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Abstract

This paper proposes a novel parametric warp which is
a spatial combination of a projective transformation and
a similarity transformation. Given the projective transfor-
mation relating two input images, based on an analysis of
the projective transformation, our method smoothly extrap-
olates the projective transformation of the overlapping re-
gions into the non-overlapping regions and the resultant
warp gradually changes from projective to similarity across
the image. The proposed warp has the strengths of both
projective and similarity warps. It provides good alignment
accuracy as projective warps while preserving the perspec-
tive of individual image as similarity warps. It can also be
combined with more advanced local-warp-based alignment
methods such as the as-projective-as-possible warp for bet-
ter alignment accuracy. With the proposed warp, the field
of view can be extended by stitching images with less pro-
jective distortion (stretched shapes and enlarged sizes).

1. Introduction

Image stitching is a process of combining a set of im-
ages into a larger image with a wider field of view of the
scene. For robustness, image stitching is typically solved by
finding global parametric warps to bring images into align-
ment [13]. Popular choices for the global warps include
similarity, affine and projective ones. In spite of their ro-
bustness, global warps are usually not flexible enough for
all types of scenes and motions. For example, the projec-
tive warp can only provide accurate alignment for planar
scenes or parallax-free camera motions.

For addressing the model inadequacy of global warps
and improving alignment accuracy, recently, several local
warp models have been proposed, such as the smoothly
varying affine (SVA) warp [9] and the as-projective-as-
possible (APAP) warp [13]. For better alignment accuracy,
rather than relying on a single global warp, these meth-
ods adopt multiple local parametric warps on the overlap-
ping regions to account for misalignment. For the non-
overlapping regions, projective (affine) regularization is
used for smoothly extrapolating warps beyond the image
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Figure 1. (a,b) APAP warp. (c,d) APAP + our warp. Note that the
sizes of quads vary and their shapes distort in APAP (b), indicating
severe size/shape distortion especially in the non-overlapping area
of I2. On the other hand, our warp maintains shapes and regular-
izes sizes of quads in (d), showing much less distortion.

overlap and resembling a global transform overall. For
example, the APAP warp employs local projective warps
within the overlapping regions while using moving DLT
for smoothly extrapolating local projective warps into the
non-overlapping regions. Thus, the result is a warp that is
globally projective, yet allows local deviations to account
for model inadequacy [13]. However, since the APAP warp
attempts to resemble a projective warp globally, it suffers
from the same problem as the projective warp: shape/area
distortion, i.e., a part of the stitched image is severely
stretched and non-uniformly enlarged.

Consider the traditional two-view stitching problem in
Figure 1, in which two images I1 and I2 are stitched and I1
is used as the base image. Figure 1(a) shows the result of the
APAP warp [13]. The APAP warp locally adapts to differ-
ent transformations, thus yielding more accurate alignment
in the overlapping areas of two images. The warps in the
overlapping areas are extrapolated into the non-overlapping
areas and the resultant warp approximates a global pro-
jective warp (Figure 1(b)). As seen in this example, the
non-overlapping area of I2 is severely distorted in sizes and
shapes by the projective warp. The distortion can be even
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aggravated when the next image is stitched with I2 for fur-
ther extending the field of view. Another thing worth note
is, as pointed out by Hartley and Zisserman [7], applying
the projective warp on I2 effectively changes its perspective
to I1’s. Thus, I2 is warped as an extended view of I1. The
stitched image shows a wider perspective view of I1 and
thus is single-perspective. Cylindrical and spherical warps
address the problem with a fairly narrow view of the per-
spective warp by providing multiperspective views. Unfor-
tunately, these warps often curve straight lines and are only
valid if all images are captured at the same camera center.

