pixel, merge its adjacent pixels’
vector into its own own vector (according to the stored pix-
els’ similarity to current pixel); reversely scan and merge.
Since we do not intend to search exactly the top n similar
pixels for each pixel, the algorithm does not need to inter-
leave additional random guesses during propagation or iter-
ate more. Moreover, when merging vectors, if the similar-
ity between two center pixels are very high, we can directly
merge the two vectors without re-computing the similarity
between surrounding pixels and center pixel. The pseudo-
code is in Algorithm 1. The approximate algorithm only
needs O(n log n) computation for each pixel (the sorting in

Algorithm 1 Self-Similarity Propagation Algorithm
Input: image A and B, patch radius r, number of selected sim-
ilar pixels n.
Output: self-similarity vector SA and SB .
/* Initialization */
for each pixel (x, y) in A and B do

(1) randomize a vector S(x, y) containing the location of n
neighboring pixels inside the support window;
(2) sort pixels in S(x, y) according to the Euclidean similar-
ity in CIELab color space to pixel (x, y).

end for
/* Propagation */
for each pixel (x, y) in A and B (scan from top-left to bottom-
right) do

(1) merge vector S(x − 1, y) and S(x, y − 1) into S(x, y)
according to those pixels’ similarity to pixel (x, y);
(2) for the pixels out of the support window of pixel (x, y),
randomize another location inside the window.

end for
for each pixel (x, y) in A and B (scan reversely) do

(1) merge vector S(x + 1, y) and S(x, y + 1) into S(x, y)
according to those pixels’ similarity to pixel (x, y);
(2) for the pixels out of the support window of pixel (x, y),
randomize another location inside the window.

end for
/* Result S(x, y) for A is SA(x, y), and for B is SB(x, y) */

initialization step and merging in propagation step), which
is independent of patch size. Thanks to the propagation be-
tween adjacent pixels, the algorithm can produce reason-
ably good approximate results in a much faster speed (for
35 × 35 patch size with n = 50, it takes about 1.8 seconds
and is about 6x faster than the exact selection, the speedup
factor grows larger as the patch size becomes larger). When
it comes to the optical flow estimation, we do not experience
degraded accuracy on the Middlebury training datasets (in
Table 1). More results are provided in Sec. 3.

2.2.2 Hierarchical Matching

When input image is large, performing PatchMatch on all
pixels is a waste of computation resources. We employ a
hierarchical matching scheme to further accelerate the al-
gorithm. Specifically, given a pair of input frames, we first
downsample the images to a certain lower resolution (for a
balance between speed and accuracy, typically downsample
twice with a factor 0.5 at each dimension), then we perform
the above algorithm to compute the NNF on the downsam-
pled images. After obtaining the NNF on lower resolution,
we perform joint bilateral upsampling [30] to get a coarse
NNF on higher resolution. Then we perform a 3 × 3 local
patch matching to refine the coarse NNF on the higher res-
olution images. The pipeline is repeated until we finally get
the NNF on the original resolution.

The hierarchical scheme is somewhat similar to that was
used in SimpleFlow [24]. However, there are two key dif-
ferences between our approach and theirs: first, since our

edge-preserving PatchMatch does not have restriction on
search range, we do not downsample the original frames
to very low resolutions and hence it is able to handle large
displacements of thin structures (we typically only down-
sample twice). This will also avoid large error accumula-
tion when propagating NNF estimate from lower resolution
to higher resolution. Second, thanks to the edge-preserving
ability, the coarser NNF is usually accurate enough and we
only need to perform local search within a 3 × 3 neighbor-
hood when refining the NNF on higher resolution. This can
largely reduce the computation cost, thus our approach is
much faster than SimpleFlow (see Sec. 3).

2.3. Handling Occlusions and Outliers
After computing bidirectional NNFs (at each resolu-

tion) between two images, we explicitly perform forward-
backward consistency check [19] between the two NNFs to
detect occlusion regions. Inconsistent mapping pixel is then
fixed by nearby pixels according to their bilateral weights.
Even so, there will still be some incorrect mapping pixels
that cannot be detected by the consistency check, which we
treat as outliers. A weighted median filtering [3] is thus
performed on the flow fields to remove the outliers (filter-
ing is performed on all pixels). As a final keeper, a sec-
ond pass consistency check and fixing is performed to make
sure the filtering is doing things right. Note that the consis-
tency check and fixing is usually very fast, the computa-
tional overhead in this step is mainly the weighted median
filtering performed on all pixels.

