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Andrea Cohen1, Alexander G. Schwing2∗, Marc Pollefeys1
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Abstract

We propose a sequential optimization technique for seg-
menting a rectified image of a façade into semantic cate-
gories. Our method retrieves a parsing which respects com-
mon architectural constraints and also returns a certificate
for global optimality. Contrasting the suggested method,
the considered façade labeling problem is typically tackled
as a classification task or as grammar parsing. Both ap-
proaches are not capable of fully exploiting the regularity of
the problem. Therefore, our technique very significantly im-
proves the accuracy compared to the state-of-the-art while
being an order of magnitude faster. In addition, in 85% of
the test images we obtain a certificate for optimality.

1. Introduction
Monocular scene understanding is a long-standing goal

in computer vision. Just by looking at a single image, hu-
mans are able to infer information like depth and, more im-
portantly, relational structures, i.e., dependencies between
different and possibly partly occluded objects. Humans are
even able to come up with a short image sequence preced-
ing and succeeding a presented scene. However, none of
our algorithms are anywhere close to realistically achieving
this ability when given a single input image. Nevertheless,
there is an increasing amount of applications that success-
fully leverage monocular cues. Some notable examples are
prediction of room layouts [10, 17, 35, 25] when consider-
ing indoor scenes, as well as automatic photo-popup [11],
Make3D [22] and façade parsing approaches [32, 31, 18]
when considering the outdoor setting.

Common to many of those approaches, and in partic-
ular the façade parsing methods, is the initial formulation
as a pixel-wise labeling task using standard classifiers with
optional extensions to more complex structured prediction
methods. However, those approaches often operate on indi-
vidual pixels or super-pixels. While a super-pixel segmenta-
tion respects the edge-structure observed within an image to
some extent, a pixel-wise classification is significantly more
flexible. Nonetheless, most of our man-made structures and
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(a) (b) Error: 6.7%

y
2

y 1

50 100 150 200 250 300

50

100

150

200

250

300

(c)

Figure 1. The façade in (a) and our obtained parsing overlaying
the image in (b) while the sparse green pattern in (c) indicates the
efficiency of our proposed approach.

façades are well-organized, e.g., into floors that are in turn
divided into repetitive elements. Naturally, those structural
concepts impose constraints on the semantic labeling of a
monocular image that should be beneficially exploited.

Considering the monocular image understanding litera-
ture, many approaches possess no global guarantees. The
strong interplay between designing an appropriate cost
function and a corresponding algorithm for its rigorous op-
timization has, according to our opinion, been forgotten in
the past few years where many tasks are formulated as label-
ing problems. Some exceptions are the room layout estima-
tion of [26] and finding the globally optimal bounding box
given classifier scores [16, 2]. We argue that construction
of applications on top of scene interpretations, e.g., by pre-
dicting affordances [8] or by investigating the interactions
between humans and objects [6], requires fast yet well per-
forming algorithms preferably possessing guarantees or re-
turning optimality certificates, i.e., indications of when the
obtained result is guaranteed to be optimal.

It seems ambitious to parse a façade like the one illus-
trated in Fig. 1(a) into semantic regions (Fig. 1(b)) to ob-
tain a globally optimal labeling or at least certificates for
global optimality. Nevertheless, we present an optimiza-
tion problem for which we can construct optimality certifi-
cates while being more efficient if not interested in their
computation. We first present an appropriate optimization
problem and afterwards discuss usage of a dynamic pro-
gramming algorithm with extensions for improved expected
case efficiency. The latter amendment guarantees a sparse
number of calls to the dynamic programming algorithm as
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illustrated in Fig. 1(c) where green pixels denote actual
calls while otherwise, evaluation of the algorithm would
have been required for every element of the entire upper-
triangular matrix.

All in all, our proposed algorithm requires individual ex-
ecutions of a dynamic program to find a labeling. Global
optimality certificates are obtained if the individual algo-
rithms remain independent. We illustrate the efficacy on
two standard datasets being the “Ecole Centrale Paris Fa-
cades Database” and the “Zurich Building Dataset”, as well
as the “eTRIMS database” with our quantitative evaluation
on the first set indicating a 5.8% improvement compared to
current state-of-the-art while reducing computational cost
by an order of magnitude.