Since a single-perspective image with a wide field of
view inevitably introduces severe shape/size distortion, the
solution must provide a multiperspective stitched image. A
preliminary idea is to employ a projective warp in the over-
lapping areas for better alignment while using a similarity
warp in the non-overlapping areas for preserving the per-
spective of each view. We choose the projective warp be-
cause it is the most flexible global warp. On the other hand,
we choose the similarity warp because it is composed of
only translation, uniform scaling and rotation, and thus in-
troduces no shape distortion nor non-uniform scaling. From
another perspective, the similarity warp can be interpreted
as a combination of panning, zooming and in-plane rotation
of a camera, which keeps the viewing direction unchanged,
thus preserving the perspective. Additionally, for construct-
ing a smooth warp across the image, it is required to have
a smooth transition between the region with the projective
warp and the one using the similarity warp.

This paper proposes a novel parametric warp, the shape-
preserving half-projective warp, which is a spatial combi-
nation of a projective transformation and a similarity trans-
formation. Such a combination simultaneously takes into
account the flexibility for alignment and the preservation of
perspective. Given I1 and I2 in Figure 1, we first estimate
the global projective transformation between them. From it,
we determine a similarity transformation by a novel extrap-
olation scheme of the projective transformation. Intuitively,
our warp performs a projective warp for alignment in the
overlapping regions while preserving the image perspective
of the non-overlapping areas with the similarity transfor-
mation. The extrapolation scheme is also used to form a
smooth transition between areas with perspective and simi-
larity warps. We also propose a scheme to integrate the pro-
posed warp with the APAP warp. The combined warp aligns
images in a local manner like the APAP warp, and generates
a multiperspective view like the proposed warp. As shown
in Figure 1(c)(d), the stitched image using the combined
warp exhibits a multiperspective view while maintaining ac-
curate alignment. With the proposed warp, the field of view
can be extended without severe distortion on sizes, shapes
and lines.

2. Related Work

Szeliski has a comprehensive survey of image stitch-
ing [10]. Conventional methods [11, 1] assume the camera
motion contains only rotation. Image stitching is performed
on a viewing sphere. A projection is performed to map the
viewing sphere to an image plane for obtaining a 2D com-
posite image. A few projection models have been proposed
and they often aim to minimize the induced visual distortion
due to projection. Brown et al. adopted the spherical pro-
jection in their AutoStitch program [1]. Zelnik-Manor et
al. [14] used a multi-plane projection as an alternative to
the cylindrical projection. Kopf et al. [8] proposed the lo-
cally adapted projection which is globally cylindrical while
locally perspective. Carroll et al. [2] proposed the content-
preserving projection for reducing distortions of wide-angle
images. When the underlying assumptions of these models
are not met, misalignment occurs and post processing meth-
ods (e.g., deghosting and blending) can be used to hide it.

Image stitching techniques often utilize parametric trans-
formations to align images either globally or locally. Gao et
al. [6] proposed the dual-homography warping to specifi-
cally deal with scenes containing two dominant planes. The
warping function is defined by a linear combination of two
homographies with spatially varying weights. Since their
warp is based on projective transformations, the resulting
image suffers from projective distortion (which stretches
and enlarges regions). They proposed an post-process to
alleviate the distortion. Lin et al. [9] proposed a smoothly
varying affine stitching field which is globally affine while
allowing local deformations. Zaragoza et al. [13] proposed
the as-projective-as-possible warp which is globally projec-
tive while allowing local deviations for better alignment.

Our approach is based on an analysis of projective trans-
formations. Chum et al. [4] adopted a change of coordinates
to derive a formula for computing geometric errors for pro-
jective transformations. Similarly, we use a change of co-
ordinates to rephrase projective transformations. Chum and
Matas [3] analyzed the local scale change under a projective
transformation and utilized it for affine rectification. We
follow the same analysis to design our warp.

3. The proposed warp

This section describes the proposed warping function
w : R2→ R2 that maps (x, y) to (x′, y′). Given a projec-
tive transformation Ĥ relating two images spatially, we first
divide R2 into two half-spaces RH and RL by a line. For
(x, y) ∈ RH , we let w(x, y) = Ĥ(x, y). For the other half
space RL, our warping function continuously extrapolates
Ĥ to become a similarity transformation S. Since the pro-
posed warp w performs a projective transformation on one
half-space while preserving shapes on the other half-space,
we call it the shape-preserving half-projective warp.



