
Dual Linear Regression Based Classification for Face Cluster Recognition

Liang Chen
University of Northern British Columbia

Prince George, BC, Canada V2N 4Z9
chen.liang.97@gmail.com

Abstract

We are dealing with the face cluster recognition prob-
lem where there are multiple images per subject in both
gallery and probe sets. It is never guaranteed to have a
clear spatio-temporal relation among the multiple images
of each subject. Considering that the image vectors of each
subject, either in gallery or in probe, span a subspace; an
algorithm, Dual Linear Regression Classification (DLRC),
for the face cluster recognition problem is developed where
the distance between two subspaces is defined as the simi-
larity value between a gallery subject and a probe subject.
DLRC attempts to find a “virtual” face image located in the
intersection of the subspaces spanning from both clusters of
face images. The “distance” between the “virtual” face
images reconstructed from both subspaces is then taken as
the distance between these two subspaces. We further prove
that such distance can be formulated under a single linear
regression model where we indeed can find the “distance”
without reconstructing the “virtual” face images. Extensive
experimental evaluations demonstrated the effectiveness of
DLRC algorithm compared to other algorithms.

1. Introduction
[Rules of Reasoning in Philosophy] Rule I:

“We are to admit no more causes of natural
things than such as are both true and sufficient to
explain their appearances. ”

–Sir Isaac Newton

This paper deals with the following face cluster recogni-
tion problem: Given a galley set consists of a number of
face image clusters, each containing the images of a known
subject/identity; a probe cluster to be recognize contains
a number of images of one subject; We are to match the
probe cluster with the gallery set in order to determine the
identity of the probe subject. This should be taken to be
a typical image set based face recognition problem. How-
ever, in literature, it seems that the image based face recog-

nition has been fallen under the category of video based
face recognition. For example, most of the papers un-
der the titles of image set based face recognitions, such
as [10, 11, 28, 9, 27, 30, 5, 31, 1], use only benchmarks
of video databases for the evaluation of their approaches.
Therefore, we prefer call the problem we focus on “face
cluster recognition” problem.

Video faces usually carry temporal relationships among
image frames, and we usually are able to extract a large
amount of images from a video clip. In face cluster recog-
nition, it is never guaranteed to have a clear spatio-temporal
relation among the images in one face cluster. For example,
different face images in a cluster for one subject may be
taken under different illumination conditions, with different
poses and with different resolutions. We also require that
the numbers of face images be much smaller than the num-
ber of pixels in an image, when two face clusters are to be
matched. It is easy to know that there are many potential ap-
plications for the face cluster recognition problem. An ex-
ample is for the integration of the documents of suspects in
multiple law enforcement departments, where each suspect
leaves a few images in the documents of one law enforce-
ment department but a suspect is usually under different
names/identifications in different departments; the first task
to merge the documents is matching the face clusters. For
real time recognition tasks such as airport surveillance sys-
tems, an ideal system should be able to perform face recog-
nition without waiting to get lengthy videos with enough
detectable face frames; in such situations, we can always
expect that the extracted face frames be much smaller than
the number of pixels in an image.

While there are a few approaches under the titles of im-
age set recognitions focus on the estimations of parame-
ters for representing image sets with certain distributions
[14, 21], most of the work related fall under the category
of non-parametric approaches where image sets are usually
represented as a linear or nonlinear subspaces [28, 10]. We
are intended to develop an non-parametric approach based
on the idea of Linear Regression Classification (LRC) for
still face probe recognitions on a gallery with multiple im-
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ages per subject.
The simple but efficient linear regression based classifi-

cation (LRC) approach was developed by Maseem, Togneri
and Bennamoun [17]. LRC approach independently repre-
sents a downscaled probe image by the linear combination
of the downscaled images of each subject in the gallery;
the residual error of the representation is used to estimate
the similarity between the probe and the cluster of faces
of the subject. It is easy to understand that LRC approach
belongs to the category of heuristic approaches, which in-
cludes SP (Sparse Representation ([29])), PCA (Principal
Component Analysis [24]), S-LPP (Spatially Smooth Sub-
space Learning based Locality Preserving Projection ([4])),
SRDA (Spectral Regression Discriminant Analysis ([2]),
OLPP (Orthogonal Locality Preserving Projections ([3]))
and Naseem et al. [17] has demonstrated its efficacy by
extensive comparative studies with a few known state-of-
the-art approaches of its same category.