2. Related Work
Parsing the rectified image of a façade has long been

a prominent example for monocular scene understanding
with early approaches dating back to the seminal work of
Stiny [29]. Meanwhile, a multiplicity of methods on extrac-
tion and parsing of façades were proposed. While extraction
is the focus in [38, 21], modeling was considered by the au-
thors of [37, 19] and parsing in particular was also recently
discussed by [32, 31, 18] and references therein.

[32, 31] formulate the parsing problem by sampling
from a grammar restricting the space of possible parses.
Sampling accepts a new explanation once it scores higher
than the best previously found parsing. However, non-
probabilistic optimality certificates for efficiently finding
the global optimum are not known since the strategy for
searching the state space is still largely random. Another ap-
proach based on Recursive Neural Networks was proposed
in [18] and shown to outperform previously existing meth-
ods. The authors present a three-layer approach with the
middle layer being a pairwise multi-label Markov Random
Field (MRF) solved via a graph-cut algorithm. A graph-
cut formulation is only optimal for binary MRFs with sub-
modular pairwise energies and hence the solution for the
multi-label MRF in [18] does not even possess optimality
certificates. More importantly though, the resulting label-
ing respects the structure introduced by the super-pixels.
Although those super-pixels follow the edge structure to
some extent, no guarantee exists for finding a visually pleas-
ing explanation that follows common architectural patterns.
Those were introduced within an independent third layer
and shown to slightly decrease labeling accuracy while oc-
casionally producing visually more pleasing results.

Hence, currently existing approaches exhibit no optimal-
ity certificates upon having found the parsing of a façade.
This is, however, true for many tasks considered within
computer vision with a few exceptions. Importantly, there is
a wide range of applications based on branch-and-bound in-
ference with examples ranging from object localization [16]
via landmark detection for model fitting to images [1], to
camera parameter detection [9] [20]. Other examples are

based on maximum sum sub-array and maximum sum sub-
matrix [5] algorithms like [2]. Tasks that involve inference
over tree-structured graphs or graphs with low tree-width
are solved via dynamic-programming like message passing
techniques which are suitable for 2D scene labeling with
a specific structure as in [7]. Dynamic programming can
also be used for optimal 1D labeling for stereo [23] and
more general models in case a binary labeling is obtained.
Graph cut is the method of choice for binary MRFs with
sub-modular pairwise energies, which is applied to a num-
ber of (low-level) vision tasks like binary image denoising
and binary labeling, as described in [13]. Similar tasks can
be achieved via linear programming relaxations [36].

Optimality certificates and efficient algorithms are – ac-
cording to our opinion – important for computer vision
since they shift the focus from the design of a large system
with many parameters to the design of features that repre-
sent valuable information for a specific application. Subse-
quently we are interested in providing an efficient method
for the task of parsing a façade which can provide optimal-
ity certificates. Our approach follows the dynamic program-
ming paradigm and is detailed as follows.

3. Approach
We are interested in parsing every pixel of an im-

age illustrating a rectified façade into semantic cate-
gories subsumed within the following label set L =
{sky, chimney, roof,window, balcony,wall, door, shop}.
While this problem is fairly complex in general, typical
façades exhibit a specific structure which greatly simplifies
the parsing procedure. We therefore argue subsequently
that exploiting these architectural constraints improves
the performance of a pixel-wise labeling task w.r.t. both
computational complexity as well as accuracy.

Let z ∈ Z denote a parsing of a façade and assume that
Z denotes the exponentially sized set of all possible pixel-
wise image labelings. Clearly many of those parsings, like
randomly choosing a semantic label for every pixel, are not
at all reasonable when considering the regularity of man-
made structures. Due to the common rectangular structure
of façades, we rather let the set Z be described by a product
space with every member denoting a rectangular box. Im-
portantly, the size of this set, i.e., the number of boxes in-
volved, is not specified a-priori but rather determined when
explaining the observed image which is assumed to be of
quadratic dimensionN×N for notational convenience only.

