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Abstract

In this paper, we propose a novel algorithm for struc-
tured sparsity reconstruction. This algorithm is based on
the iterative reweighted least squares (IRLS) framework,
and accelerated by the preconditioned conjugate gradient
method. The convergence rate of the proposed algorithm is
almost the same as that of the traditional IRLS algorithm-
s, that is, exponentially fast. Moreover, with the devised
preconditioner, the computational cost for each iteration is
significantly less than that of traditional IRLS algorithms,
which makes it feasible for large scale problems. Besides
the fast convergence, this algorithm can be flexibly applied
to standard sparsity, group sparsity, and overlapping group
sparsity problems. Experiments are conducted on a prac-
tical application compressive sensing magnetic resonance
imaging. Results demonstrate that the proposed algorithm
achieves superior performance over 9 state-of-the-art algo-
rithms in terms of both accuracy and computational cost.

1. Introduction
Compressive sensing (CS) [5] provides the theoretical

support for signal reconstruction from undersampled mea-
surements and has been a rather active topic in recent years.
If the original data is sparse or compressible, it can be re-
covered precisely from a small number of measurements. `1
norm regularization is widely used to induce sparsity and
gains great success in many real applications. A general
formulation can be written as:

min
x
{F (x) =

1

2
||Ax− b||22 + λ||x||1} (1)

where A ∈ RM×N is the measurement matrix and b ∈ RM

is the vector of measurements; x ∈ RN is the data to be
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recovered; λ is a positive parameter.
According to structured sparsity theories[2][14], more

benefits can be achieved if we could utilize more prior infor-
mation about the sparsity patterns. For example, the com-
ponents of the data may be clustered in groups, which is
then called group sparse data. Components within the same
group tend to be zeros or non-zeros. Sometimes one com-
ponent may appear in several groups simultaneously, which
corresponds to the overlapping group sparsity. A favorable
method would be replacing the `1 norm with `2,1 norm to
model the group sparsity [30][16]:

||x||2,1 =
∑
||xgi ||2 i = 1, 2, ..., s (2)

where xgi denotes the components in i-th group and s is the
total number of groups. It has been proved that, less mea-
surements are required for structured sparsity recovery, or
more precise solution can be obtained with the same number
of measurements [2][14][1]. Non-overlapping group spar-
sity problem is a special case of overlapping group sparsity
problems. When the size of every group is one, the problem
becomes standard sparsity recovery with `1 norm regular-
ization. If the generalized problem with overlapping group
sparsity is solved, the other two special cases can also be
solved.

In literature, many algorithms can be or have already
been extended to the non-overlapping group sparsity cas-
es, such as FISTA [3], SPGL1 [4], SpaRSA [29], FO-
CUSS [10]. However, due to the non-smoothness and non-
separableness of the overlapped `2,1 penalty, there are rela-
tively much fewer algorithms for overlapping group sparsi-
ty. SLEP [17], GLO-pridu [21] solve the overlapping spar-
sity problem by identifying active groups and YALL1 [27]
solves it based on the alternating direction method (ADM).
However, both SLEP and GLO-pridu are based on proximal
methods (e.g. [3]), which cannot achieve a convergence rate
better than F (xk) − F (x∗) ∼ O(1/k2), where x∗ denotes
the optimal solution and k is the iteration number. YAL-



L1 relaxes the original problem with augmented Lagrangian
and iteratively minimizes the subproblems based on the
variable splitting method. Generally, the convergence rate
of ADM is no better than O(1/k) in sparse recovery prob-
lems. Although they are very efficient in each iteration, a
large number of iterations may be required due to the rela-
tively slow convergence rate. On the other side, the itera-
tive reweighted least squares (IRLS) algorithms have been
proved that they converge exponentially fast [9] [6]. Un-
fortunately, conventional IRLS algorithms contain a large
scale inverse operation in each step, which makes them still
much more computationally expensive than the fastest prox-
imal methods such as FISTA [1]. In addition, it is unknown
how to extend them to the problem with overlapping group
sparsity.

