
Fast Rotation Search with Stereographic Projections for 3D Registration

Álvaro Parra Bustos, Tat-Jun Chin and David Suter
School of Computer Science, The University of Adelaide

{aparra, tjchin, dsuter}@cs.adelaide.edu.au

Abstract

Recently there has been a surge of interest to use branch-
and-bound (bnb) optimisation for 3D point cloud registra-
tion. While bnb guarantees globally optimal solutions, it is
usually too slow to be practical. A fundamental source of
difficulty is the search for the rotation parameters in the 3D
rigid transform. In this work, assuming that the translation
parameters are known, we focus on constructing a fast rota-
tion search algorithm. With respect to an inherently robust
geometric matching criterion, we propose a novel bounding
function for bnb that allows rapid evaluation. Underpin-
ning our bounding function is the usage of stereographic
projections to precompute and spatially index all possible
point matches. This yields a robust and global algorithm
that is significantly faster than previous methods.

To conduct full 3D registration, the translation can be
supplied by 3D feature matching, or by another optimisa-
tion framework that provides the translation. On various
challenging point clouds, including those taken out of lab
settings, our approach demonstrates superior efficiency.

1. Introduction
Despite significant research efforts, 3D point cloud regis-

tration remains a formidable challenge; see [15] for a recent
survey. The goal is to find the rigid transforms that bring
two or more 3D point clouds into alignment. Many practi-
cal systems still rely on the classical ICP method [3], which
conducts an EM-like optimisation that alternates between
point assignments and updates to the rigid transform param-
eters. While highly efficient, ICP requires careful initialisa-
tions since it can only converge to local optima. A similar
weakness afflicts the well-known SoftAssign method [7],
which also performs alternating optimisation. In many ap-
plications, the required initialisations may not be depend-
able or are too laborious to be acquired. There is thus the
need to consider algorithms that are globally optimal.

One of the earliest globally optimal registration meth-
ods was proposed by Breuel [4] for geometric matching,
e.g., finding a previously seen configuration of 2D points

in an input edge map. The method is based on branch-and-
bound (bnb) optimisation, which guarantees global optimal-
ity. While Breuel’s original formulation is fast enough for
optimising 2D rigid transforms with 3 dof, a naive extension
to estimate 3D rigid transforms with 6 dof is unwieldy, as
the volume of the search space is increased exponentially.

In practice the point clouds may only partially overlap,
and points in the non-overlapping regions represent outliers.
The geometric matching criterion [4] is inherently robust
to outliers since it only matches points within a distance
threshold. In contrast, the original ICP [3] which subscribes
to the maximum likelihood principle will attempt to match
all the points, including outliers. This led to extensions such
as ICP with M-estimators [17, 6] and trimmed ICP [5]. In
general, however, the need to handle outliers further com-
plicates the optimisation. Most robust ICP variants simply
use alternating [17, 5] or iterative optimisation [6], which
do not give globally optimal solutions.

In this paper, we focus on the rotation search subprob-
lem: given the translation component of the 3D rigid trans-
form, calculate the rotation to register the points. By no
means is this a trivial problem, as we will show in the ex-
periments. Significant efforts have also been devoted purely
to rotation search [8, 14, 12, 2]. Our contribution is a
fast bnb rotation search algorithm that optimises the ge-
ometric matching criterion [4]. We exploit the geometry
of rotational transforms to derive a tight bounding function
that is also amenable to very efficient evaluation. Specifi-
cally, we precompute all possible point matches using stere-
ographic projections [11] and index them in circular R-
trees [10]. This facilitates fast bound computations and
speeds up the overall bnb algorithm. The result is a rota-
tion search method that is robust, globally optimal and fast;
our method can register up to 1000 points in 2 seconds.

To accomplish full 3D registration, our rotation search
“kernel” can be embedded in a broader optimisation frame-
work. One possibility is to use it in the nested bnb algo-
rithm of [16] that contains two nested bnb loops for trans-
lation and rotation; the overall result is guaranteed to be
globally optimal. Here, we suggest to generate candidate
translations using 3D keypoint detection and matching tech-

1

Figure 1. (Top) Our framework first obtains 3D keypoint matches
across the input point clouds. Here, only a small subset of the
matches are plotted to minimise clutter. (Bottom) Each keypoint
match is used to translate the point clouds such that the matched
points coincide. If the keypoint match is a true positive, the point
clouds can be aligned by just a 3D rotation. Our main contribution
is a fast and globally optimal algorithm for 3D rotation search.
Note that our rotation search method uses the original (unmatched)
points as input, not the keypoint matches.

niques [15]; note that a point match across two point clouds
defines a 3D translation. Given a candidate translation we
conduct rotation search to find the optimal rotational align-
ment. The best rotation and translation pair naturally gives
rise to an aligning 3D rigid transform. Fig. 1 illustrates.