2.4. Subpixel Refinement
Suppose the discrete correspondence for each pixel a

in image A is NNA→B(a) = b, and the patch cen-
tered at pixel a is denoted by Ωa. We then compute the
matching costs between patch Ωa and m different patches
around patch Ωb, respectively, which is denoted as D =
{d1, d2, ..., dm}. Note that when computing the matching
cost, the fast algorithm in previous section still applies. As-
sume the cost follows a paraboloid surface on the 2D image
grid, which is

d = f(x, y) = θ · [x2, y2, xy, x, y, 1]T, (5)

where θ = [θ1, θ2, ..., θ6] are the unknowns. Substituting
the m (m > 6, typically 25 in our experiments) known
points into the equation, we can solve the linear system and
figure out the unknowns. Then the b∗(x∗, y∗) associated
with the minimum cost can be computed as follows (by tak-
ing derivatives and setting them to zero),

x∗ =
2θ2θ4 − θ3θ5

θ2
3 − 4θ1θ2

, and y∗ =
2θ1θ5 − θ3θ4

θ2
3 − 4θ1θ2

, (6)

which is the location of a’s correspondence with subpixel
accuracy. Note that the linear system to be solved is very
small, in practice if we multiply a transposed matrix on both
sides, the linear system will have a constant size of 6 × 6,
no matter how many points are involved (the value of m).

(a) Discrete NNF (b) Subpixel refined (c) Improved

Figure 2: Example of subpixel refinement. Note that the improved result
in (c) is obtained in the same runtime as that in (b).

To further increase the subpixel accuracy, we compute
matching cost for the m points on upsampled images in-
stead of the original images (we obtain upsampled image
using bicubic interpolation with an upsampling factor of 2
along each dimension in all our experiments). This does not
increase the computational overhead since we only need to
compute matching cost for all pixels on the original resolu-
tion. The main difference is that the m points around pixel
b are now already with subpixel offsets to b. Fig. 2 shows
the improvement of this strategy.

Finally, an edge-preserving filtering with small parame-
ters (e.g., bilateral filtering [28] with σs = 2, σr = 0.01 in
our experiments) is performed on the flow fields to smooth
out small outliers that might be introduced in this step.

3. Experimental Results

In this section, we present our experimental results on
three public optical flow benchmarks – the Middlebury
benchmark [2], the KITTI benchmark [10], and the MPI
Sintel benchmark [8]. Note that the Middlebury benchmark
only contains small displacement motions and the KITTI
benchmark is specially targeted on autonomous driving,
thus our main focus is on the MPI Sintel benchmark. In
our implementation, we use the AD-Census [18] for com-
puting matching cost (i.e., the CIELab color cue together
with the census transform cue). Parameters for the edge-
preserving PatchMatch are set to r = 17, σs = 0.2r and
σr = 0.1. We implemented the whole pipeline of our algo-
rithm using CUDA and performed all the experiments on a
NVIDIA Geforce GTX 780 GPU.

3.1. Results on MPI Sintel Benchmark

The MPI Sintel benchmark is a challenging optical flow
evaluation benchmark, especially due to the complex el-
ements involved, e.g., large motions, specular reflections,
motion blur, defocus blur, and atmospheric effects. The
evaluation is performed on two kinds of rendering frames,
namely clean pass and final pass, each containing 12 se-
quences with over 500 frames in total. Table 2 shows the
performance of our method on this benchmark (complete ta-
ble is available online and in supplementary material). Our
method are among the top performers but with much faster
speed than the competitors. Note that if we only consider
regions containing large motions (see column “EPE s40+”
in Table 2), our method ranks even higher.