As usual, we measure the quality of the structured pars-
ing z ∈ Z using a score function

S(z) =
∑

i∈{1,...,N}2
si(zi) (1)

summing for every pixel i within the image a score s that
depends on the pixel label zi ∈ L induced by the parsing
z. The score si of pixel i for label zi is the normalized log-



likelihood output of a classifier, i.e., si(zi) = log pi(zi) −
log

∑
l∈L pi(l) where pi is the multinomial probability dis-

tribution of pixel i over the label space L. Given the clas-
sifier scores and without constraints, the global maximum
of this log-likelihood is easily found by assigning a pixel-
sized box with label argmaxzi

si(zi) to every pixel i. Such
a labeling is not very accurate as it ignores constraints on
façade layouts. We are, hence, interested in an approach en-
forcing more structure by maximizing the log-likelihood ra-
tio while respecting common architectural constraints sub-
sumed within the set C. This set consists of the following
constraints: all façade elements (door, windows, roof, bal-
conies) are represented by a rectangular box, balconies are
required to be located below windows and to have at least
the same width, all pairs of window/balcony lying on the
same floor have the same height, the shops are located on
the bottom, chimneys originate from the top of the roof,
the façade and the roof cover the entire width of the im-
age. Note that we operate with hard constraints rather than
the typical soft constraints included into MRF formulations
via Potts-type potentials. This strong structure allows to ex-
plain up to 98% of the ground-truth labelings used in our ex-
periments, making them more accurate in some cases. We
further emphasize and visualize in the experimental section
that the set C is general enough to represent typical façades.

Overview: We start by outlining our approach for pars-
ing a façade given a rectified image. In particular, we will
find a maximizer of the score given in Eq. (1) subject to
the aforementioned architectural constraints C. The pro-
cedure is visually outlined in Fig. 2. We assume all the
pixels to be initially assigned the label wall (see Fig. 2(a))
and begin by finding window-balcony rows throughout the
image. The scores used during this stage are those of win-
dows minus wall and balcony minus wall. For the detec-
tion of a single row of window-balcony, we use a chain-like
dynamic program along the width of the image, i.e., along
the x-coordinate. We only allow certain transitions between
the variables and provide details when discussing Alg 2.
To successively explain multiple window-balcony rows we
pursue a recursive approach which investigates image parts
above and below previously labeled areas. The results of
this first step are illustrated in Fig. 2(b).

In a second step we use a variant of our dynamic program
to detect a combination of door and shop, such that the shop
starts at the bottom of the image, and the door lies within
the vertical boundaries of the shop. The top limit of the
shop is found by exhaustive search of the best door-shop
combination. A cost is payed for replacing any previous
labelings with shop and door. This is illustrated in Fig. 2(c).

In a third and last step, we jointly optimize for the labels
roof, sky and chimney. To this end, we optimize exhaus-
tively for two y-coordinates restricting the interior of the
roof where we replace previously assigned labels with roof
and at the same time optimize for a row of window/balcony
inside these boundaries by using window/balcony vs. roof

(a) Step 0 (b) Step 1 (c) Step 2 (d) Step 3

Figure 2. Output for each step of our façade parsing procedure.

scores. Similarly, all pixels above the y-coordinate denot-
ing the separation between roof and sky are relabeled from
the previous labeling to sky while finding chimneys is done
similarly to the search for windows (later described as DP1).
However, we allow chimneys to have different heights while
starting at the same y-coordinate offset. This final step re-
trieves a maximizer of Eq. (1) subject to constraints C as
illustrated in Fig. 2(d).
Finding a row of elements: Consider a task where we
are interested in finding an intermittent rectangular pattern
with heights being given by y1 and y2. Requiring all el-
ements to be rectangular, and assuming that all elements
share the same vertical limits, we are hence interested in
finding the highest scoring row of rectangular boxes {zk}
with zk = (xk,1, xk,2, y1, y2) ∈ {1, . . . , N}4 that share
the same (y1, y2) coordinates. Besides a row of windows,
this can describe a row of balconies, an interrupted line of
shops, etc. The score of each box SWindow(z) is given (in
the case of a row of windows) by adding the log-likelihood
output s of all interior pixels being window while subtract-
ing the score of being wall. Having assumed all the pix-
els to be wall at first is the reason for the subtraction since
we replace a wall label with a window label. We pro-
pose a dynamic programming approach that, given a pair
of coordinates (y1, y2), finds the maximum scoring set of
boxes zk = (xk,1, xk,2, y1, y2) in O(N). We will refer to
this algorithm as DP1. DP1 is a version of Viterbi’s al-
gorithm [34] with 2 states representing the presence or the
absence of the element of interest, e.g., window. It was also
inspired by Kadane’s algorithm [4] which can find the best
scoring box.

