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Abstract

This paper presents a novel methodology for modelling
pedestrian trajectories over a scene, based in the hypothe-
sis that, when people try to reach a destination, they use the
path that takes less time, taking into account environmen-
tal information like the type of terrain or what other people
did before. Thus, a minimal path approach can be used to
model human trajectory behaviour. We develop a modified
Fast Marching Method that allows us to include both ve-
locity and orientation in the Front Propagation Approach,
without increasing its computational complexity. Combin-
ing all the information, we create a time surface that shows
the time a target need to reach any given position in the
scene. We also create different metrics in order to compare
the time surface against the real behaviour. Experimental
results over a public dataset prove the initial hypothesis’
correctness.

1. Introduction

Modelling human behaviour is a huge field of study
in computer vision. One of the most active topics is re-
lated with the trajectory analysis, that is, how is the people
usual behaviour, having a special interest in areas like video
surveillance. However, a lot of questions remain unsolved.
For instance, what information makes people decide which
path they should use to reach their goal?. Or what makes
a movement abnormal? The answer for the questions are
crucial in order to obtain a good trajectory modelling.

There exist two different approaches in the literature to
model human trajectory behaviour. On one hand there are
the Computer Vision techniques. They are mainly focused
in classifying all the trajectories in the scene, mostly using
clustering techniques, like Hybrid [12], agglomerative [3],
where we merge clusters until we obtain the desired num-
ber; divisive [1], Graph-based [14], Spectral [11] or direct
[17], using techniques such as k-means or fuzzy c means.

These techniques require every path to have the same num-
ber of detections to update the patterns, making the updating
procedure very difficult. More recently, new techniques are
used, like the use of non-parametric Bayesian models [27],
[26], [13] or using models to predict the motion behaviour
[6].

On the other hand there are the techniques based in so-
cial force models [10]. They are based in the idea that some
stimuli, like the scene properties and other people interac-
tions, affect the pedestrian trajectory [9], [2]. This approach
is often used in computer graphic schemes, developing a set
of different forces that are added to infer the new movement
[23], [20], [24]. The main drawback of these techniques is
that although they are good approaches to model the usual
human behaviour, there exist infinite solutions to model a
normal behaviour. Thus, how can we use these kind of sys-
tems to decide whether a trajectory is abnormal or not?

More recently, techniques that try to merge computer vi-
sion techniques with social models are arising. For instance,
some works introduce the social force model to detect ab-
normal behaviour [15], [19]. Flow models were also in-
cluded to predict crowd behaviour [16]. More recently, the
use of minimal paths were introduced to model the usual be-
haviour [5], [4]. However, this approach does not take into
account velocity patterns or orientation in the propagation
procedure.

Based on the latter, we propose a new methodology
to model pedestrian trajectory behaviour. Our solution is
based in the hypothesis that, typically, when people try to
reach a destination, they use the path that takes less time.
We take into account both the velocity and the orientation of
the usual motion to create a time surface, where each node
shows the time needed to reach it if the person behaviour is
usual. We create a modified Fast Marching Method (FMM)
[22] which includes the mentioned extra information with-
out increasing the computational cost. Using this technique,
only a potential and a velocity surfaces are needed in order
to establish the so-called time surface. We also present dif-
ferent metrics to test a path’s “degree of abnormality”, in
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order to experimentally prove that our initial hypothesis is
correct. Due to the lack of datasets providing some ground
truth, we provide a theoretic statistical probe of correctness,
along with some visual confirmation, as other approaches
do. No quantitative results against other techniques are pro-
vided, since no abnormal detection results were provided in
any other paper, which focus in clustering techniques our
algorithm do not need.

This paper is organized as follows: section 2 describes
our modified FMM and the metrics created to model the
pedestrian behaviour; section 3 shows implementation de-
tails about our algorithm; section 4 shows some experimen-
tal results and section 5 offers conclusions and future work.