Clean pass EPE all EPE s40+
Runtime

(sec)
DeepFlow [25] 5.377 33.701 17

MDP-Flow2 [27] 5.837 39.459 547
Ours 6.494 39.152 0.25

S2D-Matching [14] 6.510 44.187 1920
Classic+NLP [22] 6.731 45.290 888

FC-2Layers-FF [23] 6.781 45.962 4525
LDOF [7] 7.563 51.696 60

Classic+NL [22] 7.961 57.374 888
Classic++ [22] 8.721 60.645 510

Horn+Schunck [12] 8.739 58.243 156
Classic+NL-fast [22] 9.129 66.935 174

SimpleFlow [24] 12.617 81.786 2.9
Aniso. Huber-L1 [26] 12.642 77.835 3.2

Final pass EPE all EPE s40+
Runtime

(sec)
DeepFlow [25] 7.212 44.118 17

S2D-Matching [14] 7.872 48.782 1920
FC-2Layers-FF [23] 8.137 51.349 4525
Classic+NLP [22] 8.291 51.162 888

Ours 8.377 49.083 0.25
MDP-Flow2 [27] 8.445 50.507 547

LDOF [7] 9.116 57.296 60
Classic+NL [22] 9.153 60.291 888

Horn+Schunck [12] 9.610 58.274 156
Classic++ [22] 9.959 64.135 510

Classic+NL-fast [22] 10.088 67.801 174
Aniso. Huber-L1 [26] 11.927 74.796 3.2

SimpleFlow [24] 13.364 81.350 2.9

Table 2: Performance on MPI Sintel benchmark (http://sintel.
is.tue.mpg.de/results, captured on Oct 30th, 2013). The column
“EPE s40+” means the average endpoint error over regions with flow ve-
locities larger than 40 pixels per frame. The runtime are reproduced from
other benchmark website since it is not reported on this benchmark (note
that not all of them are reported on GPU).

One observation is that our method performs worse on
the final pass than on the clean pass. Note that the final
pass is rendered with motion blur, defocus blur and atmo-
spheric effects while the clean pass are not. By compar-
ing between the results on the two passes (see Fig. 3), we
find that our results are mainly degraded on 3 (out of 12)
sequences, namely “ambush 1”, “ambush 3”, and “moun-
tain 2,” when moving from clean pass to final pass. In fact,
it turns out motion blur and defocus blur do not affect the
quality of the results too much, since adjacent frames are
usually blurred similarly. This is also usually true for real-
world videos, except when the observed object dramatically
changes speed or the camera changes focus. The real reason
why the results are degraded on the 3 sequences is actually
because of the synthetic atmospheric effects, in particular,
the heterogeneous smoke (Fig. 3b) and heavy fog (Figs.
3d). These two kinds of effects seriously disturb image lo-
cal variances (while this is obvious for smoke, the synthetic
fog actually introduces very subtle textures, which can be
observed on the detail enhanced input images shown in Fig.
4), and this will cause problems at textureless regions for

(a) “ambush 1” clean pass (b) “ambush 1” final pass

(c) “ambush 3” clean pass (d) “ambush 3” final pass

Figure 3: Visual comparison of our results on the two passes of MPI Sintel
benchmark. The heterogeneous smoke in (b), as well as the “textured” fog
(see Fig. 4), seriously disturbs image local variances and cause the results
of our local method degraded much, especially at textureless regions (see
the regions marked by red squares).

Figure 4: Close-ups (marked by red squares in Fig. 3) for the detail en-
hanced version of the input images in Fig. 3. The subtle textures intro-
duced by synthetic atmospheric effects can be easily observed.

local method since matching cues might be locally domi-
nated by the subtle textures introduced. See Sec. 3.4 for
more discussion.

3.2. Results on KITTI Benchmark

The KITTI optical flow benchmark contains 194 pairs of
grayscale frames (test dataset), which are obtained with a
wide-view camera fixed on a moving vehicle. Thus most
of the flow are caused by camera movement and tend to
be smooth with few motion boundaries, which makes tradi-
tional coarse-to-fine global method a perfect choice. Be-
sides, the camera distortions near scene boundaries are
large, which makes patch matching often fail near such re-
gions. Thus, as a local method based on patch matching,
the accuracy performance of our method is not that promi-
nent on this benchmark (see Table 3 for a comparison with
other fast methods, complete table is available online and
in supplementary material). However, if one is willing to
compromise a little on quality for the sake of speed, our

http://sintel.is.tue.mpg.de/results
http://sintel.is.tue.mpg.de/results

(a) Frame 1 (b) Frame 2

(c) Ground truth (d) Our result
Figure 5: An example of our result on KITTI benchmark.