For each column of pixels in a row bounded by (y1, y2),
DP1 explores which state is the best depending on the pre-
vious column. Each column has 2 states: presence or ab-
sence of the window label on that column. A backwards
pass retrieves the best vertical boundaries for all windows
within (y1, y2). A minimum size s for windows is imposed
by adding s additional states (s = 5 in our case) and con-
straining the possible transitions. The algorithm complexity
is O(2 · (2 + s) · n). Note that the width of each window is
not fixed in advance.

Claim 1 Finding the maximum scoring row of elements of
anN×N image S is achievable in complexity less or equal
to O(N3).

For a simple proof of this claim, assume the limiting up-
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Figure 3. In (a) we schematically illustrate the upper bound b(y1, y2) which exceeds the currently best score B only for y2 = y1 +3 hence
triggering a DP1 operation, with its result being used for subsequent bound computations. To obtain a tighter bound b we also leverage
information from the preceding computations from y1 + 1 in addition to the bounds obtained only from the predecessor in y2 as depicted
in (b). The sparseness on real data is illustrated in (c) where a DP1 operation is triggered only for the green dots.

per and lower coordinates y1, y2 to be given. Finding the
maximum scoring boxes is then possible in time linear in
N using the previously described dynamic program. Since
there are O(N2) different (y1, y2) pairs, we find the maxi-
mum scoring row of elements in complexity less or equal to
cubic which proves the claim.
Improving expected case complexity: The algorithm
sketched in the proof of Claim 1 requires DP1. for all pairs
of matrix rows (y1, y2) with y2 > y1. Looking at Fig. 1(c)
and Fig. 3(c) this corresponds to running the O(N) proce-
dure for all points in the upper triangular region of the plot.
Therefore, we next describe an optimality retaining strat-
egy which avoids unnecessary computations by construct-
ing an upper bound on the maximally possible row score
for a given y-coordinate pair (y1, y2). If the upper bound on
the score of all possible rows of elements with fixed (y1, y2)
does not exceed the value of the best scoring row found so
far, it is not necessary to obtain the set of best x-coordinates
and its corresponding energy using DP1. This case is il-
lustrated by the blue colored (y1, y2) pairs in Fig. 1(c) and
Fig. 3(c), while the actual calls to DP1 are colored green.

To obtain this bound we notice that it is possible to com-
pute the best scoring row for all pairs y1, y2 = y1 + 1, i.e.,
all rows of rectangles being one pixel high, in O(N2) be-
cause there are only N pairs each requiring the O(N) pro-
cedure of DP1. More formally, we initially construct the ar-
ray θ of best scores for all rows of boxes which are a single
pixel high, i.e., θ(y1) =

∑
k S(x

∗
k,1, x

∗
k,2, y1, y1 + 1) with

the optimal single-height boxes for coordinate y1 being sub-
sumed within the set {(x∗k,1, x∗k,2)}y1

= DP1(S, y1, y1+1)

∀y1 ∈ {1, . . . , N − 1}. Notice that S represents an N ×N
matrix of scores. This initial O(N2) step provides informa-
tion which is valuable twice.

Firstly, we obtain a lower score bound
maxy1∈{1,...,N−1} θ(y1) on the optimal value of the
score S by taking the maximum over the energies of all
rows of boxes that are of one pixel height. If this score
bound is negative, we know that S is optimal and terminate
with the best row of boxes found so far.