2. The Governing Equations
In this section we develop our model for pedestrian tra-

jectory modelling. We begin to set the hypothesis that are
used to establish our methodology. We subsequently intro-
duce our modified FMM that allows us to create the time
surface. Finally, we introduce some metrics in order to test
the pedestrian behaviour. We defer the implementation of
these techniques to section 3. For coherence with previous
approaches, we are going to follow the notation introduced
in [7].

Hypothesis 1 Each person tries to reach a geographic
goal.

Since this model tries to model pedestrian trajectories, it is
needed that targets have the intention to reach some goal
within or outside the scene. As a consequence, people that
are stopped or moving erratically are considered as abnor-
mal movements.

Hypothesis 2 The trajectory used to reach the goal is ruled
by the common pedestrian behaviour.

This is a crucial point in this algorithm. In [5], the minimal
path is ruled by a potential image that contains, for every
node, the number of people that reach it. However, in our
algorithm, we also include the velocity of the targets. De-
spite this, our model will also be driven by the people count
estimation.

Hypothesis 3 People move at the maximum speed possible.

That is, the speed of every person is defined by a velocity
field.

Having this hypothesis in mind, we can conclude that the
usual path can be modelled as a minimal path approach. We
propose a modified FMM in order to create a time surface,
which is created taking into account the information about
both the people frequency and their velocity. In algorithm 1
the method is explained. In essence, the structure is similar
to the FMM. It only differs in the updating procedure, since

Algorithm 1 Time Surface Fast Marching method

Definitions:

• p0: the initial point, the first time a target is tracked.

• U : surface of minimal action, driven by the people fre-
quency.

• T : time surface: every node contains the time needed to
reach it starting in the initial point.

• Alive set: points of the grid for which U has been computed
and it will not be modified.

• Trial set: next points in the grid to be examined (4-
connectivity) for which a estimation of U is computed using
the points in alive set.

• Far set: the remaining points of the grid for which there is
not an estimate for U .

Initialization:

• For each point in the grid, let Ui,j = ∞, Ti,j = ∞ (large
positive value).
Put all points in the far set.

• Set the start point (i, j) = p0 to be zero:
Up0 = 0, Tp0 = 0, and put it in the trial set.

Marching loop:

• Select p = (imin, jmin) from trial with the lowest value of
U .

• Put p in alive and remove it from the trial set.

• For each of the p’s neighbours (k, l) of (imin, jmin):

– If (k, l) belongs to far set, then put (k, l) in trial set.

– If (k, l) is not in alive set, then set Uk,l with Equation
3, and Tk,l with Equation 4.

now we have two different output maps: U , the classical
minimal path surface; and T , the time surface, where the
time needed to reach every point is stored. T surface is
driven by the U surface. That means we use the classical
minpath updating procedure in order to update the surface.
Thus, we need the best horizontal and vertical neighbours to
do that. So, having the point pN = (i, j) to be updated we
define the points pH = p ∈ {(i+1, j), (i−1, j)}|minU(p)
and pV = p ∈ {(i, j + 1), (i, j − 1)}|minU(p). Then, we
have the points

pa = p ∈ {pH , pV }|minU(p) (1)
pb = p ∈ {pH , pV }|maxU(p), (2)

which are the two points used to perform the updating pro-
cedure. Hence, to update the minimal action surface U we



use the following equation

UpN =

 Upa + Upb +
√
∆1

2
if P̃pN > (Upb − Upa)

Upa + P̃pN otherwise
,

(3)
being P̃ (pN ) the potential surface, which satisfies that P̃ >
0; and ∆1 = 2P̃ 2

pN
− (Upb

− Upa)
2 the discriminant. To

update the time surface, we use the same points pa and pb
defined in the minimal action surface procedure. The equa-
tion is similar to the previous equation, that is,

TpN =

 Tpa + Tpb +
√
∆2

2
if P̃pN > (Upb − Upa)