The rest of the paper is organised as follows: Sec. 2 de-
fines our problem and surveys related work to put our paper
in the right context. Sec. 3 describes the proposed rotation
search method, while Sec. 4 provides experimental results
and comparisons. Finally, we draw conclusions in Sec. 5.

2. Problem definition
LetM = {mi}Mi=1 and B = {bj}Bj=1 be two 3D point

clouds which we assume are potentially related by a 3D ro-
tation, e.g., M and B have been previously translated ac-
cording to a keypoint match; see Fig. 1 (bottom). Follow-
ing [4], we find the rotation R ∈ SO(3) that maximises

Q(R) =
∑
i

max
j
b‖Rmi − bj‖ ≤ εc , (1)

where b·c is the indicator function. The geometric matching
criterion (1) is robust since two points are matched only if
their distance is less than the inlier threshold ε. Our main
contribution is a fast algorithm to globally maximise (1).

2.1. Related work

Many of the recent works on rotation search concen-
trated on multi-view geometry problems [8, 14, 12, 2]. Per-
haps the most relevant to our work is [2], who also con-
sidered rotational alignment of point clouds. Given two in-
put point clouds which are assumed to differ only by rota-
tion, keypoint matches are first established. Their goal is
to find the maximum consensus rotation (the rotation that
agrees with the most number of keypoint matches), and a
bnb algorithm was proposed. Note that in [2], only the key-
point matches are considered in the optimisation; contrast
this to (1) where the original (unmatched) input points are
used. This implies that at least three true-positive keypoint
matches must exist for the result to be meaningful.

It is worthwhile to further compare our work with [2].
In our proposed 3D registration framework, each keypoint
match gives rise to a pairM and B, whose aligning rotation
is then determined by maximising (1) — there are thus as
many rotation search instances as the number of keypoint
matches. For our approach to be successful, at least one
true-positive keypoint match must be available. In [2], the
authors only considered point clouds that differ purely by
rotation. To allow for general 3D rigid transforms, we can
apply their algorithm in our framework, whereby given a
particular keypoint match, instead of translating the point
clouds, we translate the set of keypoint matches to form the
input to their algorithm [2]; see also Fig. 1 (bottom). On
this basis, we will benchmark our result against [2].

Decoupling translation and rotation and estimating them
separately is not a new idea — note that our main novelty is
a highly efficient 3D rotation search method, not the frame-
work in Fig. 1. In [1], towards the goal of estimating the
motion of catadioptric cameras, the authors proposed to cal-
culate the rotation via detecting parallel catadioptric lines,
and the translation by a robust 2-point algorithm.

More recently, a nested bnb algorithm was proposed
in [16] for 3D point cloud registration, where an “outer” bnb
optimises the rotation, while an “inner” bnb searches for the
translation given the rotation. Another interesting contribu-
tion of [16] is the usage of ICP to tighten the bound for the
overall algorithm, thus speeding up convergence. We see
our work as complementary to [16] by envisioning a nested
bnb algorithm where the inner bnb conducts rotation search
(using our novel method) given the translation. Moreover,
the idea of using ICP to hasten convergence also applies.

An earlier work that adopted bnb for rotation search
is [9]. A “Lipschitzised” objective function is formulated
and globally optimised over the space of rotations. The
method assumes one-to-one matching of the point clouds
(i.e., no partial overlaps) which can be a severe limitation.
Further, the performance is too slow to be practical.

Algorithm 1 Bnb rotation search to maximise (1).
Require: Point setsM and B, threshold ε.

1: Initialise priority queue q, B← cube of side 2π,
Q∗ ← 0, R∗ ← null.

2: Insert B into q.
3: while q is not empty do
4: Obtain a box B from q.
5: Rc ← centre rotation of B.
6: If Q(Rc) = Q∗ then terminate.
7: If Q(Rc) > Q∗ then Q∗ ← Q(Rc), R∗ ← Rc.
8: Subdivide B into Bl and Br.
9: If Q̂(Bl)>Q∗, insert Bl with priority Q̂(Bl) into q.

10: If Q̂(Br)>Q∗, insert Br with priority Q̂(Br) into q.
11: end while
12: return Optimal rotation R∗ with quality Q∗.