In this paper, we propose a dual linear regression based
classification (DLRC) algorithm to generalize the LRC ap-
proach for the face cluster recognition problem. When com-
paring two clusters of face images, we define the similarity
between two clusters as the shortest distance between the
subspaces each spanned from the face images of one clus-
ter. In order to do so, DLRC attempts to find a “virtual” face
image located in the intersection of the subspaces spanning
from both clusters of downscaled face images (See Figure
1). The “distance” between the “virtual” face images recon-
structed from both subspaces is then taken as the distance
between these two subspaces. We further prove that such
distance can be formulated under a single linear regression
model where we indeed can find the “distance” without re-
constructing the “virtual” face images.

Subspace  2

Subspace  1

“Virtual” Face

Figure 1. A “virtual” face in the interection of two subspaces

The rest of the this paper is organized as follows. We

propose the DLRC concept and algorithm in Section 2. This
is followed by extensive experiments in Section 3. The con-
clusion and discussion are given in Section 4.

Parts of the program codes and datasets are available via:
http://web.unbc.ca/˜chenl/DataCode.html.

2. Dual Linear Regression based Classification
for Face Cluster Recognition

2.1. Math Derivations

Let two clusters of (downscaled) face images be repre-
sented by

X = [x1 x2 · · · xm], (1)

and
Y = [y1 y2 · · · yn]. (2)

where xi, i = 1, 2, · · · ,m, and yj , j = 1, 2, · · · ,m are col-
umn vectors of size 1× ab, each representing the an down-
scaled image of size a×b. We also require that ab ≥ m+n
in order to ensure that the number of pixels of an image is no
less than the total number of images in these two clusters.

An image located in the subspace spanned by the column
vectors of either X or Y should be a linear combination of
these column vectors. The task for locating a “virtual” face
the intersection of both subspaces is to find V and α =
(α1 α2 · · · αm)T , β = (β1 β2 · · · βn)T such that V =
Xα and V = Y β.

However, it is easy to know that there is a trivial solution
for the task where V = 0, α = 0 and β = 0. Obviously
this is not what we want.

Considering that we can have all downscaled images
standardized into unit vectors, we further require that

m∑
i=1

αi =

n∑
j=1

βj = 1. (3)

Thereafter, we are to find α̂ = (α1 α2 · · · αm−1)T , β̂ =
(β1 β2 · · · βn−1)T , such that

V = [x̂1 x̂2 · · · x̂m−1]α̂T + xm

= [ŷ1 ŷ2 · · · ŷn−1]β̂T + yn (4)

where x̂i = xi−xm, i = 1, 2, · · · ,m−1 and ŷj = yj−yn,
j = 1, 2, · · · , n− 1. Assuming that there is an approximate
solution γ′ = (γ′1 γ

′
2 · · · γ′m+n−2)

T for the Equation

yn − xm = X̂Y γ, (5)

where

X̂Y = [x̂1 x̂2 · · · x̂m−1 −ŷ1 −ŷ2 · · · −ŷn−1].

The reconstructed “virtual” faces from subspaces of X and
Y are:

V ′X = [x̂1 x̂2 · · · x̂m−1](γ′1 γ′2 · · · γ′m−1)T + xm, (6)
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and

V ′Y = [ŷ1 ŷ2 · · · ŷn−1](γ′m γ′m+1 · · · γ′m+n−2)
T + yn.

(7)
Therefore, the difference between V ′X and V ′Y is

V ′Y − V ′X = (yn − xm)− X̂Y γ′. (8)

Equation 8 shows an important conclusion:

Conclusion: The difference between the reconstructed the
“virtual” images from both subspaces is equivalent to the
residual error of the solution of Equation 5.

Therefore, we can use the residual errors of the regres-
sion solution for Equation 5 to estimate the similarity be-
tween the two subspaces, the smaller the better.