3.1. Analysis of the projective transformation

The construction of our warp comes from an analysis of
the given projective transformation Ĥ . A projective trans-
formation (homography) Ĥ : (x, y) 7→ (x′, y′) is defined as
a linear transformation with homogeneous coordinates, i.e.,[

x′

y′

1

]
∼

ĥ1 ĥ2 ĥ3

ĥ4 ĥ5 ĥ6

ĥ7 ĥ8 1

[xy
1

]
, (1)

where ∼ denotes equality up to a scale factor. It has eight
parameters. The mapping between (x, y) and (x′, y′) can
be re-written as

x′ =
ĥ1x+ ĥ2y + ĥ3

ĥ7x+ ĥ8y + 1
, y′ =

ĥ4x+ ĥ5y + ĥ6

ĥ7x+ ĥ8y + 1
. (2)

Our analysis of Ĥ relies on a change of coordinates. The
change simplifies the formula and reveals important proper-
ties. Chum et al. [4] adopted the same technique for com-
puting the geometric error for a homography. In particular,
we rotate the original coordinate system (x, y) to form the
new coordinate (u, v). The new coordinate (u, v) and the
original coordinate (x, y) are related as follows[

x
y

]
=

[
cos θ − sin θ
sin θ cos θ

] [
u
v

]
, (3)

θ = atan2(−ĥ8,−ĥ7). (4)

After the change of coordinates, we obtain a new homog-
raphy H that maps (u, v) to (x′, y′). The corresponding
formula becomes [

x′

y′

1

]
∼

[
h1 h2 h3

h4 h5 h6

−c 0 1

][
u
v
1

]
, (5)

where
[
h1 h2

h4 h5

]
=

[
ĥ1 ĥ2

ĥ4 ĥ5

] [
cos θ − sin θ
sin θ cos θ

]
, (6)

(h3, h6) = (ĥ3, ĥ6), (7)

c =

√
ĥ2

7 + ĥ2
8. (8)

The new mapping can also be written as

x′ = Hx(u, v) =
h1u+ h2v + h3

1− cu
, (9)

y′ = Hy(u, v) =
h4u+ h5v + h6

1− cu
. (10)

We also denote the mapping as a function of u and v, i.e.,
[x′, y′]T = H(u, v) = [Hx(u, v), Hy(u, v)]T 1.

1Without ambiguity, we use H for both the transformation matrix and
its corresponding mapping function.

(a) Original (b) Projective warp (c) Our warp
Figure 2. Comparison of the projection warp and our shape-
preserving half-projective warp. Note that our warp exhibits much
less shape and size distortion than the projective warp.

The main benefit of the change of coordinates is that
the new projective transformation H has its h8 = 0 (Equa-
tion 5). Equivalently, note that now there is only one coor-
dinate u involved in the denominators of Equation 9 and 10.
The change of coordinates leads to the following properties:

(i) Change of scale. We first analyze how the scale
changes across the image due to a projective transformation.
The analysis relies on matrix decomposition. Specifically,
H can be decomposed into an affine transformationHA and
a pure projective transformation HP as follows [3][

h1 h2 h3

h4 h5 h6

−c 0 1

]
︸ ︷︷ ︸

H

=

[
h1+ch3 h2 h3

h4+ch6 h5 h6

0 0 1

]
︸ ︷︷ ︸

HA

[
1 0 0
0 1 0
−c 0 1

]
︸ ︷︷ ︸

HP

. (11)

The local area change of (u, v) can be measured by the de-
terminant of the Jacobian of H at (u, v), det J(u, v), which
is related with the determinants of the Jacobians of HA and
HP as

det J(u, v) = det JA(u, v) · det JP (u, v)

=sA ·
1

(1− cu)3
, (12)

where sA = detJA(u, v) is a constant independent of u
and v. From Equation 12, the scaling factor of the local
area change induced by H only depends on u. In particular,
as the coordinate u becomes larger, the local area through
H becomes larger, leading to larger area distortion. Fig-
ure 2(b) gives an example of a projective transformation,
where the area distortion becomes larger along the positive
u-axis.