Out-Noc Avg-Noc
Runtime

(sec)
TGV2ADCSIFT 4.71% 1.6px 12

DeepFlow 5.38% 1.5px 17
CRTflow 6.90% 2.7px 18
Classic++ 8.04% 2.6px 510

fSGM 8.44% 3.2px 60
Ours 8.62% 2.5px 0.25

TGV2CENSUS 9.19% 2.9px 4
Classic+NL-fast 10.13% 3.2px 174
Horn-Schunck 12.47% 4.0px 156

LDOF 18.72% 5.5px 60
TV-L1 26.50% 7.8px 16

BERLOF 30.63% 8.5px 0.231
RLOF 31.49% 8.7px 0.488

HAOF (Brox et al.) 32.48% 11.1px 16.2
PolyExpand 44.53% 17.2px 1
Pyramid-LK 57.22% 21.7px 90

Table 3: Performance on KITTI benchmark (http://www.cvlibs.
net/datasets/kitti, captured on Oct 30th, 2013) when error
threshold is 5 pixel. Only pure optical flow algorithms with runtime less
than 100 seconds are shown (i.e., methods incorporated with stereo match-
ing or epipolar geometry are not shown). Note that the runtime are repro-
duced from the benchmark website (not all of them are reported on GPU).

method can provide a good choice in this case. Fig. 5 gives
an example of our results.

3.3. Results on Middlebury Benchmark

The evaluation on Middlebury Benchmark is performed
on 12 pairs of frames, most of which contain only small
displacement motions. Since a matching process is not nec-
essarily needed in the context of small displacements, our
method is actually not suitable for this benchmark. Table
4 shows the performance of our method on the Middlebury
benchmark (complete table is available online and in sup-
plementary material). Note that since the evaluation dataset
is very small, methods submitted to the benchmark tend to
be overfitted (a small difference in EPE can lead to a huge
difference in ranking). Our algorithm without the hierarchi-

Method
Avg. Avg. Reported
Rank EPE Time (sec)

Ours (w/o HM) 31.1 0.33 2.5
SimpleFlow 35.5 0.47 1.7+240‡

Adaptive 38.9 0.40 9.2
CompOF-FED-GPU 43.0 0.47 0.97

Aniso. Huber-L1 44.2 0.40 2
TV-L1-Improved 49.1 0.54 2.9

Ours 64.0 0.62 0.20
‡: The reported results of SimpleFlow are obtained after global optimization

using [22], which takes about 240 seconds using the code provided by [22].

Table 4: Performance on Middlebury benchmark (http://vision.
middlebury.edu/flow, Endpoint Error, captured on Oct 30th, 2013).
Only algorithms with similar reported runtime to our method are shown.
Note that the runtime are reproduced from the benchmark website (all of
them are reported on GPU).

(a) Input (first frame) (b) Ground truth

(c) with HM (0.82) (d) without HM (0.63)

Figure 6: An example of our results on Middlebury benchmark. The EPE
is shown in the caption.

cal matching scheme gets a large promotion on the ranking
list (see “Ours (w/o HM)” in Table 4, notice that hierarchi-
cal matching scheme is for fast approximation).

http://www.cvlibs.net/datasets/kitti
http://www.cvlibs.net/datasets/kitti
http://vision.middlebury.edu/flow
http://vision.middlebury.edu/flow

3.4. Limitations
As a local method, our approach will fail at large texture-

less regions, where local evidences are not enough to elimi-
nate matching ambiguities. While increasing patch size and
adding more cues (such as the census transform) might help
relieve the problem, it cannot be completely avoided, espe-
cially when the regions are large. In addition, textureless
regions can be easily affected by small noise or disturbance
(such as the synthetic “textured” fog in Fig. 4), which may
lead to incorrect match. In this case, global optimization
techniques may help to solve the problem. However, notice
that mismatch in large textureless regions might not be a
serious problem for some real-world applications.

4. Conclusions
In this paper, we present an optical flow estimation

approach that can efficiently produce high-quality results,
even when the scene contains very large motions. Our
method is local, yet independent of search range, and there-
fore is fast, thanks to the randomized propagation of self-
similarity patterns and correspondence offsets, as well as
the hierarchical matching scheme. Evaluations on public
benchmarks demonstrate the effectiveness and efficiency of
our algorithm. We believe our fast yet effective method will
find its place in many practical applications.

