
Sparse Dictionary Learning for Edit Propagation of High-resolution Images

Xiaowu Chen1, Dongqing Zou1, Jianwei Li1∗, Xiaochun Cao2, Qinping Zhao1, Hao Zhang3

1State Key Laboratory of Virtual Reality Technology and Systems

School of Computer Science and Engineering, Beihang University, Beijing, China
2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China 3 Simon Fraser University, Canada

Abstract

We introduce a method of sparse dictionary learning for
edit propagation of high-resolution images or video. Pre-
vious approaches for edit propagation typically employ a
global optimization over the whole set of image pixels, in-
curring a prohibitively high memory and time consumption
for high-resolution images. Rather than propagating an edit
pixel by pixel, we follow the principle of sparse representa-
tion to obtain a compact set of representative samples (or
features) and perform edit propagation on the samples in-
stead. The sparse set of samples provides an intrinsic basis
for an input image, and the coding coefficients capture the
linear relationship between all pixels and the samples. The
representative set of samples is then optimized by a novel
scheme which maximizes the KL-divergence between each
sample pair to remove redundant samples. We show sever-
al applications of sparsity-based edit propagation including
video recoloring, theme editing, and seamless cloning, op-
erating on both color and texture features. We demonstrate
that with a sample-to-pixel ratio in the order of 0.01%, sig-
nifying a significant reduction on memory consumption, our
method still maintains a high-degree of visual fidelity.

1. Introduction

One of the more frequently applied operations in inter-
active image/video editing involves efficiently propagating
sparse user edits to an entire data domain. Edit propaga-
tion has been a well-studied problem in computer vision
and it enables a variety of applications including interactive
color or tonal editing, seamless cloning, and image mat-
ting. The best known edit propagation approach is affinity-
based [1, 22] and so far many variants have been developed
[9, 27]. Typically, the solution involves a global optimiza-
tion to propagate the edits to remaining pixels.

With the increasing availability of high-resolution im-
ages and video, the demand for scalable image processing

∗corresponding author(email: lijw@vrlab.buaa.edu.cn)

Figure 1. Sparsity-based edit propagation allows interactive recol-
oring (top), color theme editing (middle), and seamless cloning
(bottom) with high visual fidelity. The input images (left column)
contain 39M, 30M, and 70M pixels, respectively. Our edit propa-
gation is based on 70, 210, and 45 sparse samples (sample-to-pixel
ratio of 0.01%) respectively for these three experiments.

techniques also increases. Edit propagation based on global
optimization inevitably incurs a high cost both in memory
consumption and processing speed. For example, a naive
implementation of the method of An et al. [1] to process an
image containing 60M pixels requires about 23GB memory,
which exceeds the capability of many low-end commodity
computers. A recent remedy is to rely on stochastic approx-
imation algorithms [17, 27], but at the expense of lower vi-
sual fidelity with editing artifacts.

Our key observation is that to achieve efficient and scal-
able edit propagation on high-resolution images or video,
the operations may be performed on a reduced data repre-
sentation. With this in mind, we resort to sparse representa-
tions for images. Research from signal processing has sug-
gested that important classes of signals such as images and
videos are naturally sparse with respect to fixed representa-

1

tive samples, or concatenations of such samples. That is, if
a proper sample dictionary is found for an image or video, it
suffices to edit the sparse samples instead of all pixels, thus
achieving efficiency and scalability.

Using a sparse representation, instead of propagating an
edit to a whole input image or video according to relation-
ships among all pixels, we compute a set of sparse, rep-
resentative samples (or features) over the image or video,
apply the edit to these samples only, and then propagate the
edit to all pixels. Our approach follows the principles of s-
parse representations [2] and signal decorrelation using the
Kullback-Leibler or KL divergence (i.e. relative entropy) to
obtain an optimal sample set and the corresponding coding
coefficients for the sparse representation.