(ii) Linearity of H . The affine transformation preserves
the ratio of lengths on a line while the projective one does
not in general. However, the change of coordinates reveals
that, under certain conditions, the length ratios can be pre-
served under the projective transformation. From Equa-
tion 9 and 10, if u = u0 is a fixed constant, then both
Hx(u0, v) and Hy(u0, v) are linear functions of v,

x′ = Hx(u0, v) =
h2

1− cu0
v +

h1u0 + h3

1− cu0
, (13)

y′ = Hy(u0, v) =
h5

1− cu0
v +

h4u0 + h6

1− cu0
. (14)



In other words, for a line parallel to the v-axis, H preserves
ratios of distances between points lying on that line.

(iii) Ruled surfaces. A ruled surface is a surface swept
out by a moving line. It has a parameterization of the form
s(u, v) = p(u) + v · r(u) where p(u) is called the base
curve and r(v) is called the director curve [5]. Consider a
function k of the form k(u, v) = f(u)v+ g(u), its graph (a
surface formed by (u, v, k(u, v)) in R3) can be written as[

u
v

k(u, v)

]
=

[
u
0

g(u)

]
︸ ︷︷ ︸

p(u)

+v

[
0
1

f(u)

]
︸ ︷︷ ︸

r(u)

, (15)

showing that it is a ruled surface. Since Hx(u, v) and
Hy(u, v) can be written in the form f(u)v + g(u), their
graphs are ruled surfaces. Equation 13 and 14 also reveal
this fact. Equation 13 shows that the intersection of Hx’s
graph and the plane u = u0 is a line, indicating that Hx’s
graph can be formed by moving and rotating a line along
the u axis. Thus, Hx forms a ruled surface. The same argu-
ment applies to Hy according to Equation 14.

3.2. Half-projective warp
The construction of our warp makes use of the above

three properties of the coordinate-changed projective trans-
form H . First, we divide R2 by the line u=u1 into two half
spaces: RH = {(u, v)|u ≤ u1} and RL = {(u, v)|u > u1}.
For (u, v) ∈ RH , we apply the original transformation H .
For (u, v)∈RL, sinceH causes larger area distortion onRL

than RH (property(i)), we propose to replace H with a sim-
ilarity transformation S. The warp however must remain
continuous; otherwise, there will be an obvious seam along
the boundary of RH and RL in the warped image. To con-
struct a continuous warp, we require that S(u, v)=H(u, v)
for all (u, v) on the partition line. Note that such a require-
ment cannot be satisfied for an arbitrary partition line since
the projective transform is not linear along a line in gen-
eral while the similarity one is. Fortunately, by picking a
line parallel to the v-axis, u=u1, thanks to property(ii), the
continuity requirement can be achieved because H(u1, v)
is a linear function of v. By requiring S(u1, v) = H(u1, v)
for all v, S is uniquely determined as

S(u, v) =
1

1−cu1

([
h5 h2

−h2 h5

][
u
v

]
+

[
(h1−h5)u1+h3

(h4+h2)u1+h6

])
.

(16)

Note that u1 is a parameter of the warp. We discuss how to
determine it in Section 4.

Figure 3 gives an example. Figure 3(a) shows the in-
put image and the uv coordinate system computed from the
given projective warp Ĥ . Figure 3(c) illustrates the con-
structed continuous half-projective warp using the above
method. The construction gives us a warping function
that is continuous (C0), half-projective and half-similarity.

Compared with a single projective transformation (Fig-
ure 3(b)), our warp has less shape and area distortion. How-
ever, it introduces a sudden line bending at u = u1. More
specifically, although lines lying within RH or RL are kept
straight, lines passing through the partition line with u = u1

are bent. To mitigate the artifacts, instead of using a sin-
gle similarity transform in RL, we introduce a buffer region
where H is smoothly extrapolated so that the warping func-
tion inRL is continuously differentiable (C1) and gradually
changes from H to a similarity transform S.