Depending on the qualities of face images, γ can be
estimated using either least squares (LS) or least trimmed
squares (LTS) objective functions. We can expect that, if the
images are occluded, we should use least trimmed squares
(LTS) as the objective function, otherwise, least squares
(LS) should be the objective function.

Assuming r(γ) = (yn − xm) − X̂Y γ and r(γ) =
(r1(γ) r2(γ) · · · rab(γ))′, let {|r(j)(γ)|, 1 ≤ j ≤ ab}
denote the set of increasingly ordered absolute values of the
residuals {|r1(γ)|, |r2(γ)|, · · · , |rab(γ)|}, the LS and LTS
based estimations are to find the solution for the Equation:

argmin
γ

h∑
j=1

r(j)(γ), (9)

where h = ab for LS and h < ab for LTS.
When X̂Y

T
X̂Y is not singular, for LS estimation, the

best solution of γ can be given by [20]:

(X̂Y
T
X̂Y )−1X̂Y

T
(yn − xm). (10)

For LTS estimation, the fast-LTS algorithm by Rousseeuw
and Van Driessen [19] can be used to find approximate and
generally sufficiently accurate solutions.

2.2. Algorithm

The entire DLRC algorithm for finding the identity of
a probe cluster against a galley set consisting of subject
clusters, each of which contains the images of one subject,
works as follows:

1. Downsample and Normalize all gallery and all probe
images into size a× b.

2. Construct a matrix Y as shown in Equation 2 using the
probe images.

3. For each subject in the gallery, construct a matrix X as
shown in Equation 1.

3.1. Find the estimation of γ for the Equation 5, with
respect to the objective function as shown in
Equation 9.

3.2. Use the sum of residuals as shown in 9 as the
similarity between the subject and the probe.

4. Compare the similarities between all subjects and the
probe, choose the subject closest to the probe as the
answer.

Limitation: In order to find a solution, we require that

X̂Y
T
X̂Y in Equation 10 be not singular. Therefore, we

should require that the total number of images in two clus-
ters should be smaller than the pixel number in the down-
scaled images when we computing the distance between
these two clusters of images. In practice, to avoid a singu-
larity in computing with a real computing machinery which
has fixed working precision (typically double precision),
each images in each cluster should be significantly smaller
than half of the number of pixels in a downscaled image.1

3. Experiments
We have carried out the face cluster recognition experi-

ments on face clusters from CMU PIE and LWF databases.
Although as we have mentioned in Section 1 that face
cluster recognition is significantly different from video
based face recognition, we also carry a few experiments
on Hongda/HCSD, CMU Mobo and YouTube Celebrities
datasets to demonstrate its applicabilities in video based
face recognition.

3.1. Experiments on PIE database

The following two sets of PIE face images [22] are used:
Gallery Set: contains the images taken by camera ID C27,
with flash IDs 00 and 02 to 10 (flash ID 00 corresponds to no
flash), the background (neutral illumination) being turned
on and the subjects wearing glasses if and only if they nor-
mally do. As a total, there are 680 images of 68 subjects in
this gallery set, each subject having 10 images.
Probe Set: Contains the images of each individual taken by
camera IDs C02, C09, C11, C14, C22, C25, C29, C31, C34,
and C37, under neutral expressions and the subjects wear-
ing glasses if and only if they normally do. There are 680
images of 68 subjects in the Probe Set, each subject hav-
ing 10 images. Note that, camera IDs C05, C07 and C27
take upfront or close to upfront view face photos – these are
not included in this probe set. The original images (without
manually rotated nor shifted) of size 486 × 640 pixels are
used in our experiments. Figure 2 represents the gallery and
probe images of a subject in our experiments.

1It may be possible to avoid a singularity by adding a regularization
term which has to be determined by further investigations.