3. Fast globally optimal rotation search
Algorithm 1 summarises our bnb algorithm for finding

the globally optimal 3D rotation w.r.t. maximising (1). The
basic idea is to recursively subdivide and prune the rotation
space, until the global optima is found.

We employ the axis-angle parametrisation for rotations.
A 3D rotation is represented as a 3-vector whose direction
and norm specify the axis and angle of rotation [8]; all rota-
tions are thus contained in a π-ball. Initially we enclose the
π-ball with a cube of side 2π then successively subdivide it
into smaller boxes. We employ binary subdivision: a box B
is split equally along its longest side into two smaller boxes
Bl and Br, with arbitrary tie-breaking if B is a cube. Octal
subdivision [8] is also possible; if memory is not a limita-
tion, the branching factor is not critical to the run time.

Crucially influencing the run time of Algorithm 1 is the
tightness of the bounding function Q̂, which must satisfy

Q̂(B) ≥ max
r∈B

Q(Rr), (2)

where Rr is the matrix form of rotation r. A tighter Q̂ will
prune more agressively and result in fewer iterations. Of
equal importance is the efficiency of evaluating Q and Q̂,
since they are called repeatedly. We make novel contribu-
tions in both aspects, as we describe in Secs. 3.2 and 3.3.

3.1. Previous results

Given two rotation vectors u and v in the π-ball, it has
been established [8] that

∠(Rum,Rvm) ≤ ‖u− v‖, (3)

where m is a 3D point, and ∠(·, ·) gives the angular dis-
tance. Further, given a box B, let p and q be the lower-left-
front and upper-right-back corner of B (see [8]). Then,

c := 0.5(p+ q) (4)

X,Y

Z

Figure 2. Under the action of all rotations in B, mi may lie only
on a spherical patch centered at Rcmi. However the bounding
function (8) assumes mi may lie in the δi-ball centred at Rcmi.

is the centre of B with rotation matrix Rc. For any rotation
u situated in the box B, we can see that

∠(Rcm,Rum) ≤ max
u∈B
‖c− u‖

= 0.5‖p− q‖ := αB (5)

as a direct consequence of (3). It thus follows that

‖Rcm−Rum‖ ≤ δ, (6)

where the bound δ is based on the cosine rule

δ =
√
2‖m‖2(1− cosαB). (7)

The result (6) immediately suggests the following bounding
function for the geometric matching criterion (1):

Q̂br(B) =
∑
i

max
j
b‖Rcmi − bj‖ ≤ ε+ δic , (8)

where we define δi as (7) evaluated with mi. This bounding
function was also originally proposed by Breuel; see [4] for
proof that (8) is a valid bounding function for (1).

The bounding function (8) is unnecessarily conservative.
Geometrically, the result (6) says that Rumi may lie any-
where within a ball of radius δi centred at Rcmi — intu-
itively, we know that this is inaccurate, since the actions of
all possible rotations in B may only allow mi to lie on a
patch on the surface of the sphere with radius ‖mi‖; see
Fig. 2. Our method exploits this key insight.

3.2. Improving the tightness of the bound

Let Sθ(m) represent the spherical patch (see Fig. 2) cen-
tred at m with angular radius θ, i.e.,

Sθ(m) = {x | ‖x‖ = ‖m‖, ∠(m,x) ≤ θ}. (9)

S2π(m) is thus the sphere of radius ‖m‖ centred at the ori-
gin, and Sθ(m) ⊆ S2π(m). Further, the outline of Sθ(m)

is a circle on the surface of S2π(m). Using the above nota-
tion, we can reexpress the result (5) as

Rum ∈ SαB(Rcm) (10)

where c, u and αB are as defined previously.
Let lε(b) denote the solid ball of radius ε centred at b:

lε(b) = {x | ‖x− b‖ ≤ ε}. (11)

The objective function (1) can be rewritten as

Q(R) =
∑
i

max
j
bRmi ∈ lε(bj)c . (12)

From (10), since mi can only lie in SαB(Rcmi) under
all possible rotations in B, determining if mi can possibly
match with bj under B amounts to checking if SαB(Rcmi)
intersects with lε(bj). This leads to the upper bound

Q̂sp(B) =
∑
i

max
j
bSαB(Rcmi) ∩ lε(bj) 6= ∅c . (13)

To qualify as a valid bounding function for bnb, Q̂sp has to
meet several conditions, which we prove below.