3.3. C1 extrapolation

To construct a C1 warp, we propose to generalize the
above method by further dividingRL into two regionsRT =
{(u, v)|u1 < u < u2} and RS ={(u, v)|u2 ≤ u} as shown
in Figure 2(c). u1 and u2 are parameters of the warping
function and will be determined in Section 4. The warping
function is defined as

w(u, v) =

{
H(u, v) if (u, v) ∈ RH

T (u, v) if (u, v) ∈ RT

S(u, v) if (u, v) ∈ RS

. (17)

T (u, v) defined in the intermediate area RT is a func-
tion that gradually changes its behaviour from H(u, v) to
S(u, v). S(u, v) is a similarity transformation defined for
RS . We parameterize the similarity transformation by

S(u, v) =

[
Sx(u, v)
Sy(u, v)

]
=

[
α −β
β α

] [
u
v

]
+

[
tx
ty

]
. (18)

Given a projective transformation H , we first determine u1

and u2 and then construct a warp w in the form of Equa-
tion 17.

From property(iii) in Section 3.2, we know that both
graphs of Hx and Hy form ruled surfaces. From Equa-
tion 18, the graphs of Sx and Sy are planes in 3D which
are also ruled surfaces. This motivates us to require that the
graphs of Tx(u, v) and Ty(u, v) to be ruled surfaces as well.
Therefore, we assume that T (u, v) is of the following form

T (u, v) =

[
Tx(u, v)
Ty(u, v)

]
=

[
fx(u)
fy(u)

]
v +

[
gx(u)
gy(u)

]
. (19)

For constructing the warp w, we need to determine the pa-
rameters, α, β, tx, ty , for the similarity transformation S
and four functions fx, fy , gx, gy for T . We assume these
four functions are polynomial functions of u. Plugging
Equation 9, 10, 18 and 19 into Equation 17, we can express
the warping function w as the following form:

w(u, v) =

[
wx(u, v)
wy(u, v)

]
=

[
Fx(u)v +Gx(u)
Fy(u)v +Gy(u)

]
, (20)



(a) Original (b) Projective warp (c) Our C0 warp (d) Our C1 warp
Figure 3. (a) The original image I and the uv coordinate system derived from Ĥ . (b) The resultant image by warping I with Ĥ . (c) The
resultant image by warping I with our C0 warp. (d) The resultant image by warping I with our C1 warp.

where

Fx(u) =


h2

1−cu if u ≤ u1

fx(u) if u1 < u < u2

−β if u2 ≤ u
, (21)

Gx(u) =


h1u+h3

1−cu if u ≤ u1

gx(u) if u1 < u < u2

αu+ tx if u2 ≤ u
. (22)

Fy and Gy can be expressed similarly.
The remaining problem is to find proper fx, gx, fy , gy ,

α, β, tx and ty so that w is C1 continuous. It requires that
Fx, Gx, Fy and Gy are all C1 continuous. Taking Fx as an
example, according to Equation 21, Fx is C1 if the follow-
ing four conditions are met,

fx(u1) =
h2

1− cu1
(Fx(u1) is continuous) (23)

f ′x(u1) =
ch2

(1− cu1)2
(F ′x(u1) is continuous) (24)

fx(u2) = −β (Fx(u2) is continuous) (25)
f ′x(u2) = 0 (F ′x(u2) is continuous) (26)

Since we have four linear constraints, we can have at most
four parameters. Because β already takes one parameter,
fx can have three parameters. Thus, we assume that fx is a
quadratic function of u. By solving the resultant 4-by-4 lin-
ear system, we obtain fx(u) and β. Similarly, fy(u) and α
can be solved by enforcing C1 continuity of Fy . Following
the same strategy, constraints on Gx give us gx(u) and tx.
Finally, Gy gives us gy(u) and ty .