In this paper, we propose a novel method for structured s-
parsity reconstruction based on the IRLS framework. It pre-
serves the fast convergence performance of traditional IRL-
S, which only needs a few reweighted iterations to achieve
an accurate solution. Moreover, we propose a new “pseudo-
diagonal” type preconditioner to significantly accelerate the
inverse subproblem with preconditioned conjugate gradient
(PCG) method. This preconditioner is much more precise
than conventional Jacobi diagonal preconditioner. In addi-
tion, the proposed preconditioner can be applied even when
A is an operator, which is not feasible for most existing pre-
conditioners in PCG methods. Besides the efficiency and
fast convergence rate, the proposed algorithm can be flexi-
bly applied to different types of group structures with either
overlapping or non-overlapping. For different group con-
figurations, the only change in our scheme is on the group
configuration matrix. Extensive experiments are conducted
to validate the proposed algorithm on compressive sensing
magnetic resonance imaging (CS-MRI) for structured spar-
sity reconstruction. All experimental results demonstrate
that the proposed algorithm outperforms the state-of-the-art
methods in terms of accuracy and computational speed.

2. Related Work

2.1. IRLS for Standard Sparsity

The conventional IRLS algorithms solve the standard s-
parse problem in constrained form:

min
x
||x||1, subject to Ax = b (3)

In these methods, the `1 norm is replaced by a reweighted
`2 norm [6]:

min
x
xTWx, subject to Ax = b (4)

The diagonal weight matrix W in the k-th iteration is com-
puted from the solution of the current iteration xk, that is,

the diagonal elements W k
i = |xki |−1. With current weights

W k, it has a closed form solution for xk+1:

xk+1 = (W k)−1AT (A(W k)−1AT )−1b (5)

The algorithm can be summarized in Algorithm 1. It has
been proved that the IRLS algorithm converges exponen-
tially fast under mild conditions [9]:

||xk − x∗||1 ≤ µ||xk−1 − x∗||1 ≤ µk||x0 − x∗||1 (6)

where µ is a fixed constant with µ < 1. However, this al-
gorithm is rarely used in compressive sensing application-
s especially for large scale problems. That is because the
inverse of A(W k)−1AT takes O(M3) if A is a M × N
sampling matrix. Even with higher convergence rate, tradi-
tional IRLS still cannot compete with the fastest first-order
algorithms such as FISTA [3] (some results are shown in
[1]). Moreover, none of previous IRLS methods [6][9][10]
could solve the overlapping group sparsity problems, which
significantly limits the usage.

Algorithm 1 IRLS
Input: A,b,x1,k = 1
while not meet the stopping criterion do

Update W : W k
i = |xki |−1 ∀W k

i

Update x: xk+1 = (W k)−1AT (A(W k)−1AT )−1b
Update k = k + 1

end while

2.2. Majorization Minimization Method

Both the traditional IRLS algorithms and the proposed
algorithm can be derived from majorization minimization
(MM) method. MM method is a general scheme to con-
struct an optimization algorithm. We want to minimize a
function f(x) and xk denote the solution of the k-th iter-
ation. It may be difficult to minimize the function f(x)
directly. Alternatively, we could minimize its majorizer
g(x|xk) by MM theory. g(x|xk) should satisfy that:

g(x|xk) ≥f(x) ∀x (7)

g(xk|xk) =f(xk) (8)

It indicates that g(x|xk) is always greater than or equal to
f(x) and is tangent to f(x) at xk. One can select any ma-
jorizer function that satisfy the above conditions. A brief re-
view of MM method is introduced in [15]. Minimizing the
majorizer function g(x|xk) also decreases the actual func-
tion value of f(x) due to the properties (7) (8).



3. Algorithm
3.1. General model

Consider a general problem for overlapping group spar-
sity [30][16]:

min
x
{F (x) =

1

2
||Ax− b||22 + λ||GΦx||2,1} (9)

where Φ is the sparse basis and is optional. A good choice
of Φ for natural images/signals would be an orthogonal
wavelet transform. G is a binary matrix for group configu-
ration, which is constructed by rows of the identity matrix.
By different settings of G, this model can handle overlap-
ping group, non-overlaping group and standard sparse prob-
lems. Simple examples of G for different types of group
sparse problems are shown in Figure 1. Although G may
have large scales, it can be efficiently represented by a s-
parse matrix. This kind of indexing matrix has been used in
the previous work YALL1 [27].