Lemma 1. For any box B

Q̂sp(B) ≥ max
r∈B

Q(Rr). (14)

Also as B collapses to a single point r,

Q̂sp(B) = Q(Rr). (15)

Proof. To prove (14), it is sufficient to show that if the pair
mi and bj contribute 1 toQ(Rr), they must also contribute
1 to Q̂sp(B). If ‖Rrmi − bj‖ ≤ ε then Rrmi ∈ lε(bj).
Since r is in B then Rrmi must lie in SαB(Rcmi); see
(10). This proves that the intersection SαB(Rcmi)∩ lε(bj)
contains at least the item Rrmi and is thus nonempty.

To prove (15), based on (5) as B collapses to a single
point, p = q = c and αB = 0. Thus SαB(Rcmi) collapses
to a single point Rcmi, rendering (13) to equal (12).

Intuitively, Q̂sp imposes a tighter bound than Q̂br, since
given B, Q̂sp allows mi to vary within the spherical patch
while Q̂br allows mi to vary within a ball of radius that
encloses the spherical patch. A formal proof is as follows.

Lemma 2. For any box B

Q̂br(B) ≥ Q̂sp(B). (16)

Proof. Since both functions are already lower-bounded by
maxr∈BQ(Rr), it is sufficient to show that there are hy-
pothetical pairs mi and bj that contribute 1 to Q̂br but 0
to Q̂sp. Set bj = Rcmi(1 + ε+δi

‖mi‖); clearly the condition
‖Rcmi − bj‖ ≤ ε + δi holds and mi and bj are matched
under Q̂br. However, then ‖bj‖−‖mi‖ > ε and lε(bj) can-
not intersect with SαB(mi), thus contributing 0 to Q̂sp.

(a)

(b) (c) (d)

Figure 3. (a) A solid ball intersects the surface of a sphere at a
spherical patch, which has a circular outline on the sphere. Under
stereographic projection, a spherical patch is projected to become
a circular patch. (b–d) The three types of circular patches: interior
patch (this is the case in panel (a)), exterior patch (the spherical
patch contains the pole; the “contents” of the spherical patch is
projected outside of the circle), and half-plane (the pole lies on the
circular outline of the spherical patch). See [11] for diagrams of
projections that yield the two latter types.

3.3. Speeding up function evaluations

Kd-tree is the main workhorse in [4] for evaluating Q
and Q̂br. Points in B are indexed in a single kd-tree which
is queried during bnb with points fromM. Evaluating (1)
or (8) thus takes O(M logB) computational effort.

To evaluate the proposed bound (13) efficiently, we need
to answer multiple queries like the following quickly:

max
j
bSαB(Rcmi) ∩ lε(bj) 6= ∅c (17)

From Fig. 2, since SαB(Rcmi) must lie on the surface of
the sphere S2π(mi), only the subset of B whose lε(bj) in-
tersect with S2π(mi) can possibly have a non-zero interec-
tion with SαB(Rcmi). Further, this subset (which we call
Bmi

) contains the bj’s with distance ≤ ε to S2π(mi).
To evaluate (17) quickly, we can presearch Bmi

and in-
dex it in a kd-tree. Given B, we can perform a range query
with point Rcmi and range δi (recall that SαB(Rcmi) is
enclosed by the δi-ball centred at Rcmi). This disregards
points in B that will never match with mi. By querying
M separate kd-trees, evaluating (13) takes O(M logBav)
effort, where Bav ≤ B is the average size of {Bmi

}Mi=1.
While theM kd-tree approach permits faster bound eval-

uation, we propose another technique that gives bigger com-
putational gains. Continuing the above observations, each
lε(bj) for bj ∈ Bmi

intersects S2π(mi) at a spherical patch
— recall that a sphere-to-sphere intersection yields a circle,

i.e., the outline of the spherical patch, see Fig. 3(a). The
size of the patch depends on the distance of bj to S2π(mi).

Our idea is to use stereographic projection to project the
spherical patches onto the xy-plane ω. Assuming a unit-
sphere and a projection pole at [0, 0, 1]T , a point x on the
sphere and its stereographic projection p are related by [11]

x =

[
2p1

1 + pTp
,

2p2

1 + pTp
,
pTp− 1

1 + pTp

]T
. (18)

The crucial property is that circles are projected as circles;
see Fig. 3(a). To see this, recall that a circle results from
the intersection between a plane τ and the sphere. Let τ be
[a b c]Tx = d. Putting (18) into the plane equation yields

(c− d)(p2
1 + p2

2) + 2ap1 + 2bp2 − (c+ d) = 0. (19)

If c 6= d, (19) is a circle; else it is a line. In the latter case,
the pole lies on the circle formed by the plane-sphere inter-
section. Circle intersections are also preserved; see [11].