By maximizing the KL divergence between each pair
of samples in the dictionary, the cross correlation between
samples is minimized so that the set of samples is both s-
parse and representative. These samples intrinsically cap-
ture a natural basis for the input data: each pixel in the in-
put image is represented as a linear sum over the sampled
pixels with the coding coefficients supplying the weights.
Through the coding coefficients, an edit applied to the s-
parse samples can be mapped to an edit with respect to all
pixels. However, the number of samples is far less than the
number of pixels in a high-resolution image or video.

By working with the representative samples and their
corresponding coding coefficients for edit propagation, we
leverage a representation of the input data with higher fi-
delity compared to Fourier or wavelet transforms [16]. By
performing the edit propagation on representative samples
while keeping the coding coefficients fixed, the linear rela-
tionship between the input data and representative samples
is preserved. In turn, this ensures that the input data is faith-
fully represented by the representative samples.

Our main contributions are: 1) an efficient edit propaga-
tion method for high-resolution images or video via sparse
dictionary learning; 2) an automatic scheme based on K-
L divergence to obtain a compact and discriminative sam-
ple set for edit propagation; 3) application of the learned
sparse dictionary to several frequently encountered im-
age/video processing tasks including interactive recoloring,
color theme editing, and seamless cloning. We demonstrate
through numerous experiments that our method significant-
ly reduces memory cost while still maintaining high-fidelity
editing results and avoiding the artifacts encountered by
previous methods [17, 27].

2. Related work
Edit propagation is a proven and well-adopted technique

for image/video editing. The work of Levin et al. [15] pro-
vided the first framework for propagating user edits. Later,
this work was extended by [1, 17, 27] to ensure that the ed-
its can be propagated for fragmented regions according to

properly defined affinities between all pixels. Farbman et
al. [9] employed the diffusion distance to measure affinities
between pixels. However, these methods do not adequately
constrain pixels in blended regions, often causing halo arti-
facts. Chen et al. [6] addressed this problem by preserving
the manifold structure underlying the image pixels.

Also related are a large body of works on edge-aware
or edge-centric image processing [5, 11] and image upsam-
pling techniques [12]. Generally speaking, preserving affin-
ity relations among all pixels is expensive, and prohibitive
for high-resolution data. It is difficult for existing method-
s to propagate edits with a limited time or memory budget
while ensuring visual fidelity of the editing results.

In the past few years, various adaptations of sparse rep-
resentations have been applied to the problem domain of
image analysis and understanding. Yang et al. [29] and
Allen et al. [28] used sparse representations for image
super-resolution by assuming that the high-resolution image
patches have a sparse representation with respect to that of
low-resolution images. Julier et al. [21] developed a super-
vised framework to learn multiscale sparse representations
of color images and video for image and video denoising
and inpainting. Yan et al. [25] proposed a semi-coupled
dictionary learning model for cross-style image synthesis.

Sparse representations have also been applied to face
recognition [26], image background modeling [3], and im-
age classification [20]. More works along those lines can
be found in a recent comprehensive survey [8]. We adopt
sparse representations for edit propagation for the first time
and demonstrate its effectiveness in several key applications
when applied to high-resolution images and video.

3. Sparsity-based edit propagation
Given a high-resolution image, we first obtain an over-

complete dictionary Dinit via online dictionary learning
[19]. Then we utilize the KL divergence (i.e. relative en-
tropy) [14] as an optimization objective to turn the initial
dictionaryDinit into a sparser and more representative sam-
ple set. An image edit is applied to the samples and propa-
gated from the samples to all pixels in the image.

3.1. Dictionary initialization

Let xi represent a pixel i in the input image X , where xi
can be a pixel color or any other editable feature, and Ninit

represent the number of samples in the overcomplete dictio-
nary Dinit = [d1, d2, ..., dNinit]. Dinit and the correspond-
ing coefficients α for input X are obtained by minimizing∑

i

‖xi −Dinitαi‖22 + λ
∑
i

‖αi‖0 , (1)

where the first term gives the reconstruction error and the
l0 norm ||αi||0 counts the number of nonzero entries in the

coefficient αi. Minimizing Equation (1) can be transformed
into an iterative sparse coding problem [18, 19], which can
be solved efficiently.