Figure 1. Examples of group configuration matrix G for a signal
of size 8. The red elements denote 1s and white elements denote
0s. (a) standard sparsity case where G is the identical matrix. (b)
non-overlapping groups of [1,3,5,7] and [2,4,6,8]. (c) overlapping
groups of [1,2,3,4], [3,4,5,6] and [5,6,7,8]. Their group sizes are
1,4 and 4, respectively.

Consider the Young’s inequality holding for a general
function g(·) : R 7−→ R:√

g(x) ≤
√
g(y)

2
+

g(x)

2
√
g(y)

(10)

with g(y) > 0 and g(x) ≥ 0. The equality holds only when
g(x) = g(y). Based on this, we have

||GΦx||2,1 =

s∑
i=1

||(GΦx)gi ||2

≤
s∑

i=1

[
||(GΦxk)gi ||2

2
+
||(GΦx)gi ||22

2||(GΦxk)gi ||2
] (11)

Writing it in matrix form and we can majorize F (x) by MM
method:

Q(x|xk) =
1

2
||Ax− b||22 +

λ

2
xT ΦTGTW kGΦx

+
λ

2

s∑
i=1

1

W k
gi

(12)

where ΦT denotes the inverse transform of Φ; W k is the
group-wise weights. The weight of i-th group W k

gi can be
obtained by:

W k
gi = (||(GΦxk)gi ||22 + ε)−1/2 (13)

ε is very small number to avoid the weight becoming infin-
ity. Supposing the signal x to be recovered is of length N
and G is a N ′-by-N matrix, then W k is a N ′-by-N ′ diago-
nal matrix and has the following form:

W k =



W k
g1

...
W k

g1

...
W k

gs

W k
gs


(14)

where each group-wise weight W k
gi is duplicated |gi| times

and |gi| denotes the size of the i-th group. One can find
that the group-wise weights are all related to G. With d-
ifferent settings of G, the group-wise weights are directly
acquired. Variant-size group sparsity problems also can be
flexibly handled in this model. An interesting case would
be the standard sparse problem, where each group contains
only one element and the group-wise weight matrix W is
the same as that in IRLS algorithm [9] [6].

Now the problem becomes:

xk+1 = arg min
x
Q(x|xk) (15)

Note that W k
gi is independent on x and can be considered

as a constant. We iteratively update W k with xk and solve
xk+1 based on current W k. Our algorithm is also a IRLS
type algorithm with exponentially fast convergence rate.

3.2. Accelerating with PCG

In each iteration, W k is easy to update with (14) (13).
To solve (15), a simple way is to let the first order gradient
of Q(x|xk) be zero as it is a quadratic convex function:

(ATA+ λΦTGTW kGΦ)x −AT b = 0 (16)

The way to solve (16) determines the efficiency of the w-
hole algorithm. The exact inverse of the system matrix
S = ATA + λΦTGTW kGΦ takes O(N3) time. It is im-
practical to compute S−1 for many cases especially when
the size of S is huge. An alternative way is to approxi-
mate the solution of (16) with classical conjugate gradien-
t (CG) decent method. It is much faster than computing
the exact solution. Besides CG, a better way is the pre-
conditioned conjugate gradient (PCG) method. The design
of preconditioner is problem-dependent, which should be



as close as possible to the system matrix S and can be in-
versed efficiently. Therefore, it is not an easy task to de-
sign a good preconditioner in general due to this tradeof-
f. For signal/image reconstruction, such preconditioner has
not been found in existing IRLS algorithms [6][9][10].

By observing that S is usually diagonally dominant in re-
construction problems, we define a new preconditioner for
best approximation in Frobenius norm || · ||F :

P = arg min
X∈D

||S −X||F (17)

whereD denotes the class of diagonal or “pseudo-diagonal”
matrices. Here, the pseudo-diagonal matrix means a non-
diagonal matrix whose inverse can be obtained efficiently
like a diagonal matrix with O(N) time. Please note that
the GTW kG is always diagonal for any kind of G in Fig-
ure 1. Due to the strong constraint, the possible diago-
nal or “pseudo-diagonal” candidates for (17) are enumer-
able. When Φ is the wavelet transform, it is not hard to
find P = (ATAI + λΦTGTW kGΦ) where ATA is the
mean of diagonal elements of ATA and I denotes the i-
dentity matrix. As A is known for the application, ATA
can be pre-estimated before the first iteration and is fixed
for each iteration. Therefore in each iteration, P−1 =
ΦT (ATAI + λGTW kG)−1Φ can be obtained with linear
time.