(1) Gallery Images of A Subject

(2) Probe Images of A Subject
Figure 2. Sample Images for PIE Experiments

Image Sizes DLRC LRC+NN SR + NN
10× 10 16.18% 13.24% 8.82%
15× 10 20.59% 13.24% 10.29%
30× 30 19.12% 8.82% 11.76%

MDA AHISD CHISD SANP
4.41% 16.18% 20.59% 23.53%
5.88% 22.06% 16.18% 20.59%
− 16.18% 14.71% 17.63%

Table 1. Accuracies of PIE Experiments

We are to match each probe cluster with the gallery set of
face clusters. Note again, each cluster contains the images
of one subject. We have done the experiments using our
DLRC approach on downscaled images of sizes 10 × 10,
15 × 10 and 30 × 30. We use the least squares (LS) ob-
jective function. We have also carried out the experiments
with the same sized images using the LRC approach + Near-
est Neighbor (NN) proposed by [17], where LRC approach
finds the distance between a probe image and a gallery clus-
ter, NN strategy is used to the image in a probe cluster which
is closest to a gallery cluster, and the distance between this
image and the gallery cluster is taken to be the distance be-
tween the probe cluster and the gallery cluster. The MDA
(Manifold Discriminant Analysis) [26], SANP (Sparse ap-
proximated nearest points) [11], AHISD (Affine Hull based
Image Set Distance) and CHISD (Convex Hull based image
Set Distance) ([5]), and SR (Sparse Representation ([29]))
+ NN, are also applied in this experiments. All the results
are summarized in Table 1, where “-” represents a case that
a singularity was reached so that the computing was termi-
nated by the machine.

3.2. Experiments on LFW Set

To further illustrate the performances of our DLRC
approach, we have carried out the experiments in “La-

beled Faces in the Wild” (LFW). “Labeled Faces in
the Wild” (LFW) [12] is available via the LFW of-
ficial site http://vis-WWW.cs.umass.edu/lfw/
results.html. All the face images in LFW were taken
in unconstrained environments, exhibiting “ ‘natural’ vari-
ability in pose, lighting, focus, resolution, facial expression,
age, gender, race, accessories, make-up, occlusions, back-
ground, and photographic quality” [12]. We use LFW-a ver-
sion of the images (the images aligned with a commercial
face alignment software) [23]. The LFW-a version images
are of size 250×250, we first crop them into images of size
90 × 78 (by removing 88 pixel margins from top, 72 from
bottom, and 86 pixel margins from both left and right sides).
Note that, there were many errors in the alignment; we just
keep them as they were (so some of the final cropped faces
indeed are not correctly aligned). We select all the subjects
in LFW who have at least 20 pictures. As a total, there are
62 such subjects. We use the first 10 images of each subject
as the training images and the last 10 as the probe images.

Figure 3 represents the gallery images and the probe im-
ages of a subject in our experiments.

(1) Samples of Gallary Images

(2) Samples of Probe Images
Figure 3. Sample Images for LFW Experiments

We have done the experiments using our DLRC ap-
proach on downscaled images of sizes 10 × 10, 15 × 10
and 30× 15. We use the least squares (LS) as the objective
function. We have also carried out the experiments with the
same sized images using the LRC approaches proposed by
[17] +NN (nearest neighbor) strategy, and the SR (Sparse
Representation ([29])+NN, MDA (Manifold Discriminant
Analysis) [26], SANP (Sparse approximated nearest points)
[11], AHISD (Affine Hull based Image Set Distance) and
CHISD (Convex Hull based image Set Distance) ([5]), the
results are summarized in Table 2.

http://vis-WWW.cs.umass.edu/lfw/results.html
http://vis-WWW.cs.umass.edu/lfw/results.html


Image Sizes DLRC LRC+NN SR + NN
10× 10 8.06% 22.58% 14.52%
15× 10 4.84% 16.13% 11.29%
30× 15 1.61% 12.90% 3.23%

MDA ASIHD CSIHD SANP
6.45% 12.90 % 9.68% 14.52%
4.84% 4.84% 6.45% 7.45%

19.35% 6.45% 3.23% 4.84%

Table 2. Error Rates of LWF Experiments

It is clear again that the DLRC approach performs much
better than all other algorithms of same categories.