Tpa + υpN otherwise
,

(4)
being υpN

= 1
VpN

the velocity inverse; and ∆2 = 2υ2
pN

−
(Tpb

− Tpa)
2 the discriminant. Note the condition P̃pN >

(Upb
− Upa) refers to the first equation, which guarantees

that ∆1 > 0. However, in the second equation we cannot
guarantee this situation in the discriminant. To solve that,
we introduce a restriction in the procedure that allows the
time surface to change the minimal action surface U . If
we found that ∆2 < 0, we update both the minimal action
surface U and the time surface T with the default condi-
tion. The computational complexity of the algorithm re-
mains equal to the FMM, that is, O(M logM), being M
the numbers of nodes in the potential surface P̃ .

2.1. Behavioural Metrics

Once we have computed the surface T , we have to estab-
lish whether a trajectory is abnormal or not. We can define a
path as P = {p0, p1, . . . , pM}, where each point represents
positions that are reached for the target, and its associated
time as

Pt = {tp0 , tp1 , . . . , tpM
}. (5)

Intuitively, without any information about the environ-
ment, the human brain detect as abnormal behaviour erratic
movements, such as sudden orientation changes or zigzag
movements. However, taking into account the scene prop-
erties, it may be the only way to reach the target, causing
the path to be usual. An example of this behaviour could be
a mountain road, climbing to the top like a snake. However,
in our assumption, we only take into account the initial and
final point of the trajectory. According with our assump-
tions, the average time required to reach a goal in the scene,
starting at any given position, is stored in the surface T .
Thus, a new hypothesis is established, that is,

Hypothesis 4 If a path P have an usual behaviour, then
∀p ∈ P, Tp ≈ Pt(p),

that is, the relation between the real and the expected time
is Tp

Pt(p)
≈ 1. Note that this idea is similar to the distance
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Figure 1. Discretized grid structure. ρ is the number of times
a target reaches the node, whilst f and v are both the number of
times a target crosses the path in each direction, and their most
common speed.

hypothesis performed in [4]. However, we think that the
metrics used are not well suited, since the division between
the two factors could obtain lower results when the numer-
ator is too small compared with the denominator. Having
this in mind, we develop a metric that allows us to measure
a path’s “abnormality”. We called it Time Log-Likelihood
(TL), and is defined by

TL(pN ) = ∥ log(TpN
)− log(tpN

− tp0)∥, (6)

where 1 < N ≤ M . Values close to 0 mean the path is
correct, while higher values could indicate an abnormal be-
haviour. Note that this final point mentioned in this met-
ric is not necessarily the moment when the target leaves the
scene. It is only a moment when we decide to evaluate a tra-
jectory. This strong advantage allows this method to be used
in real-time systems, since the computational complexity of
the metric, once the surface T is computed, is O(1).

3. Implementation
The model described in the previous section needs an

implementation of the different structures that are used in
the algorithm. Specifically, the potential P̃ and the velocity
V surfaces. To compute these surfaces, we follow a sim-
ilar approach that can be found in [23]. Since this method
uses digital images, we discretized space into a regular grid.
For each node/pixel, we store a set of properties, according
to the schema shown in Fig. 1, into a 2D array we call
P , being ρ the number of people that reach the node. We
store anisotropic fields with four floats per cell correspond-
ing to the east, north, west and south faces of each pixel
(θ = {0, 90, 180, 270}). fM→{E,N,W,S} are the number
of people that crosses each one of the pixel faces, while
vM→{E,N,W,S} are their most common speed. With this
information, we are able to create P̃ and V surfaces.

To select the most common speed velocity, we use a Ker-
nel Density Estimator [18]. To estimate the bandwidth, we
use the Rule of Thumb method [8], [21]. Once we have the
probability density function, we select the most common
speed as the value with higher probability.