Algorithm 2 FIRLS
Input: A,b,x1, G, λ, k = 1
while not meet the stopping criterion do

Update W k by (14) (13)
Update S = ATA+ λΦTGTW kGΦ
Update P = ΦT (ATAI + λGTW kG)Φ
while not meet the PCG stopping criterion do

Update xk+1 by PCG for Sx = AT b with precondi-
tioner P

end while
Update k = k + 1

end while

Several advantages of the proposed preconditioner can
be found when compared with existing ones [22] [25][23].
To get the inverse, fast Fourier transforms are involved in
recent circulant preconditioners that used in image deblur-
ring [22] [25], while our model only requires linear time to
obtain P−1. Compared with conventional Jacobi precon-
ditioner that is used in total variation minimizing [23], we
do not discard all non-diagonal information and therefore
the preconditioner is more accurate. Moreover, because it is
required to calculate the exact values of S for existing pre-
conditioners [22] [25][23], there is no known way to extend
them to the case when A or Φ is an operator. Interesting-
ly, the conventional Jacobi preconditioner can be derived by

(17), when the original data is sparse (i.e. Φ = 1) and A is
a numerical matrix.

Now, our method can be summarized in Algorithm 2. We
called it Fast Iterative Reweighted Least Squares (FIRLS).
Although our algorithm has double loops, we observe that
only 10 to 30 PCG iterations are sufficient to obtain a solu-
tion very close to the optimal one for problem (16). In each
inner PCG iteration, the dominated cost is by applying S
and P−1, which is denoted by O(CS + CP ). When A and
Φ are dense matrices,O(CS + CP ) = O(N2). When A and
Φ are the partial Fourier transform and wavelet transform in
CS-MRI [18], it is O(N logN).

4. Application: Compressive Sensing MRI
Compressive sensing MRI (CS-MRI) [18] is one of the

most successful application of compressive sensing and s-
parsity regularization. Partial but not full k-space data is
acquired and the final MR image can be reconstructed by
exploiting the sparsity of the image. With little information
loss, this scheme could significant accelerate MRI acqui-
sition. In CS-MRI, A = RF is an undersampled Fourier
operator, where F is the Fourier transform and R ∈ RM×N

is a selection matrix containing M rows of the identity ma-
trix. Therefore, ATA = FTRTRF is diagonally dominant
as RTR is diagonal. Based on (17), ATA is just the sam-
pling ratio (a fixed scalar).

The MR images are often assumed to be sparse under the
wavelet basis [18][19][13][12]. Furthermore, the wavelet
coefficients of a natural image yield a quadtree. If a coef-
ficient is zero or nonzero, its parent coefficient also tends
to be zero or nonzero. This wavelet tree structure has al-
ready been successfully utilized in MR image reconstruc-
tion [7, 8]. This problem is approximated by overlapping
group sparsity, where each coefficient and its parent coeffi-
cient are assigned into one group [7]. Due to the difficulty
of overlapping group sparsity regularization, conventional
wavelet reconstruction methods [18][19][13] cannot solve
it. Compared with the variable splitting strategy used in
[7], small changes in the group configuration matrix G will
make our algorithm applicable for the tree-based overlap-
ping group sparsity reconstruction.

To assist clinic diagnose, multiple MR images with dif-
ferent contrast are often acquired simultaneously from the
same anatomical cross section. For example, T1 and T2
weighted MR images could distinguish fat and edema bet-
ter, respectively. Different from the CS-MRI for individu-
al MR imaging, multi-contrast reconstruction for weighted
MR images means the simultaneous reconstruction of mul-
tiple T1/T2-weighted MR images. Joint sparsity across d-
ifferent contrasts is widely used in recent multi-contrast re-
construction methods [20][11]. Following their group set-
tings, our method also could be used to accelerate the re-
construction.