3.3. Experiments on Honda/UCSD database

The Honda/UCSD data [15] contains 59 video clips of
20 subjects, all but one have at least 2 videos. 20 videos
are called training videos and the other 39 test videos. The
lengths of videos vary from 291 to 1168 frames. Follow-
ing the settings of [5, 11, 10, 26, 31], we use Viola-Jone
cascaded face detector [25] (implemented in Matlab, which
was planted from Open CV standard implementation, with
all default settings) to extract faces frame by frame in each
video. Histogram equalization is employed to reduce the il-
lumination variations. Then resize them into 10 × 10 and
20×20 gray images. Example of extracted faces are shown
in Figure 4, each row represents a set of faces extracted from
one video file. Note that, there were a few false detected
“faces” (some of them are actually not faces), we just keep
them in the extracted face clusters as they were.

This dataset has been used extensively for image-based
face recognition, the accuracy has reached 100% or close
to 100%. Therefore, researchers have turned to experiment
on the settings using a small amount frames. The results of
a few the-state-of-the-art algorithms, including DCC [14],
MMD[28], MDA[26], SANP and KSANP[11], AHISD and
CHISD[5], RNP[31] on this dataset using the first 50 frames
are recently reported in [11] and [31]. We now carry the ex-
periments using first 40 frames for image sizes 10×10, and
50 frames for image size 20× 20. (Note: As we mentioned
in Section 2.2 , we require the number of images in each
face set is (significantly) less than half of number of pixels
in a image; this is the reason we cannot choose “50” for
image size 10 × 10.) The results are summarized in Table
3.2

It is easy to see that, our DLRC is able to get better accu-
racies with smaller image sizes and less frames.3 We should

2The accuracies of DCC, MMD, MDA, AHISD, CHISD, SANP and
KSANP in Table 3 were copied from Table 2 in [11], the accuracies of
MSM and RNP were reported in [31].

3We notice that it seems that the face sets extracted from Honda/UCSD
by different research groups are not always equivalent, even though the
extraction approaches used are all claimed to be the Viola-Jone detector.

Figure 4. “Face” samples extracted from Hongda/UCSD Dataset

Methods
First 50 Frames

Image Size
20× 20

DCC 70.92%
MMD 69.32%
MDA 82.05%

AHISD 87.18%
CHISD 82.05%
MSM 74.36%
SANP 84.62%

KSANP 87.18%
RNP 87.18%

DLRC
First 40 Frames First 50 Frames

Image Size Image Size
10× 10 20× 20
89.74% 92.31%

Table 3. Accuracies on the Hongda/UCSD Dataset

note here that, we can indeed apply DLRC to the situations
where the images in a cluster is much larger than the im-
age pixel number: randomly select a sub-cluster of images
from each cluster, run the program on the small sized sub-
clusters; run the code a few times, each on different sub-
clusters, and vote on the results. We are able to get 100%
for DLRC with this strategy, however, we feel it is unfair to

For example, although [28] claimed that they also extracted the faces from
Honda/UCSD via Viola-Jone detector (therefore their extracted face sets
and our version carry roughly the same amount of information since both
were extracted from the same video sets), a careful exam can find that
the face sets extracted by [28] (available via their authors’ website) are
not exactly the same as the sets we fully automatically extracted (eg. the
version of [28] does not contain any false detected faces such as the second
image in first row, nor the fifth and the ninth in the fifth row of Figure 4).
Therefore, the comparisons of the accuracies in Table 3 should not be taken
to be very precise.



compare such results with others, since this does not agree
with the common protocol.

3.4. Experiments on CMU Mobo database

The CMU Mobo dataset [8] contains the video se-
quences of 25 subjects walking on a treadmill. All but the
last one have 4 different videos collected in four walking
patterns, namely, holding a ball, fast walking, slow walk-
ing and incline walking. Usually the videos of the first
24 subjects are used in the experiments of image set based
face recognitions. For this video set, the standard proto-
col uses Viola-Jones algorithm to extract faces from videos,
the-state-of-the-art works usually employ LBP approach to
extract unified LBP histogram features (with circular (8,1)
neighborhood, 8 × 8 blocks) from the face images before
the recognition takes place (eg. [5, 31, 11]). We here use
directly the processed LBP histogram features of face im-
ages available via the website of the authors of [5].