A spherical patch is projected to become a circular patch
in ω. Recall that the outline of a spherical patch is a circle.
Typically the vast majority of spherical patches do not inter-
sect or contain the pole; these are projected to become inte-
rior patches, i.e., the interior of the spherical patch is pro-
jected to the interior of the circle in ω. A small minority of
spherical patches that contain the pole will be projected to
yield exterior patches or half-planes (both are special cases
of circular patches). Figs. 3(b)–(d) show the three types.

Given the circular patches from Bmi
, to solve (17) we

first stereographically project SαB(Rcmi) to obtain the
query patch Lq , then check if Lq intersects any of the circu-
lar patches from Bmi . In the following, we discuss efficient
indexing and search schemes, based on the different types
of circular patches from Bmi

. Note that by replacing Lq
with the stereographic projection of Rmi, the methods be-
low can also be used to evaluate the objective function (12).

Exterior patches and half-planes. Due to the small num-
ber of occurrences in practice (in fact, no half-planes existed
in our experiments), we simply store the exterior patches
and half-planes in a list. Given Lq , we scan the list to see
if the non-empty region of Lq overlaps with the non-empty
region of any of the entries; as soon as a hit is encountered,
we stop and return 1 to (17). In fact, if Lq is itself an ex-
terior patch or a half-plane, it will always overlap with an
entry (since all the originating spherical patches contain and
intersect at the North Pole) and the scan can be avoided.

Interior patches. Solving (17) is dominated by testing
the interior patches from Bmi

for overlaps. To facilitate
efficient querying, we index the interior patches (specifi-
cally, their circular outlines) in a circular R-tree. R-trees
are indexing structures designed for spatial access queries,
e.g., is a polygon contained in another polygon; see [10]

A

B C D

E F G H I J
A

B
C

D

E F

G H

I

J

Figure 4. A set of interior patches in the projection plane is indexed
in a circular R-tree. The MBR at each node is also drawn. The tree
structure is shown on the right. A query patch Lq is also shown;
in this example, Lq does not intersect with the largest MBR at the
root node, hence the search need not proceed beyond the root.

for a general exposition. In our circular R-tree, the circles
are hierarchically indexed in a balanced tree. Circles in the
same node are enclosed by a minimum bounding rectangle
(MBR). Fig. 4 shows a tree of depth three. The main pa-
rameter for building the tree is the branching factor.

Regardless of the type of circular patch Lq , querying the
circular R-tree is conducted similarly; the distinction is just
how overlaps are defined. At each node, if Lq overlaps with
the MBR of the node, the children of the node are traversed;
at a leaf node, Lq is simply tested for overlaps with the in-
terior patches contained therein, and if a hit is encountered
the query is terminated instantly. If Lq does not overlap
with the MBR of a node, the whole branch can be ignored;
contrast this to kd-tree queries, where the full depth of the
tree must be reached such that candidate nearest distances
are obtained to enable pruning of branches. In fact, in our
circular R-tree, should (17) evaluate to 0, it is usually un-
necessary to explore all tree levels. In many actual cases,
only the first-few levels are descended; Fig. 4 shows an ex-
ample. This difference in behaviour is the source of massive
improvements in run time, as we will show in Sec. 4.

Computational analysis. To evaluate the proposed
bounding function (13), we will need to build and query M
circular R-trees (the same number of trees required in the
naive M -kd-tree approach). Search efficiency is of greater
interest since querying occurs multiple times during bnb.
Theoretically, R-trees and kd-trees have similar search com-
plexities; in the worst case we will need to traverse the full
depth of the tree and visit other branches (in both cases, we
can bail out early since any overlapping interior patch or
sufficiently close neighbour will do). In practice, however,
we see significant speedups using circular R-trees.

Of secondary interest is the tree-building time, which oc-
curs only once before the main loop of Algorithm 1. Given
Bmi , constructing a balanced circular R-tree and kd-tree
have similar complexities. Finding Bmi can be efficiently
done using a kd-tree that indexes the norms ofM; any bj
with |‖bj‖ − ‖mi‖| ≤ ε is placed in Bmi

.

4. Results
We first test our 3D rotation search method in the con-

text of the 3D registration framework depicted in Fig. 1.
We used 3D scan data from the Stanford repository, namely,
bunny, dragon, armadillo, asian dragon, buddha and stat-
uette. For each object, two partially overlapping scans V1
and V2 were chosen and downsampled; columns 2 and 3 in
Table 1 list the size of each point cloud. Since only one scan
is available for statuette and asian dragon, we generated a
second scan by adding Gaussian noise to the points.