In sum, the proposed warp extrapolates H(u, v) into RT

and RS by automatically determining the functions T (u, v)
and S(u, v). To conclude, given a projective transformation
Ĥ relating two input images, we construct a warping func-
tion w that is C1 continuous, projective in one half-space
and continuously transfers into a similarity transformation
in the other half-space. Figure 3(d) demonstrates the con-
structed warp. The next section discusses how to apply the
proposed warp to image stitching and determine parameters
u1 and u2.

4. Image stitching
This section presents how to adopt the proposed warp for

image stitching. We first describe how it can be adopted for
pairwise stitching and how to automatically determine the
parameters u1 and u2. Then we present a novel scheme
to combine the proposed warp with the as-projective-as-
possible (APAP) warp [13] to have the strengths of both.

4.1. Shape-preserving image stitching

Given two images I1 and I2, suppose they are related
by a homography H12 that maps a point (x2, y2) in I2 to
(x1, y1) in I1. As shown in Figure 4, if I2 is warped by w,
I1 should be warped by w ◦ H−1

12 in order to maintain the
geometric relationship described by H12. When w =H12,
it is reduced to applying H12 to I2 while fixing I1. When
w= I , I2 is fixed and I1 is warped by H−1

12 . We derive the
proposed warp from H12 as described in Section 3 and use
it as w in Figure 4 for stitching two images.

Next we describe how to automatically determine the pa-
rameters u1 and u2. Since one goal of the proposed warp
is to maintain the perspective of each image, we want that
each image undergoes a similarity transformation as much
as possible. That is, we want that the constructed warp w
approaches a similarity transformation. To achieve this, we
associate each image Ii with a cost Ei which measures the
deviation of its warp function wi from the nearest similarity
transformation in the Frobenius norm, i.e.,

Ei(u1, u2)

= min
ai,bi

∫∫
(x,y)∈Ωi

∥∥∥∥Ji(x, y;u1, u2)−
[
ai −bi
bi ai

]∥∥∥∥2

F

dxdy

(27)

where Ωi is the rectangular domain of Ii; Ji(x, y, u1, u2)
is the Jacobian matrix of wi evaluated at (x, y). Since
u1 and u2 are parameters of wi, the Jacobian depends
on (u1, u2). In the case of stitching two images, the to-
tal energy E(u1, u2) = E1(u1, u2) + E2(u1, u2) where
w1 = w ◦ H−1

12 and w2 = w (w is the constructed warp



Figure 4. The geometric relationship between two images using
the proposed warp.

from H12). Note that, although minimizing individual Ei

could just lead to a similarity transform, their joint opti-
mization finds a good compromise between the require-
ments of alignment and similarity. The energy is a non-
linear function of u1 and u2. We optimized it by regularly
sampling the parameter space (u1, u2), evaluating the en-
ergy at the sampled positions and picking up the one with
the lowest energy.

For stitching an image sequence {I1, . . . , In}, we per-
form a group-wise stitching that simultaneously stitches all
input images at once. Our method finds the homography
Hi,i+1 for each pair of neighboring images and the homog-
raphyH1n between the first and the last image. H1n is used
for deriving a warp w. In is warped by w and each of other
images Ii is warped byw◦H−1

in . Figure 5 shows an example
that simultaneously stitches a sequence of three images.

4.2. Combination with the APAP warp

The proposed warp pays more attention on preserving
perspectives but not alignment accuracy. However, it can
be combined with approaches with better alignment accu-
racy to have strengths from both. The APAP warp [13]
is one of the state-of-the-art image alignment methods in
terms of alignment accuracy. One possible way for com-
bining with APAP is to replace the projective warp in their
moving DLT framework with the proposed half-projective
warp. However, it would require determining spatially-
varying (u1, u2), which is nontrivial and unintuitive. In the
following, we describe a simple scheme for combining the
APAP warp with the proposed warp.