3.2. Dictionary optimization

The initial dictionary Dinit is overcomplete with most
samples redundant. A compact and discriminative dictio-
nary should capture the main information entropy of Dinit

with the chosen samples decorrelated; this essentially en-
courages signals having similar features to possess similar
sparse representations. We use the KL-divergence to mea-
sure the difference between two samples so as to obtain a
compact and discriminative sample set D∗.

In information theory, the KL-divergence is a non-
symmetric measure of the difference between two proba-
bility distributions P and Q,

KL(P‖Q) =
∑
i

P (i) ln

(
P (i)

Q(i)

)
. (2)

Although the KL-divergence is often intuited as a distance
metric, it is not a true metric, e.g., due to its asymmetry. We
utilize a symmetrized version of KL-divergence to estimate
the difference between two samples,

KLs(P‖Q) = KL(P‖Q) +KL(Q‖P). (3)

We optimize the initial dictionary Dinit according to the
symmetric KL-divergence (3). Obviously, two similar sig-
nals in input X would use similar samples in Dinit to make
the sparse decompositions. Thus the similarity between t-
wo signals can be measured by comparing the correspond-
ing sparse coefficients. In the same way, we can estimate
the similarity of two samples in Dinit by comparing the
number of signals using them, and their contributions in
the sparse decomposition [24]. Specifically, each sample
di ∈ Dinit maps all the input signals to its corresponding
row of coefficients αdi

= [αi1...αiN]. For each pair of sam-
ples di and dj , we define the dissimilarity between them as
R(di, dj) = KLs(αdi

‖αdj
). To avoid taking logarithms of

zero, we smooth the sparse coefficients by adding a small
constant term ε = 10−16 and normalizing the distribution.

Our dictionary optimization problem is therefore to find
a sample set D∗ to ensure that the KL-divergence between
each sample pair in D∗ is maximized:

argmax
D∗

∑
di,dj∈D∗

R(di, dj), D
∗ ⊆ Dinit. (4)

Since obtaining the global optimum is difficult, we employ
a greedy heuristic which resembles farthest point sampling.
Given Dinit, we start with D∗ = {d0}, where d0 is select-
ed from Dinit by arg maxd0

∑
di∈Dinit

R(d0, di), imply-
ing that it has the maximum dissimilarity with other sam-
ples. Then we iteratively select the next best sample d∗

from Dinit \D∗ which is the most dissimilar with D∗, i.e.,
arg maxd∗

∑
di∈D∗ R(d∗, di), adding d∗ to D∗ and remov-

ing the samples from Dinit whose dissimilarities with d∗

are less than a threshold τ , until Dinit = ∅. We use the
threshold τ to control the compactness of D∗.

We finally update the coefficients α according to the op-
timized sample set D∗ to obtain the corresponding coeffi-
cients α∗ for D∗ with dictionary learning [19].

3.3. Edit propagation

We use Y = [y1, y2, ..., yN] to represent the correspond-
ing edit propagation result from input X , where N de-
notes the number of pixels in X . We denote the result-
ing samples after edit propagation with respect to D∗ by
D̃ = [d̃1, d̃2, ..., d̃n]. Since the input image can be well rep-
resented as a linear combination of the samples D∗ and co-
efficients α∗: xi ≈ D∗α∗i , it suffices to edit the sparse set
of representative samples D∗ in place of all pixels, leading
to significant cost savings.

Suppose that G represents the user edits (e.g., user scrib-
bles) for a subset S of pixels. We propagate the edits via
sparse representation by minimizing the energy,

arg min
(d̃i,yi)

E = γ1E1 + γ2E2 + γ3E3, (5)

where

E1 =
∑

i∈S,gi∈G

(
d̃i − gi

)2
; E2 =

∑
i

(d̃i −
∑

d̃ij∈Ni

wij d̃ij)
2

E3 =
∑

i,α∗
i ∈α

∗

∥∥∥yi − D̃α∗i

∥∥∥2
2
,

and Ni is a set containing the neighbors of di. The ener-
gy term E1 ensures that the final representative samples are
close to the user specified value gi. E2 seeks to maintain the
relative relationship between the samples during edit propa-
gation. Chen et al. [6] proposed a manifold preserving edit
propagation method which maintains the relative relation-
ship between pixels by using locally linear embedding dur-
ing edit propagation. Here, we follow the same principle to
compute the local linear relationship for all representative
samples. Specifically, we obtain the relationship weights
wij by minimizing