Apart from the Stanford data, we also tested our method
on laser scans of underground mines. Laser scanning is a
frequently used technique in mine surveying. Scan registra-
tion is needed since a single scan cannot image the whole
mine. Two pairs of scans were used in our experiment:
mineA and mineB; see Fig. 5. Such data is much more chal-
lenging due to the small partial overlap between scans.

To find the rigid transform (R, t) that registers V1 and
V2, in our framework we first detect and match 3D key-
points across V1 and V2; we used ISS3D [18] and PFH [13]
as implemented in Point Cloud Library1. The PFH de-
scriptors were compared using the l2 norm, and we chose
a threshold such that exactly 100 keypoint matches were
produced per V1 and V2 pair. The matching precision var-
ied across the type of structure (column 5 in Table 1), but
we verified that at least three true positive matches existed
per V1 and V2 pair.

For each match p ↔ q, we translated V1 by −p and V2
by −q such that they potentially differ by a rotation about
the origin. Further, instead of using all V1 and V2, we took
only points within a radius δloc from p and q; this produced
the pair M and B as input for rotation search. The value
δloc was chosen as a ratio of the point cloud extent and fixed
for each V1 and V2 pair. Since our contribution is globally
optimal rotation search, taking local point clouds does not
detract from our contribution, as only the size ofM and B
matter for benchmarking. To “normalise” the sizes we en-
sured |M| ≤ |B| by swappingM and B if needed; note that
in all the objective and bounding functions the main loop
has exactly |M| iterations, thus it would be more strategic
makeM the smaller set. Column 4 in Table 1 lists the av-
erage |M| across all matches in the datasets.

We benchmark the following rotation search methods.
All methods were implemented in C and executed on a ma-
chine with an Intel Core i7 3.40 GHz CPU.

• bnb-M-circ: the proposed method, i.e., bnb with ob-
jective (12) and bound (13) using M circular R-trees.
• bnb-1-tree: Breuel’s original method [4], i.e., bnb

with objective (1) and bound (8) using 1 kd-tree.
• bnb-M-tree: the same as bnb-M-circ, but using M

kd-trees to index {Bmi}Mi=1; see Sec. 3.3.
1http://pointclouds.org/

Figure 5. Point clouds successfully registered by our method: from
the top-left, bunny, armadillo, dragon, buddha, asian dragon, stat-
uette, mineA and mineB.

On each V1 and V2 pair, we performed rotation search on
the local point clouds originating from the 100 keypoint
matches. The durations required to perform 100 rotation
searches are listed in columns 7–9 in Table 1; note that the
recorded durations include time for all data structure prepa-
rations (e.g., building M kd-trees or circular R-trees).

Observe that bnb-M-circ can attain more than an order
of magnitude speedup over bnb-1-tree. Compared to bnb-
M-tree, our method gave an average of 5 times speedup;
note that these two methods use exactly the same bounding
function, hence, both will require the same number of itera-
tions in Algorithm 1; their gap in actual run time is thus due
primarily to the different bound evaluation techniques.

To obtain the desired registration between V1 and V2,
across all 100 optimised local rotations we selected the one
with the highest normalised match score, i.e., Q(R∗)/M .
Using that rotation and its originating keypoint match, we
rotationally aligned V1 and V2 and evaluated the global
match score Qglob; this is simply (1) calculated using all
available points. The result is in column 6 in Table 1. Visu-
ally, as shown in Fig. 5, all objects were satisfactorily reg-
istered. Note that all bnb methods give the same quality.

Given that our 3D registration framework employs key-
point matches, one may wonder how our rotation search
approach compares with RANSAC. A minimal subset of
three keypoint matches is sufficient to estimate a 3D rigid

Data characteristics 3D rotation search RANSAC
Dataset |V1| |V2| avg |M| % inliers Qglob bnb-1-tree bnb-M-tree bnb-M-circ medQglob med time (s) med iter

time (s) time (s) time (s)
bunny 7055 6742 378.47 43 5377 376.47 128.59 22.11 3292 456.93 49978
armadillo 5619 5483 353.85 15 3243 406.50 152.66 33.09 2795 311.13 42210
dragon 6991 6200 351.45 29 5873 280.34 81.87 13.63 4433 405.88 48316
buddha 5312 5109 372.89 20 4512 331.18 102.45 19.61 3283 348.18 50000
a. dragon 8413 8413 103.16 13 5823 183.89 127.64 20.06 6813 241.96 18755
statuette 44156 44156 205.36 22 18328 163.87 70.83 9.13 14855 2169.25 49448
mineA 7629 7727 187.61 10 3197 2816.35 900.53 218.56 1089 418.54 50000
mineB 7496 5487 330.02 3 4870 6025.66 1978.23 631.13 1265 374.60 50000

Table 1. Quantitative registration results. Time for bnb methods is the total duration for 100 rotation searches.