References
[1] L. Alvarez, J. Weickert, and J. Sánchez. Reliable estimation

of dense optical flow fields with large displacements. IJCV,
2000.

[2] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and
R. Szeliski. A database and evaluation methodology for op-
tical flow. IJCV, 2011.

[3] L. Bao, Y. Song, Q. Yang, and N. Ahuja. An edge-preserving
filtering framework for visibility restoration. In ICPR, 2012.

[4] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman.
Patchmatch: a randomized correspondence algorithm for
structural image editing. ACM TOG, 2009.

[5] M. J. Black and P. Anandan. The robust estimation of mul-
tiple motions: Parametric and piecewise-smooth flow fields.
CVIU, 1996.

[6] M. Bleyer, C. Rhemann, and C. Rother. Patchmatch stereo-
stereo matching with slanted support windows. In BMVC,
2011.

[7] T. Brox and J. Malik. Large displacement optical flow: de-
scriptor matching in variational motion estimation. TPAMI,
2011.

[8] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A
naturalistic open source movie for optical flow evaluation.
In ECCV, 2012.

[9] Z. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displace-
ment optical flow from nearest neighbor fields. In CVPR,
2013.

[10] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In
CVPR, 2012.

[11] K. He and J. Sun. Computing nearest-neighbor fields via
propagation-assisted kd-trees. In CVPR, 2012.

[12] B. Horn and B. Schunck. Determining optical flow. Artificial
Intelligence, 16:185–203, 1981.

[13] S. Korman and S. Avidan. Coherency sensitive hashing. In
ICCV, 2011.

[14] M. Leordeanu, A. Zanfir, and C. Sminchisescu. Locally
affine sparse-to-dense matching for motion and occlusion es-
timation. In ICCV, 2013.

[15] J. Lu, H. Yang, D. Min, and M. N. Do. Patch match filter:
Efficient edge-aware filtering meets randomized search for
fast correspondence field estimation. In CVPR, 2013.

[16] B. D. Lucas, T. Kanade, et al. An iterative image registra-
tion technique with an application to stereo vision. In IJCAI,
1981.

[17] Z. Ma, K. He, Y. Wei, J. Sun, and E. Wu. Constant time
weighted median filtering for stereo matching and beyond.
In ICCV, 2013.

[18] X. Mei, X. Sun, M. Zhou, H. Wang, X. Zhang, et al. On
building an accurate stereo matching system on graphics
hardware. In ICCV Workshop, 2011.

[19] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and
M. Gelautz. Fast cost-volume filtering for visual correspon-
dence and beyond. In CVPR, 2011.

[20] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. IJCV,
2002.

[21] F. Steinbruecker, T. Pock, and D. Cremers. Large displace-
ment optical flow computation without warping. In ICCV,
2009.

[22] D. Sun, S. Roth, and M. J. Black. A quantitative analysis of
current practices in optical flow estimation and the principles
behind them. IJCV, 2013.

[23] D. Sun, J. Wulff, E. B. Sudderth, H. Pfister, and M. J. Black.
A fully connected layered model of foreground and back-
ground flow. In CVPR, 2013.

[24] M. Tao, J. Bai, P. Kohli, and S. Paris. Simpleflow: A
non-iterative, sublinear optical flow algorithm. In Computer
Graphics Forum, 2012.

[25] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid.
Deepflow: Large displacement optical flow with deep match-
ing. In ICCV, 2013.

[26] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers,
and H. Bischof. Anisotropic huber-l1 optical flow. In BMVC,
2009.

[27] L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving
optical flow estimation. TPAMI, 2012.

[28] Q. Yang. Hardware-efficient bilateral filtering for stereo
matching. TPAMI, 2014.

[29] Q. Yang, N. Ahuja, R. Yang, K.-H. Tan, J. Davis, B. Culbert-
son, J. Apostolopoulos, and G. Wang. Fusion of median and
bilateral filtering for range image upsampling. TIP, 2013.

[30] Q. Yang, R. Yang, J. Davis, and D. Nistér. Spatial-depth
super resolution for range images. In CVPR, 2007.

[31] K.-J. Yoon and I. S. Kweon. Adaptive support-weight ap-
proach for correspondence search. TPAMI, 2006.

[32] R. Zabih and J. Woodfill. Non-parametric local transforms
for computing visual correspondence. In ECCV, 1994.