n∑
i=1,d∗

i∈D∗

∥∥∥∥∥∥d∗i −
K∑
j=1

wijd
∗
ij

∥∥∥∥∥∥
2

, (6)

subject to the constraint
∑K

j=1 wij = 1, where {d∗ij |j =
1, 2, ...K} are the K nearest neighbors (kNN) of d∗i .

Finally, the last energy term E3 is a fidelity term, which
constrains the final result to be faithfully represented by the
sparse representative samples after edit propagation.

Equation (5) is a quadratic function in D̃ and Y , which
can be minimized by solving the two equations

(Λ1+α∗T Λ3α
∗+Λ2(I−W)T (I−W))D̃−Λ3α

∗Y = Λ1G
(7)

and ∥∥∥Y − D̃α∗∥∥∥
2

= 0, (8)

where I is the identity matrix, Λ1, Λ2, and Λ3 are diagonal
matrixes and G is a vector with

Λ1(i, i) =

{
γ1 i ∈ S
0 otherwise

Gi =

{
gi i ∈ S
0 otherwise

and Λ2(i, i) = γ2 and Λ3(i, i) = γ3. We set γ1 = 1000,
γ2 = 5, and γ3 = 1 in all our experiments. Equations (7)
and (8) can be solved efficiently, as shown in Algorithm (1),
which gives a summary of our edit propagation scheme.

Algorithm 1 Sparsity-based edit propagation.
Require: X = [x1, ..., xN] (input image/video)
Ensure: Y = [y1, ..., yN] ≈ D̃α∗ (resulting image/video)

1: Calculate the initial samples Dinit from X using an on-
line dictionary learning method [19].

2: Calculate the source representative samples D∗ from
Dinit using the KL-divergence method.

3: Set gi in Equation (5) as the specified edits by the user
according to specific applications; see Section 4.

4: Propagate edits across D∗ and obtain result samples D̃.

5: for each pixel xi of input data X do
6: Calculate coefficient α∗i of xi by Equation (1).
7: Calculate the result yi = D̃α∗i .
8: end for
9: return Y (resulting image/video).

Cost analysis. We use the online dictionary learning
method in [19] (line 1) for initial dictionary construction;
this scheme can manage a large dataset with low memory
and computational costs. In line 2, we calculate the KL-
divergence of each pair of samples in Dinit. Thus to save
Dinit, we need a space complexity of O(Ninitd), where d
is the dimension of each sample (vector). In line 3, the user
edit gi is a small part of the source representative samples
and does not consume additional space. The memory con-
sumption of the edit propagation in line 4 is subject to the
size n of D∗ and the size K of kNN. In the for loop from
lines 5 to 8, we solve the coefficient α∗ one by one, thus the
memory space used here is negligible. From the analysis
above, we can see that the space complexity of the algorith-
m is max{O(Ninitd), O(Knd)}.

Parameters. The only two parameters to set during sam-
ple construction are Ninit, the number of samples in Dinit

and the threshold τ ; the method is otherwise automatic.
For all experiments shown in the paper, the same param-
eter values Ninit = 500 and τ = 20 are used. Therefore,
n ≤ Ninit = 500 is determined by the sample optimiza-
tion progress and varies depending on the dataset processed.
The other parameters are also fixed: K = 10 and d = 3 for
RGB color features and d = 8 for texture features.

4. Applications
We now describe how to apply sparsity-based edit prop-

agation to various classical images and videos editing tasks.

Video object recoloring. When a user draws scribbles
with desired colors at some pixels in a frame, our method
only propagates the edit to the representative samples we
compute; see Algorithm (1). The whole video will change
with the representative samples synchronously according to
the coding coefficients, where the user-edited pixels are re-
placed by the representative samples. Specifically, in Equa-
tion (5), we set S as the nearest colors in the dictionary set
D∗ to that of pixels covered by the user strokes, using the
Euclidean distance in RGB space, and gi as the strokes’ col-
or with black enforcing color preservation.