200 400 600 800 1000 1200 1400 1600 1800
0

50

100

150

problem size M

to
ta

l r
un

 ti
m

e
(s

)

bnb 1 tree
bnb M tree
bnb M circ

200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6

8

10

problem size M

to
ta

l r
un

 ti
m

e
(s

)

bnb M circ
2 seconds

Figure 6. (top) Median run time versus problem size M . (bottom)
Median run time for bnb-M-circ only.

transform. The quality was taken as (1) evaluated on all the
points, i.e., Qglob. We stopped the RANSAC sampling as
soon as Qglob equalled or surpassed the Qglob of the bnb
methods (note: this is possible since Qglob is not directly
optimised by the bnb methods), or if the number of itera-
tions hit the limit of 50000. We then recorded the elapsed
time (note: due to the 50000 iteration cutoff, RANSAC may
have shorter run times). The median results from 20 in-
stances of RANSAC are in columns 10-12 of Table 1.

On easier pairs like asian dragon where both scans fully
overlap (hence, keypoint matching is more accurate), the
quality of RANSAC can surpass bnb rotation search; how-
ever this was achieved using a much longer run time. On
the other pairs RANSAC required significantly more time
than bnb-M-circ without reaching close to the latter’s qual-
ity. To achieve a quality close to the optimal, RANSAC will
require iterations many times greater than the 50000 limit.

To investigate the scaling property of our method, we re-
peated the above experiment, but varied the neighbourhood
size δloc such a larger range of sizes ofM and B could be
tested. In Fig. 6 (top), we plot the median run time of all
bnb methods as a function of the size ofM. These results

verify the superior performance of the proposed method.

Comparisons with [2]. Comparing with other formula-
tions and techniques for rotation search is nontrivial, but we
shall strive to quantitatively benchmark against [2]. While
they also use bnb, there are crucial differences. First, their
algorithm takes a set of point matches as input; in our case,
Algorithm 1 does not require any matches betweenM and
B (in our registration framework, keypoint matches are only
used for translating the points). Using point matches obvi-
ates the need to search for matches during function evalu-
ations. Second, the error used in [2] is the angular error
between matching points, while we use the l2 distance.

In the real data experiments using Stanford bunny [2,
Sec. 4.2], keypoint matches were first obtained on two par-
tially overlapping scans that differed only by rotation. The
sizes of point clouds, number of keypoint matches and out-
lier proportion were not explicitly reported. The authors did
mention that, in the context of using RANSAC in their ex-
periment, there were “8 inliers out of 1191 points” — we
take this to mean that there were 1191 keypoint matches of
which 8 were genuine2. Further, in the overview of their
experiments [2, Sec. 4], it was reported that the algorithm
“converges in a couple of seconds” — we shall take this as
indicative of the run time in point cloud registration.

Fig. 6 (bottom) shows Fig. 6 (top) with only the run times
from bnb-M-circ. At |M| = 1200 (comparable to the 1191
data used in [2]), our method achieved a median run time of
3s, which is very close to the 2s in [2]. It should be noted
that our excellent run time was achieved despite the need to
search for matches online betweenM and B.

Comparisons with [16]. A globally optimal nested bnb
algorithm was proposed to find the 3D rigid transform
(R, t) that aligns two point clouds. The outer bnb loop op-
timises the rotation, while the inner bnb loop estimates the
translation. Also, ICP was integrated into the algorithm to
bootstrap the computation of the bound, such that conver-
gence to the global optimum can be accelerated. Impressive
run times were reported: on the Stanford bunny dataset,
only 30 seconds were needed to register 1000 data points
(equivalent to V1) to 30000–40000 model points (equiva-
lent to V2). It should be noted, however, that nearest neigh-

2Observing Fig. 3 in [2], there seemed to be < 100 keypoint matches.

bours (NN) distance calculations were speeded up by using
the distance transform (DT) [16, Sec. 7] which is basically
a discrete lookup table. If the data does not lie on a uniform
grid, DT can only approximate the true NN distances, and
global optimality with respect to the original ICP criterion
may be affected if that discrepancy is not taken into account.