5. Experiments
5.1. Experiment Setup

The experiments are conducted using Matlab on a desk-
top with 3.4GHz Intel core i7 3770 CPU. First, we vali-
date the efficiency of the proposed preconditioner and con-
vergence speed of our method. The proposed method is
then compared with state-of-the-art algorithms on the ap-
plication of tree structured MRI and multi-contrast MRI.
To avoid confusion, we denote the standard sparse version
of our algorithm as FIRLS L1 and the overlapping group
sparse version as FIRLS OG. The non-overlapping group
version FIRLS MT is compared in multi-contrast MRI re-
construction. For fair comparisons, all codes are download-
ed from the authors’ websites and we carefully follow their
experiment setup.

Note that some algorithms need a very small number of
iterations to converge (higher convergence rate), while they
cost more time in each iteration (higher complexity). The
others take less time in each iteration, however, more itera-
tions are required. As we are interested in fast reconstruc-
tion, an algorithm is said to be better if it can achieve higher
reconstruction accuracy with less computational time.

5.2. The Accuracy of the Proposed Preconditioner
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Figure 2. Convergence rate comparison among standard CG, Jaco-
bi PCG and the proposed PCG in terms of relative errors.

One of our contributions is the proposed pseudo-
diagonal preconditioner for sparse recovery. First, we con-
duct an experiment to validate its effectiveness. Without
loss of generality, a patch (64× 64) cropped from the cam-
eraman image is used for reconstruction, which is feasible
to obtain the closed form solution of S−1 for evaluation. As
most existing preconditioners cannot support the inverse of
operators, the sampling matrix is set as the random projec-
tion and Φ is a dense matrix for wavelet basis here. Figure
2 demonstrates the performance of the proposed PCG com-
pared with Jacobi PCG and standard CG for the problem
(16). The performance of the proposed PCG with less than
50 iterations is better than that of CG and Jacobi PCG with

200 iterations. Although Jacobi preconditioner is diagonal,
it remove all the non-diagonal elements which makes the
preconditioner less precise. This experiment demonstrates
that the inner loop subproblem in our algorithm is solved
efficiently due to the advantage of the proposed precondi-
tioner.

5.3. Convergence Rate and Computational Com-
plexity

The superiority of the proposed method comes from its
fast convergence rate, that only a small number of iterations
can achieve high reconstruction accuracy. In addition, each
iteration has lower computational cost. To validate its fast
convergence rate, we compare it with three existing algo-
rithms with known convergence rate. They are the IST al-
gorithm SpaRSA [29], FISTA [3] and IRLS algorithm FO-
CUSS [10], with O(1/k), O(1/k2) and exponential con-
vergence rates, respectively. Mean squared error (MSE) is
used as the evaluation metric.
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Figure 3. Convergence Rate Comparison among FOCUSS, FISTA
and SpaRSA.

The test data is a random 1D signal of length 4000, with
10% elements being non-zeros. The number of measure-
ments are 800. Figure 3 demonstrates the comparison. In
each iteration, FOCUSS needs to compute the inverse of a
large-scale matrix, and the proposed method uses 30 PCG
iterations to approximate the inverse. Both FOCUSS and
the proposed method converge within 200 iterations. FISTA
tends to converge at about 800 iterations. However, S-
paRSA requires much more than 800 iterations to converge.
Table 1 lists the reconstruction results at different CPU time
between FOCUSS and the proposed method. The proposed
algorithm always achieves more accurate result in much less
time. After convergence, the 0.0005 difference in terms of
MSE may be caused by approximation or rounding errors.
With the size of the data becomes larger, the time cost of
FOCUSS will increase at a cubic speed. More important-
ly, it is unknown how to solve the overlapping group sparse
problem with FOCUSS.