3.1. Potential Surface P̃

To model the potential surface we use the ρ parameter.
Thus, having a point p, its potential value is defined by

P̃ (p) =
1

ρp
+ ω, (7)

being ω the regularization parameter, typically ω = 0. We
also have to define the p neighbourhood. The FMM uses
a 4-connectivity procedure. However, in our case, we re-
strict the front-propagation technique to the directions that
are commonly used, that is, being M = {pE , pN , pW , pS}
the usual p 4-connectivity neighbours,

∀m ∈ M,m is p’s neighbour ⇔ fp→m > α, (8)

being α a manual threshold. Note that this sentence does
not imply the opposite. For instance, pS can be a neighbour
of p but p could not be a neighbour of pS . With this re-
striction we can include orientation in the front-propagation
procedure.

3.2. Velocity Surface V

As defined in Eq. 4, having any given point p to be up-
dated, we have to find the value υp = 1

Vp
in order to update

the time surface front. When the default condition is used,
that is, only the point pa is used to update the front it is easy
to obtain the velocity, since it is Vp = vpa→p.

However, when dealing with the first condition, we have
two different velocities that have to be combined, vpa→p

and vpb→p. In order to establish an accurate solution to this
problem, we define another surface D to be computed. This
surface stores, for any given node p, the distance needed to
reach it starting in p0 and following the front-propagation
method defined in Algorithm 1. This surface can be com-
puted at the same time the surface of minimal action U is
computed, as the time surface T does. To update the dis-
tance surface we follow the equation

DpN =

 Dpa +Dpb +
√
∆3

2
if P̃pN > (Upb − Upa)

Dpa + 1 otherwise
,

(9)
being ∆3 = 2 − (Dpb

− Dpa)
2 the discriminant, and pa

and pb the best neighbours defined in the minimal action
surface procedure. To obtain the value Vp we make use of
the gradient descendant in D, that is,

Vp =
∇Dpavpa→p +∇Dpb

vpb→p

∇Dpa +∇Dpb

, (10)

where ∇Dp{a,b} = ∥Dp −Dp{a,b}∥.

4. Experimental Results
When trying to test any trajectory analysis, the same

problem arises: there is a total absence of ground truth in-
formation, except in the BARD dataset [5]. However, this
dataset is too small (only over 600 trajectories) and does
not have any time information included. Thus, we decided
to use a dataset that included a high number of trajecto-
ries, the single camera MIT trajectory dataset [25]. It con-
tains 40, 453 different trajectories obtained from a parking
lot scene within five days. We use half the trajectories as
training, and the other half as testing.

Having all of this information, it is very hard to define
whether a trajectory is normal or not. In related papers,
they use some visual information to probe its effectiveness
[25], [27], [26], [28]. In our approach, we also focus the so-
lution as a statistical problem. Since all the earlier attempts
to model the human trajectory behaviour have used some
learning methods to determine the usual behaviour, we ex-
tract the idea that, having no information about the environ-
ment, every method consider the most usual paths as normal
movements, being the outliers the abnormal ones.

Ideally, we expect an abnormal behaviour measure to
have an asymptotic curve, like 1

x , where the most part of the
trajectories are normal, with a few abnormal movements.
That is, the more erratic a trajectory is, the lower frequency
it has. Thus, we can establish an inverse correlation between
this two properties. In the top density function in Fig. 2-(a)
we can see our metric has this behaviour. However, we have
to check that, as we assume, lower values correspond to nor-
mal trajectories, while higher values means the opposite. To
that end, we length-normalize every trajectory and perform
a Fuzzy C means clustering into a large number of clusters.
When we visualize the results, we saw that some trajecto-
ries detected as normal has some erratic movements in the
middle. So, we decided to include two additional metrics:
the Mean TL (MTL), which plots the mean of all the TL
measures within the same trajectory, and the Maximum TL
(MaxTL), which indicates its higher value. In Fig. 2-(a)
we can see the density function of these metrics. We found
that these two metrics perform really bad compared with the
TL metrics, especially the MaxTL. Additionally, Fig. 2-(b)
shows that the number of results near to ∞ is higher in the
new metrics. This is really interesting, because when plot-
ting the results of the clusters, according with the MaxTL
value, we see some pattern (Fig. 3). The bad accuracy of
the MaxTL metric is related to failures in the tracking sys-
tem. That is, when due to a tracking failure a bad match is
provoked, the system can detect it. This is an outstanding
property, as it can be used to increase tracking performance.