Actually we see our rotation search algorithm as a pos-
sible component in [16]. In principle we can search for the
translation in the outer bnb loop, and use our method in
the inner loop for rotation optimisation. An auxiliary local
method can also be used to hasten convergence. Note that
all our function evaluations are exact, thus our method will
speed up nested bnb without affecting global optimality.

A note on globally optimal registration. We are aware
of practical cases where the globally optimal 3D rigid trans-
form (R, t) does not provide the desired result. Fig. 7(a)
shows the globally optimal full 3D registration (using the
geometric matching criterion [4]) of two laser scans of an
underground mine, which is not satisfactory. Despite us-
ing a robust criterion, since the structure is highly “organic”
and self-similar (unlike the well defined Stanford objects)
the result was heavily biased. It such cases, it will be use-
ful to employ human assistance. Fig. 7(b) shows the cor-
rect outcome obtained by our rotation search method, after
translating the data according to a point match identified by
the user. Our fast rotation search algorithm can play a valu-
able role in such a user-assisted registration approach.

(a)

(b)
Figure 7. (a) Globally optimal full 3D registration. (b) Globally
optimal rotational alignment, based on a point match identified by
the user. The robust matching score of (a) is greater than (b).

5. Conclusions
Our globally optimal rotation search algorithm was

shown to be an order of magnitude faster than the origi-

nal bnb algorithm of Breuel [4]. It also has good perfor-
mance relative to other methods based on different formula-
tions. Under our registration framework that uses keypoint
matches, our algorithm was demonstrated to be accurate and
efficient in registering partially overlapping point clouds.

Acknowledgements
This work is partly supported by the Australian Research

Council grant DP130102524.

References
[1] J.-C. Bazin, C. Demonceaux, P. Vasseur, and I. S. Kweon.

Motion estimation by decoupling rotation and translation in
catadioptric vision. CVIU, 114:254–273, 2012. 2

[2] J.-C. Bazin, Y. Seo, and M. Pollefeys. Globally optimal con-
sensus set maximization through rotation search. In ACCV,
2012. 1, 2, 7

[3] P. Besl and N. McKay. A method for registration of 3d
shapes. IEEE TPAMI, 14(2):239–256, 1992. 1

[4] T. Breuel. Implementation techniques for geometric branch-
and-bound matching methods. CVIU, 90(3):258–294, 2003.
1, 2, 3, 4, 6, 8

[5] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek. The
trimmed icp algorithm. In ICPR, 2002. 1

[6] A. Fitzgibbon. Robust registration of 2D and 3D point sets.
In BMVC, 2001. 1

[7] S. Gold, A. Rangarajan, C. Lu, and E. Mjolsness. New al-
gorithms for 2d and 3d point matching: pose estimation and
correspondence. Pattern Recognition, 31:957–964, 1998. 1

[8] R. I. Hartley and F. Kahl. Global optimization through rota-
tion space search. IJCV, 82:64–79, 2009. 1, 2, 3

[9] H. Li and R. Hartley. The 3d–3d registration problem revis-
ited. In ICCV, 2007. 2

[10] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and
Y. Theodoridis. R-trees: theory and applications. Springer,
2006. 1, 5

[11] T. Needham. Visual complex analysis. Clarendon Press,
1997. 1, 4, 5

[12] T. Ruland, T. Pajdla, and L. Kruger. Globally optimal hand-
eye calibration. In CVPR, 2012. 1, 2

[13] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz. Align-
ing point cloud views using persistent feature histograms. In
IROS, 2008. 6

[14] Y. Seo, Y.-J. Choi, and S. W. Lee. A branch-and-bound
algorithm for globally optimal calibration of a camera-and-
rotation-sensor system. In ICCV, 2009. 1, 2

[15] G. K. L. Tam, Z.-Q. Cheng, Y.-K. Lai, F. C. Langbein, Y. Liu,
D. Marshall, R. R. Martin, X.-F. Sun, and P. L. Rosin. Reg-
istration of 3d point clouds and meshes: a survey from rigid
to non-rigid. IEEE TVCG, 19(7):1199–1217, 2013. 1, 2

[16] J. Yang, H. Li, and Y. Jia. Go-ICP: solving 3d registration
efficiently and globally optimally. In ICCV, 2013. 1, 2, 7, 8

[17] Z. Zhang. Iterative point matching for registration of free-
form curves. Technical report, INRIA, 1992. 1

[18] Y. Zhong. A shape descriptor for 3d object recognition. In
Proceedings ICCV 2009 Workshop 3DRR, 2009. 6