Table 1. Computational cost comparison between FOCUSS [10] and the proposed method

FOCUSS [10] FIRLS L1
TIME (SECONDS) 64.8 110.8 727.7 10.5 29.8 120.2
MSE 0.0485 0.0442 0.0432 0.0481 0.0440 0.0427

5.4. CS-MRI with Wavelet Tree Sparsity

A practical application CS-MRI is used to validate the
performance of our method for overlapping group sparsity
recovery. The sampling matrix is the partial Fourier trans-
form. We follow the sampling strategy of previous work-
s [19][13][7], which randomly choose more Fourier coef-
ficients from low frequency and less on high frequency.
The sampling ratio is defined as the number of sampled
measurements divided by the total size of the signal/image.
Similar as previous works, Signal-to-Noise Ratio (SNR) is
used for result evaluation: SNR = 10 log10(Vs/Vn) where
Vn is the MSE between the original signal x0 and the solu-
tion x; Vs = var(x0) denotes the variance of the values in
x0. The test images used in previous works [19][13][7] are
shown in Figure 4, with the same size 256× 256.

(a) (b) (c) (d)

Figure 4. The original images: (a) Brain; (b) Cardiac; (c) Chest;
(d) Shoulder.

Tree-structured CS-MRI method [7] has been shown
to be superior to standard CS-MRI methods [18][19][13].
Therefore, we compare our algorithm with two latest and
fastest algorithms, turbo AMP [26] and WaTMRI [7]. In
addition, overlapping group sparsity algorithms SLEP [17]
and YALL1 [27] are also compared. The total number of
iterations is 100 except that turbo AMP only runs 10 itera-
tions due to its higher time complexity.

A visual comparison on the Brain image is shown in Fig-
ure 5, with a 25% sampling ratio. Artifacts can be found on
the results by SLEP [17] and YALL1 [27]. The image re-
constructed by the AMP [26] tends to be blurry when com-
pared with the original. Our method and WaTMRI [7] pro-
duce the most accurate results. Note that total variation reg-
ularization is incorporated in WaTMRI [7], but our method
still achieves higher SNR. Besides SNR, we also compare
the mean structural similarity [28] (MSSIM) of differen-
t images, which mimics the human visual system. The
MSSIM for the images recovered by AMP [26], WaTM-
RI [7], SLEP [17], YALL1 [27] and the proposed method
are 0.8890, 0.8654, 0.8561, 0.7857 and 0.9009. In terms of
MSSIM, our method still has the best performance, which

Original AMP WaTMRI

SLEP YALL1 FIRLS_OG

Figure 5. Visual comparison on the Brain image with 25% sam-
pling. The SNRs of AMP [26], WaTMRI [7], SLEP [17], YALL1
[27] and the proposed method are 15.91, 16.72, 16.49, 12.86 and
18.39, respectively.

is consistent with the observation in terms of SNR.
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Figure 6. Convergence speed comparison on the Brain image with
25% sampling. Left: SNR vs outer loop iterations. Right: SNR
vs CPU time. The SNRs of reconstructed images with these al-
gorithms are 15.91, 16.72, 16.49, 12.86 and 18.39 respectively.
The time costs are 4.34 seconds, 5.73 seconds, 6.28 seconds, 4.71
seconds and 4.80 seconds, respectively.

The corresponding convergence speed of the this experi-
ment is presented in Figure 6. From SNR versus outer loop
iterations, the proposed algorithm far exceeds that of all oth-
er algorithms, which is due to the fast convergence rate of
IRLS. However, there is no known convergence rate bet-
ter than O(1/k2) for WaTMRI and SLEP, and O(1/k) for
YALL1, respectively. These results are consistent with that
in previous work [7]. For the same number of total itera-
tions, the computational cost of our method is comparable
to the fastest one YALL1, and it significantly outperforms



YALL1 in terms of reconstruction accuracy. SLEP has the
same formulation as ours. To reach our result in this exper-
iment, it requires around 500 iterations and cost about 43
seconds. Similar results can be obtained on the other test-
ing images. The results on the four images with different
sampling ratios are listed in Table 2.

Table 2. Average SNR (dB) comparisons on the four MR images
with various sampling ratios.