Recent researches on this dataset have reached 98+% ac-
curacies, and therefore, researchers are competing their al-
gorithms on a small amount of frames [31]. To be con-
sist with Section 3.3, our experiments use only 50 frames.
The results reported at [28] are the averages on “10 random
splits”, where in each split, randomly one video from one
subject is chosen for training and the rest for test. In order to
have a fair comparison, we generate the averaged accuracy
with 1000 runs, each with “10 random splits”. The aver-
aged accuracy of each 10-random-splits-experiment is also
computed, and the worst and best cases of such 10-random-
split averaged accuracies are also recored. The results, as
well as the tested results of a few the-state-of-the-art algo-
rithms, including DCC [14], MMD[28], MDA[26], SANP
and KSANP[11], AHISD and CHISD[5], RNP[31], avail-
able at [31], are summarized in Table 4. 4

The average accuracies and standard deviations of the
worst and the best cases of 10-random-split experiments,
as shown in Table 4, clearly indicate that our algorithm is
comparable to any of the-state-of-the-art algorithms for this
experiment.

3.5. Experiments on YouTube Celebrities database

The YouTube data [13] were collected from YouTube, it
contains 1,910 video sequences of 47 celebrities. The video
length varies from 7 to 350 frames, most of which are low
quality low resolution. It has been observed [11] that Viola-
Jone cascaded face detector [25] often fails on this dataset;
and it is easy to know an initial assignment for many of the
videos, where there are two or more individuals showing up,
is absolutely necessary in order to automatically crop the
faces of the correct individual from the them. Therefore we
follow [11]: use the IVT (Incremental Learning for Visual

4The accuracies of DCC, MMD, MDA, AHISD, CHISD, MSM and
SANP in Table 4 were copied from Table 3 in [31].

Methods 10 random splits
DCC 82.1%± 2.7%
MMD 90.1%± 2.3%
MDA 86.2%± 2.9%

AHISD 91.6%± 2.8%
CHISD 91.2%± 3.1%
MSM 84.3%± 2.6%
SANP 91.8%± 3.1%
RNP 91.9%± 2.5%

DLRC
Ave. ± std. of all 10,000 Splits

91.60%± 2.78%
Ave. ± std. of the means of

1,000 runs of “10-Splits” experiments
91.60%± 0.91%
Best “10-Splits”:
94.17%± 1.50%
Worst “10-Splits”:
88.61%± 3.50%

Table 4. Average Accuracies & Standard Deviations on the CMU
Mobo Dataset

Tracking) [18] tool to track and extract faces frame by frame
using the information of the cropped face in the first frame
available via the dataset website 5. We use all the default
settings of the IVT tool. Figure 5 shows a few examples of
the tracked and cropped faces from this dataset. We resized
the faces into two versions, 20× 20 and 10× 10.

Figure 5. “Face” samples extracted from YouTube Celebrities

We follow the five-fold cross validation setting of the ex-
periences of [10, 11], where Hu et al. has carried experi-
ments on the IVT tracked faces of the YouTube Celebrities:
Partition the videos of each subjects equally into the 5 folds,

5http://seqam.rutgers.edu/site/index.php?
option=com_content&view=article&id=64&Itemid=80

http://seqam.rutgers.edu/site/index.php?option=com_content&view=article&id=64&Itemid=80
http://seqam.rutgers.edu/site/index.php?option=com_content&view=article&id=64&Itemid=80


each contains 9 videos per subject6. In each fold, 3 videos
are randomly selected for training, the rests for testing.

Our DLRC uses only 40 frames of each video clip (when
an clip has than 40 images, use all) for experiments on this
database7. The results reported in [11] are the averages
and standard deviations of one run of such a five-fold-cross-
validation. We report our results on 1000 runs of ”five-fold-
cross-validations”: Each run gets a mean and a standard de-
viation, we report the best and the worst cases of the 1000
runs; we also report the average and the standard deviation
of the 1000 means (each represents one run of “five-fold-
validation”). Our results and the results reported in [10, 11]
on the face image sets extracted from same video sets us-
ing the same IVT tool are shown in Table 5.8 We can see
that while the reported results of other approaches use all
the frames of all subjects, our first 40 frame experiments on
both image sizes have already reached the-state-of-the-art
accuracy using all frames (10× 10 version is slightly better
than the best published result).