Video color scheme editing. For this task, the step for
learning representative samples is the same as that for video
object recoloring. Instead of specifying scribbles, the user
utilizes a color theme to edit an input video or image. We
classify the representative samples into several clusters ac-
cording to the probabilistic mapping provided in [4], and
calculate the mean color of each cluster to generate the col-
or theme T of the representative samples. Then the user can
edit T to a desired color theme R to alter the color scheme
of the whole video or image. Specifically, in Equation (5),
we set S as the color theme T . For each color i ∈ S, gi
denotes the corresponding color value in R.

Image cloning. Our edit propagation method can also be
employed to paste a source image or video patch into an-
other scene seamlessly. We treat image cloning as a mem-
brane interpolation problem [10]. The pixel colors along
the boundary of the source image constitute the source dic-
tionary in our method. The target dictionary consists of the
color differences on the boundary between the source and
target images. We compute the coding coefficients which
can reconstruct the source image patch by the source dic-
tionary. Then we use the coding coefficients and the target
dictionary to generate the membrane. By adding the mem-
brane to the target image, we achieve the final cloning re-
sult. Specifically, in Equation (5), we set S as all the colors
on the blending boundary and gi as the color differences on
the boundary between the source and target images.

Figure 2. Video object recoloring: comparison to (b) [Xu et al.
2009], (c) [Farbman et al. 2010] and (d) [Chen et al. 2012] on two
example frames. Input video (a) “Peony” contains 30M pixels.
[Xu et al. 2009] and [Farbman et al. 2010] generate halo artifacts
at flower boundaries. Our results (e) are more natural as well as
more efficient than [Chen et al. 2012].

5. Experimental results
We demonstrate our method on applications mentioned

above and compare to state-of-the-art edit propagation
methods such as [27, 9, 6] to show the space efficiency and
visual fidelity achieved by our sparsity-based approach. The
authors of these three papers kindly share their code with
us. We also demonstrate the efficiency of our method by
operating on higher dimensional features, such as textures,
within our framework for video editing. Our experiments
were performed on a PC with Intel Core i7 Quad processor
(3.40GHz, 8 cores) and 4 GB memory.

Due to space limitations, we are only able to show se-
lected results in the paper for a demonstration. We would
like to point out that these results are representative of the
efficiency and advantages that our method would offer, in
comparison to previous state-of-the-art approaches. More
results can be found in the supplementary material.

Object recoloring in video. Figure 2 shows a compari-
son, where results from competing methods were obtained
under suggested parameter settings in the original papers
[27, 9, 6]. The user applied strokes to one frame of the video
to change the red flowers to blue. One can see that the fore-
ground flowers are not edited appropriately in the results of
Xu et al. [27] and Farbman et al. [9]: halo artifacts appear

Performance comparison for video object recoloring.
Data Peony Canoeing

Resolution 30M 96M

Xu et al. Memory 350MB 1110MB
Timing 43s 132s

Farbman et al. Memory 825MB 2400MB
Timing 49s 141s

Chen et al. Memory 65MB 220MB
Timing 480s 825s

Ours
Samples num. 222 210

Memory 6.5MB 5.8MB
Timing 125s 425s

Table 1. Memory and timing comparison between our method and
those of [Xu et al. 2009], [Farbman et al. 2010] and [Chen et al.
2012] for object recoloring in video.

Figure 3. More visual results for video object recoloring. Shown
on the left are some example frames of “Canoeing”. The right
shows corresponding recoloring results. The video contains 96M
pixels. Our method only takes up 5.8MB memory space.

around flower boundaries. In comparison, our method and
the method of Chen et al. [6] produced more natural results,
while our method incurs a much smaller memory usage; see
Table 1. Specifically, for the input video “Peony” contain-
ing 30M pixels, our method takes 6.5MB RAM, while Xu
et al. [27], Farbman et al. [9] and Chen et al. [6] required
350MB, 825MB, and 65MB RAM, respectively.