Sampling Ratio 20% 23% 25% 28% 30%
AMP [26] 11.64 15.7 16.43 17.08 17.44

WaTMRI [7] 15.56 17.43 18.23 19.22 20.45
SLEP [17] 11.59 16.51 17.36 18.51 20.07

YALL1 [27] 12.13 13.29 14.12 15.29 16.07
FIRLS OG 15.67 18.78 19.43 20.53 21.52

5.5. Multi-contrast MRI with Joint Sparsity

The multi-contrast MR images are extracted from the
SRI24 Multi-Channel Brain Atlas Data [24]. An exam-
ple of the test images is shown in Figure 7. We compare
our method with the fastest multi-contrast MRI methods
[20][11], which use the algorithms SPGL1 MMV [4] and
FCSA MT to solve the corresponding problems, respective-
ly. The experiment setup is the similar as in the previous
experiments, except group setting is constructed for joint
sparsity (non-overlapping) case.

Figure 7. The original images for multi-contrast MRI.

Figure 8 shows the performance comparisons among
SPGL1 MMV [4], FCSA MT [11] and the proposed
method FIRLS MT on the example images shown in Figure
7. Each algorithm runs 100 iterations. After convergence,
three algorithms achieve similar accuracy for 20% sampling
and SPGL1 is only slightly worse than others for 25% sam-
pling. From the curves, our method is always better than
SPGL1 MMV and FCSA MT, i.e., higher accuracy for the
same reconstruction time.

To demonstrate the fast convergence property of our
method, we then conduct experiments on 20 set images (i.e.
total 60 images) that extracted from SRI24. Different from
the tree-based CS-MRI, each algorithm for non-overlapping
group sparsity converges much faster. Therefore, we termi-
nate these algorithms when a fixed tolerance reached (e.g.
10−3 of relative change on x). To reduce randomness, all
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Figure 8. (a) Performance comparison for multi-contrast MRI with
25% sampling. The average time costs of SPGL1 MMV, FC-
SA MT, and the proposed method are 10.38 seconds, 8.15 sec-
onds, 5.19 seconds. Their average SNRs are 31.58, 33.12 and
33.69. (b) Performance comparison for multi-contrast MRI with
20% sampling. Their average time costs are 9.98 seconds, 7.54
seconds, 5.23 seconds. Their average SNRs are 29.31, 29.69 and
30.01.

algorithms run 100 times and the reconstruction results are
shown in Figure 9. With 25% sampling, the accuracy of our
method is almost the same as FCSA MT, and always better
than SPGL1. To reach the convergence, our method is con-
sistently faster than the other two algorithms. These results
demonstrate the efficiency of proposed method.
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Figure 9. Performance comparison on 60 images from SRI24
dataset with 25% sampling. (a) SNR comparison. (b) CPU
time comparison. The average convergence time for SPGL1, FC-
SA MT and the proposed FIRLS MT is 9.3 seconds, 7.2 seconds,
4.6 seconds, respectively.

5.6. Discussion

The first and second experiments validate the fast con-
vergence speed of our method due to the proposed precondi-
tioner. The advantages over the state-of-the-arts are further
validated on practical application CS-MRI on two group
settings, overlapping groups with tree sparsity and non-
overlapping groups with joint sparsity. Although results on
both problems are promising, some difference can be found.
The non-overlapping group sparsity problem is often eas-
ier to solve. For example, the subproblem in FISTA has
closed form solution for joint sparsity but not for overlap-
ping group sparsity. However, our method has similar dif-
ficulty for non-overlapping and overlapping group sparsity.



That is why our method outperforms the fastest methods on
joint sparsity reconstruction, and significantly outperforms
those for tree-sparsity reconstruction.

The superior performance of the proposed precondition-
er also attributes to the structure of the system matrix S,
which is often diagonally dominant in reconstruction prob-
lems (e.g. A is random projection or partial Fourier trans-
form). It can be applied to other applications where S is
not diagonally dominant (e.g. image blurring), and still be
more accurate than Jacobi preconditioner as it keeps more
non-diagonal information.

6. Conclusion
We have proposed a novel method for structured sparsity

recovery, which is of the IRLS type and preserves its fast
convergence rate. The subproblem in our scheme is accel-
erated by the PCG method with a new pseudo-diagonal pre-
conditioner. Due to the high accuracy and efficiency of this
preconditioner, the subproblem can be solved in very low
cost, even when it contains transforming operations. Exten-
sive experimental results have demonstrated the flexibility,
effectiveness and efficiency of this method on CS-MRI.
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