4.1. Crowded Scenes

We demonstrate how this method can detect and classify
every trajectory. However, at this point it can be argued
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Figure 2. MIT Trajectory Dataset statistical results. (a) TL density function. (b) Mean TL density function. (c) Maximum TL density
function. (d) Cumulative density function of each metric. Although the TL metric obtains good results, both its mean and its max value
has poor quality. This seems to infer the trajectories are not accurate.
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Figure 5. Train Station Dataset statistical results. The results
suggest the effect of the rest of the people in a crowded scene has
little impact in a target behaviour.

that the method could not work in crowded scenes, where
the rest of the targets can affect a target’s behaviour, mak-
ing that usual direction may not be chosen. To that end, we
select the Train Station Dataset [28], where 42, 821 trajec-
tories were recorded in only 33 minutes. Performing the
same experiments as in the previous dataset we obtain sim-
ilar results (Fig. 5). That is really interesting, because we
can conclude that the effect caused in a target by the rest
of the people is not as huge as one may think. And with
this hypothesis, we can pre-compute the time surface at the
beginning without significantly increasing the metric error.
Having this in mind, computing the behaviour at each posi-
tion can be done in constant time.

In Fig. 4 we can see some trajectories the system detect
as normal behaviour. As we can see, some movements were
caused because of other people interaction, but the system
remains robust against it. In a similar way, in Fig. 6 we
can see some abnormal trajectories, and also when the sys-
tem is changing its decision. This images show how our
method can detect the degree of ’normality’ at every mo-
ment a target is detected, providing a very powerful tech-
nique for surveillance scenarios.

The results obtained both in normal and high dense scene
are better than expected. The fact that the number of peo-
ple in the scene does not have a high impact in the target’s
behaviour makes this system very useful in very different
situations. Previous methods group the scene in different

regions with same behaviour [21] or cluster the trajectories
in different patterns [25]. In our case, we cluster every ’time
surface’ taking into account each target’s initial position.
This idea is very promising, since in the most part of scenes
the number of entrances is low. Thus, in future research
it would be interesting to create only the surfaces related
with these regions, causing the system to detect abnormal
behaviours in constant time. To our knowledge, this is the
first method that can be able to obtain it, since we do not
have to compare the new trajectory against all the different
pattern stored in the system, like the other methods do.

5. Conclusions

We proposed a novel idea to classify human trajectories,
based in the idea that a person uses the path that takes less
time to reach its target. Using the information about previ-
ous targets, we define a new potential field that is used to
create a ’time surface’ where, starting at any given point in
the image, can predict the average time needed to reach any
other position, assuming the target has an usual behaviour.
Having this information, we introduce a new temporal met-
ric to decide whether a trajectory is abnormal or not. Se-
lecting two complicated scenarios, we prove that our ini-
tial hypothesis is correct, having an important contribution
to establish a new way to define trajectory behaviour. The
lack of datasets providing ground truth make impossible the
task of evaluating our algorithm against other state of the art
techniques. However, our method offers many advantages
against techniques based in clustering or bayesian models,
since it is able to compute the degree of ’normality’ at ev-
ery trajectory instant, and it is robust against the influence
of other targets. Furthermore, it can detect tracking errors,
making it suitable to improve any tracking system that can
be integrated with our system. In future work we aim to
further refine this method, using statistical techniques to
model both velocity and time, instead of only using the most
usual speed for every position. We also aim to expand this
methodology to multiple camera frameworks.
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Figure 3. MIT Trajectory Dataset results. In the first column, trajectories with low MaxTL value. In the second, higher values. In the
third, trajectories for which a minimal action surface cannot be created. Trajectory colours are randomly selected.
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