We interpret our warp as a two-stage process: a projec-
tive transformation H followed by a post warp w ◦H−1 as
shown in Figure 6(a). This post warp can be treated as a
refinement for reducing projective distortion. Specifically,
our post warp only manipulatesRL where there is large area

Figure 5. The geometric relationship among three images using
our warp.

distortion while doing nothing on RH . Although the APAP
warp is a locally-varying warp, it follows a projective trans-
formation globally. Thus, we can simply treat it as a projec-
tive warp and apply our post warp on it to reduce the dis-
tortion as shown in Figure 6(b). In this way, the images are
locally aligned by APAP while the global shape is adjusted
by our post warp. To summarize, the warping function that
combines APAP and ours is defined as

w ◦H−1 ◦ wAPAP. (28)

Figure 6(c) shows the updated geometric relationship when
adopting the combination of APAP and our warp.

5. Experiments
We compared our warp with the projective warp and Au-

toStitch [1]. AutoStitch assumes that input images share the
same camera center and uses a 3D rotation model. For both
the projective warp and our warp, we used the VLFeat li-
brary [12] to extract SIFT features and performed matching
with RANSAC for obtaining the projective transformation
for the overlapping regions. Stitching with the projective
warp is achieved by fixing an image as the reference and
applying the projective transformation on the other image.
We manually chose the reference for the best result of the
projective warp with less distortion. For our warp, after ob-
taining the projective transformation, we determined the pa-
rameters u1 and u2, constructed the warp and then applied
the warping function to align images. The aligned images
were composited using linear blending.

We implemented the proposed method using MATLAB
and ran experiments on a PC with a 3.4GHz CPU and 4GB
RAM. For stitching two images with the 800× 600 resolu-
tion, our implementation took around 5 seconds for finding
the parameters u1 and u2, and less than 2 seconds for both
warp construction and image warping combined.



Figure 6. (a) Our warp can be interpreted as a projective warp followed by a post warp for refinement. (b) Integration by applying our post
warp after the APAP warp. (c) The geometric relationship between two images using APAP+our warp.

(a) Projective warp (b) AutoStitch (c) Our warp
Figure 7. Comparisons of the projective warp, AutoStitch, and our warp.

Figure 7 compares the projective warp, AutoStitch and
our warp. The projective warp keeps all lines straight, but
exhibits projective distortion on sizes, shapes and orienta-
tions. AutoStitch can reduce area distortion. However, it
curves some important lines. Our warp alleviates projec-
tive distortion while preserving the perspective of each im-
age. Because both projective and similarity transformations
do not introduce line distortion, our warp only suffers from
line distortion within RT . Figure 8 compares these three
methods on stitching a sequence of ten images. AutoStitch
introduces heavy shape distortion in this example. The pro-

jective warp suffers from area and shape distortion particu-
larly at both ends (the shapes of children are distorted). Our
warp has much less distortion and provides a multiperspec-
tive view of the scene.

Figure 9 compares the APAP warp and the combination
of APAP with our warp on two-image stitching. Our post
warp is performed on both images by the warps described
in Figure 6(c). Thus, our warp can maintain the accurate
alignment as APAP does while adjusting the overall shape
of the results for reducing distortion. Note that these ex-
amples can not be aligned well by single projective trans-



(a) AutoStitch (b) Projective warp (c) Our warp
Figure 8. Comparisons of the AutoStitch, projective warp and our warp on an example of stitching 10 images.

(a) APAP warp (b) APAP + our warp
Figure 9. Comparisons of the APAP warp and the combination of
APAP and our warp.

formations. By combining with APAP, the proposed warp
becomes more robust.

6. Conclusion
This paper proposes a novel warp for image stitching.

Our warp aligns images globally while preserving their
original perspectives. When combining with the APAP
warp, the results provide accurate alignment, less distor-
tion and multiperspective views. Our parameter selection
procedure currently does not take image content (e.g., line
features) into account. Therefore, when the scene is full of
line structures, the selected parameters can be ineffective in
reducing line distortion. In the future, we would also like
to explore the possibility of adopting our warp to different
applications such as view morphing.
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