Figure 3 shows a result for high-resolution video se-
quences. The input video “Canoeing” contains 96M pixels.
We use only 210 samples in our sparsity-based edit propa-
gation, resulting in only 5.8MB RAM usage. The running
time for this example is 425 seconds.

Video color theme editing. Figure 4 shows a comparison
with the method of Chen et al. [6] on color theme editing.
The input video “Big Bunny” has 468 frames whose reso-
lution is 1920×1080; it contains 970M pixels in total. We
compute 240 sparse representative samples automatically
for edit propagation. Visually, we can obtain similar results
with the method of [6]. However, our method takes 8MB

Figure 4. Comparison with [Chen et al. 2012] on color theme
editing. The first column contains sample frames from the orig-
inal video “BigBunny”. The next two columns are results from
[Chen et al. 2012] and our method, respectively.

Figure 5. Results on video color theme editing. Shown on the left
are some example frames of the video “Daisy”. Right are the
corresponding recolored results.

Figure 6. Comparison with previous cloning methods. (a) is the
composited image and (b) is our result; (c) and (d) were obtained
by [Pérez et al. 2003] and [Farbman et al. 2009], respectively. The
three results are visually indistinguishable.

memory space for the task while Chen et al. [6] consumes
about 1,000MB RAM; see Table 2.

Figure 5 shows another result from video color theme
editing. The target video “Daisy” contains 129 frames and
30M pixels. Our method takes up 6MB RAM and 212 sec-
onds to propagate the edits to the whole video.

Image cloning. Figure 6 compares one of our image
cloning results to Pérez et al. [23] and Farbman et al. [10].
While it is difficult to provide a quantitative evaluation

Figure 7. Visual results for video cloning. The first row shows the
composited result without blending after scaling the input objects
while the second row is the blending result with our method.

Comparison for video color theme editing.
Data Daisy Big Bunny

Resolution 30M 970M

Chen et al. Memory 80MB 1000MB
Timing 650s 3200s

Ours
Samples num. 212 240

Memory 6MB 8MB
Timing 212s 630s

Table 2. Memory and timing comparison between our method and
[Chen et al. 2012] for video color theme editing.

Figure 8. Edit propagation results with and without texture fea-
tures. (a) input image; (b) edit result with only color features; (c)
result with additional texture features. Our method automatically
selects 165 samples from the input to arrive at the result (c).

for seamless cloning, we find all three results to be visu-
ally pleasing and almost indistinguishable. However, our
method only uses 107 samples, translating to a 3MB mem-
ory footprint, for the shown example, which is a lot more
memory efficient than the other methods. Figure 7 shows
our results for video cloning. A video clip of a jellyfish was
blended into another video as shown in the first row. The
second row shows the blended results. Our method achieves
temporally consistent video blending by using only 45 sam-
ples and the task was executed in180 seconds.

Texture features. Our method is applicable to higher di-
mensional features such as textures, as shown in Figure 8.
We calculate the texture features for the input by using the
method in [7]. It is easy to detect that the input image (a)
contains two different textures with only one color. Editing
based on color features only would lead to the result in (b)
in which all regions are recolored to red, while these regions
exhibit two distinctive texture patterns. Figure 8(c) shows
the importance of taking into account texture features. Our

Figure 9. Comparison between using and without using KL-
divergence in sample construction. The three columns from left to
right: objects recoloring, color theme editing, and image cloning.
Artifacts appear when KL-divergence optimization was not ap-
plied, while the counterpart produces more natural results.

method automatically selected 165 samples, requiring only
11MB memory, for this shown example.

Test on KL-divergence. Figure 9 shows a comparison
between results obtained using vs. without using KL-
divergence in representative sample construction, for all
three applications. Our method automatically selects 222,
210, and 160 samples for these three applications, respec-
tively. It is evident that with the same number of samples,
the KL-divergence based scheme achieves better results.

We tested our method on 1,053 images to evaluate the
reconstruction error, which is computed using Sum of Ab-
solute Differences. With KL divergence optimization, the
error is 0.0073, while for the method of Mairal et al. [19]
without sample optimization, the error is at 0.0111.