We use only first 40 frames and we reach the-state-of-
the-art performances where all other approaches use all
frames, we can expect that our approach is more valuable
than others for applications in emergency real time tasks –
since we can perform the recognition task without waiting
for longer video chips.

3.6. Running Time Efficiency

To have a fair comparison for time efficiency tests, we
run the experiments of DCC [14], MMD[28], MDA[26],
SANP, AHISD and CHISD[5], and our DLRC, using only
50 frames on CMU Mobo dataset using the setting in Sec-
tion 3.4. We use a Laptop with Windows 7, CPU i7 M620
2.67GHz. The results are shown in Table 6 (We only try to
find the time complexity here, we do not adjust parameters
to find best accuracy for each approach), where “/” indicates
no training is involved. We can see that DLRC is the fastest
– this is the also reason that we can get 1000 runs of random
10-splits/5-folds experiments: we first get pairwise similar-
ities between all pairs of video clips, then we do required
random partitions to get the results of all the 1000 runs.

4. Discussions and Future Work
We have developed a Dual Linear Regression based

Classification (DLRC) algorithm for face cluster recogni-

6It was not very clear that how the image sets are partitioned for dif-
ferent situations. We confirmed with the authors of [10, 11]: When an
individual has less than 45 image sets, they make sure that there are as less
overlapping as possible; at the time when a subject has more than 45 im-
age sets, then only first 9 of each group are kept after the image sets are
partitioned into 9 groups.

7There are a few cases that X̂Y
T
X̂Y in Equation 10 get to close to

singular when we choose 50 frames.
8The accuracies of DCC, NMD, MDA, AHISD, CHISD, SANP and

KSANP in above table were copied from Table 4 in [11].

Methods
All Frames
Image Size
40× 40

DCC 53.90%± 4.68%
MMD 54.04%± 3.69%
MDA 55.11%± 4.55%

AHISD 60.71%± 5.24%
CHISD 60.42%± 5.95%
SANP 65.03%± 5.74%

KSANP 65.46%± 5.53%

DLRC
First 40 Frames

Image Size Image Size
10× 10 20× 20
Ave. ± Std. of all 5,000 folds

66.18%± 4.34% 65.55%± 5.16%
Ave. ± Std. of the means of

1,000 runs of “5-fold-validation”
66.18%± 1.04% 65.55%± 1.24%

Best “5-fold-validation”
69.29%± 3.24% 69.15%± 3.76%

Worst “5-fold-validation”
63.19%± 4.16% 61.70%± 5.12%

Table 5. Accuracies and Standard Deviations on the YouTube
Celebrities Dataset

DCC MMD MDA AHISD CHISD SANP DLRC
Training 21.31 40.34 1998.32 / / / /
Testing 1.21 1.43 11.02 1.52 3.24 10.71 1.15

Table 6. Time Costs (seconds) for Experiments on Mobo dataset

tion. Experiments have demonstrated the efficiency of our
DLRC algorithm compared to a few image set based face
recognition algorithms: Section 3.6 shows that our DLRC is
much faster than other algorithms when dealing with videos
with same lengths. The experiment in Section 3.5 demon-
strated that we can reach the-state-of-the-art results on real
video images with less frames.

Considering the computing efficiency of DLRC in com-
paring to other approaches, DLRC could be also used for
real time face recognitions, where we don’t have to wait for
a full and lengthy video frame before a recognition process
is performed.

A limitation of the DLRC approach is that the number
of images in a cluster should be smaller than a half of the
number of pixels of an image. For a possible application on
video based face recognition, we can partition the videos
into a number of clusters, apply DLRC on each cluster and
make final decision through a voting process.

Chen [7, 6] has established a theory that, for any al-
gorithm for subjective pattern recognition tasks, such as



face recognition, an “Electoral College” version can always
work better. For the cases of matching a face image with a
set of face images, Naseem, Togneri and Bennamoun [17]
have shown by experiments that, when the images contain
large amount of occlusions, such as scarves, the perfor-
mances can be improved if the following strategy, which
has been called “Electoral College” by Chen et al. [7, 6], is
taken: partition the images into blocks, use LRC approach
in the corresponding blocks of all images, and then make
the final decision by voting. We trust that we can further
improve the performance of our DLRC approach by using
the same strategy.
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