We also compared KL divergence against Maximum
Mutual Information (MMI) [13], a well-known information
entropy theory, in sample selection for reconstruction and
edit propagation. As shown in Figure 10, given the same
number of initial samples, our method generated a natural
editing result while artifacts emerged in the result produced
with MMI. This demonstrates that the use of KL-divergence
tends to capture more representative samples than other al-
ternatives of information entropy, such as MMI.

Varying size of sample set. We evaluate our method in
Figure 11 with different number of representative samples.
Desirably, the number of representative samples should be
just large enough to best represent the input data. For this
example, our method automatically selected 70 samples and
the result shown in (c) is natural. If we randomly eliminate
20 samples from the representative set, the propagation re-
sult exhibits artifacts along the boundary of the blossom,
as shown in (b). On the other hand, the propagation result
does not improve if we add more samples from the initial
dictionary, as shown in (d).

Figure 10. Comparison between using KL divergence and using
maximum mutual information (MMI) for images editing. Note
the artifacts with the use of MMI.

Figure 11. Varying the number of representative samples. (a) input
image; (b) 50 samples — too few with small artifacts near the blos-
som (see inset); (c) 70 samples using KL-divergence — adequate.
(d) 80 samples — more samples do not improve results.

Figure 12. Several editing results on consumer video or photos.

Finally, we show a few editing results obtained on con-
sumer video or photos to further demonstrate our method
on complex image data, as shown in Figure 12.

6. Conclusion and discussion

We develop a novel sparsity-based edit propagation
method for high-resolution images or video. Instead of
propagating an edit to the whole image or video accord-
ing to relationships among all pixels, by using sparse dic-
tionary learning, we derive a set of representative samples
(or features), apply the edit to these samples only, and then
propagate. Our method significantly improves the memory

efficiency while maintaining a high-degree of visual fidelity
in the editing results. Several frequently encountered appli-
cations enabled by our proposed method, including interac-
tive image/video recoloring, color theme editing, and image
cloning, demonstrate the effectiveness of our approach.

One limitation of our current method is that it is not de-
signed to alter only one object: if two far away objects in
an image share the same features, editing one object would
change the other. As Figure 11 shows, two flowers are re-
colored into red even if only one is scribbled by the user. Al-
though some video cutout methods can be applied as a rem-
edy, it is labor-intensive and time-consuming for users to
perform additional operations. For future work, we would
like to incorporate spatial information for edit propagation
and investigate further means of optimization, e.g., by em-
ploying GPU processing, to improve efficiency.

Acknowledgement. We thank the reviewers for their
valuable feedback. This work is supported in part by grants
from NSFC (61325011), 863 program (2013AA013801),
SRFDP (20131102130002), BUAA (YWF-13-A01-027),
and NSERC (611370).

References
[1] X. An and F. Pellacini. Appprop: all-pairs appearance-

space edit propagation. ACM Trans. Graph., 27(3):40:1–
40:9, Aug. 2008. 1, 2

[2] A. M. Bruckstein, D. L. Donoho, and M. Elad. From sparse
solutions of systems of equations to sparse modeling of sig-
nals and images. SIAM Rev., 51(1):34–81, Feb. 2009. 2

[3] V. Cevher, A. Sankaranarayanan, M. F. Duarte, D. Reddy,
R. G. Baraniuk, and R. Chellappa. Compressive sensing
for background subtraction. In Proc. ECCV, pages 155–168,
Berlin, Heidelberg, 2008. 2

[4] Y. Chang, S. Saito, and M. Nakajima. A framework for trans-
fer colors based on the basic color categories. In Proc. of
Computer Graphics International, pages 176–183, 2003. 4

[5] J. Chen, S. Paris, and F. Durand. Real-time edge-aware im-
age processing with the bilateral grid. ACM Trans. Graph.,
26(3), 2007. 2

[6] X. Chen, D. Zou, Q. Zhao, and P. Tan. Manifold preserving
edit propagation. ACM Trans. Graph., 31(6):132:1–132:7,
Nov. 2012. 2, 3, 5, 6

[7] J. G. Daugman. Uncertainty relation for resolution in s-
pace, spatial frequency, and orientation optimized by two-
dimensional visual cortical filters. Optical Society of Ameri-
ca A, 2(7):1160–1169, 1985. 6

[8] M. Elad, M. A. T. Figueiredo, and Y. Ma. On the Role of
Sparse and Redundant Representations in Image Processing.
Proc. the IEEE, 98(6):972 –982, 2010. 2

[9] Z. Farbman, R. Fattal, and D. Lischinski. Diffusion maps for
edge-aware image editing. ACM Trans. Graph., 29(6), 2010.
1, 2, 5

[10] Z. Farbman, G. Hoffer, Y. Lipman, D. Cohen-Or, and
D. Lischinski. Coordinates for instant image cloning. ACM
Trans. Graph., 28(3), 2009. 4, 6

[11] R. Fattal, R. Carroll, and M. Agrawala. Edge-based image
coarsening. ACM Trans. Graph., 29(1), 2009. 2

[12] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele.
Joint bilateral upsampling. ACM Trans. Graph., 26(3), July
2007. 2

[13] A. Krause, A. Singh, and C. Guestrin. Near-optimal sen-
sor placements in gaussian processes: Theory, efficient algo-
rithms and empirical studies. J. Mach. Learn. Res., 9:235–
284, June 2008. 7

[14] S. Kullback and R. A. Leibler. On information and sufficien-
cy. Ann. Math. Statist., 22(1):79–86, 1951. 2

[15] A. Levin, D. Lischinski, and Y. Weiss. Colorization using
optimization. ACM Trans. Graph., 23(3), 2004. 2

[16] M. S. Lewicki and T. J. Sejnowski. Learning overcomplete
representations. Neural Comput., 12(2):337–365, 2000. 2

[17] Y. Li, T. Ju, and S.-M. Hu. Instant propagation of sparse edits
on images and videos. Comput. Graph. Forum, 29(7):2049–
2054, 2010. 1, 2

[18] J. Mairal, F. Bach, and J. Ponce. Task-driven dictio-
nary learning. IEEE Trans. Pattern Anal. Mach. Intell.,
34(4):791–804, 2012. 3

[19] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning
for matrix factorization and sparse coding. J. Mach. Learn.
Res., 11:19–60, Mar. 2010. 2, 3, 4, 7

[20] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman.
Discriminative learned dictionaries for local image analysis.
In CVPR, pages 1–8, 2008. 2

[21] J. Mairal, G. Sapiro, and M. Elad. Learning multiscale sparse
representations for image and video restoration. Multiscale
Modeling & Simulation, 7(1):214–241, 2008. 2

[22] F. Pellacini and J. Lawrence. Appwand: editing measured
materials using appearance-driven optimization. ACM Trans.
Graph., 26(3), 2007. 1

[23] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing.
ACM Trans. Graph., 22(3):313–318, 2003. 6

[24] I. Ramirez, P. Sprechmann, and G. Sapiro. Classification
and clustering via dictionary learning with structured inco-
herence and shared features. In CVPR, pages 3501–3508,
2010. 3

[25] S. Wang, L. Zhang, L. Y., and Q. Pan. Semi-coupled dic-
tionary learning with applications in image super-resolution
and photo-sketch synthesis. In Proc. CVPR, 2012. 2

[26] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma.
Robust face recognition via sparse representation. IEEE
Trans. Pattern Anal. Mach. Intell., 31(2):210–227, 2009. 2

[27] K. Xu, Y. Li, T. Ju, S.-M. Hu, and T.-Q. Liu. Efficien-
t affinity-based edit propagation using k-d tree. ACM Trans.
Graph., 28(5), 2009. 1, 2, 5

[28] A. Y. Yang, J. Wright, Y. Ma, and S. S. Sastry. Unsupervised
segmentation of natural images via lossy data compression.
Comput. Vis. Image Und., 110(2):212–225, 2008. 2

[29] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-
resolution via sparse representation. Trans. Img. Proc.,
19(11):2861–2873, Nov. 2010. 2