Secondly and more importantly, we notice that
the sum of all single pixel high row contributions
between an arbitrarily chosen pair of y-coordinates

(y1, y2) with y2 > y1 provides an upper bound
for the best row of boxes found within this y-
coordinate pair since the x-coordinates xk,1, xk,2 are
not required to match between individual rows. In
equations,

∑y2−1
y=y1

θ(y) ≥
∑

k S(x
∗
k,1, x

∗
k,2, y1, y2) for

{(x∗k,1, x∗k,2)} = DP1(S, y1, y2). This upper bound will
be referred to as b(y1, y2) =

∑y2−1
y=y1

θ(y). In particular, we
know that the only pairs (y1, y2) that are worth being more
closely investigated are those for which the upper bound on
the row score, b(y1, y2) = b(y1, y2−1)+θ(y2−1), is larger
than the currently best known score B.

Consider Fig. 3(a) where the dashed line illustrates the
currently best known score bound B. The white rectangle
indicates y1. For increasing y2 we continuously add indi-
vidual row contributions and, hence, obtain an upper bound
b(y1, y2) on the best achievable score value for the respec-
tive pair (y1, y2). If this upper bound exceeds the currently
best known score, we utilize DP1 to obtain either a row
scoring higher than B or, as illustrated in Fig. 3(a), a new
upper bound value b(y1, y2) which will be used for succes-
sive bound computations. In addition to this bound obtained
for a fixed y1 we also draw information from the previously
computed y1 + 1 since we also know the maximal devia-
tion θ(y1) between y1 and y1 + 1. Therefore, as illustrated
in Fig. 3(b), this dynamic programming like 2D extension
computes a new bound b(y1, y2) as the minimum of two up-
per bounds which decreases the required O(N) operations
even further. We illustrate the required amount of linear
time operations on real data in Fig. 3(c) and provide quan-
titative results in Sec. 4.

Putting all of the above information together we are
now ready to describe an algorithm (Alg. 1) with guar-
anteed worst case complexity O(N3) and expected case
run-time to be revealed by experiments. We start by find-
ing the scores of the best row boxes being a single pixel
high (l.2 of Alg. 1) and check for optimality. Then we
proceed by iterating y1 from the last positive single row
contribution N+ = argmaxy{y : θ(y) ≥ 0} until the
first row found to have a positive contribution, i.e., until
argminy{y : θ(y) ≥ 0}. This is sufficient since any row
score starting in a row with only negative contributions can



Algorithm 1 dynamic programming with bounds
1: for all y1 ∈ {1, . . . , N − 1} do
2: (x∗1, x

∗
2)← DP1(S, y1, y1 + 1)

3: θ(y1)← S(x∗1, x
∗
2, y1, y1 + 1)

4: end for
5: B ← maxy θ(y)
6: if B > 0 then
7: for y1 = {N+ − 1, N+ − 2, . . .}, y2 = {y1 +

1, . . . , N+} do
8: b(y1, y2) = min{b(y1, y2−1)+θ(y2−1), b(y1+

1, y2) + θ(y1)}
9: if b(y1, y2) > B then

10: (x∗i1, x
∗
i2)← DP1(S, y1, y2)

11: b(y1, y2)← S(x∗1, x
∗
2, y1, y1 + 1)

12: if b(y1, y2) > B then
13: keep better box, let B ← b(y1, y2)
14: end if
15: end if
16: end for
17: end if
be increased by avoiding the negative rows preceding the
first positive row. For each y1 we iterate y2 from y1 + 1
to the last positive single row contribution, which is suffi-
cient for the same reason. We update the bound b(y1, y2)
(l.8) using the aforementioned dynamic programming like
extension and check whether the O(N) DP1 procedure is
required to be run for the current y-coordinate pair (y1, y2).

More complex structures: So far, we designed a method
to efficiently find the highest scoring row of rectangular re-
gions within an image. In façades, however, we often en-
counter complex structures like the combination of win-
dows and balconies. We would like to find two rows of
boxes z1, z2 located below each other. We want to maxi-
mize

∑
Sk,1(xk,1, xk,2, y1, y2) +

∑
Sj,2(xj,1, xj,2, y2, y3)

with Sk,1 integrating the probability mass for exchanging
wall with window inside the rectangle. Similarly, Sj,2 per-
forms the same operation for the balcony. One should notice
that, the only condition being that a balcony has to have at
least one window above and a window has to have one bal-
cony below, the number of windows and balconies detected
might not be the same as long as this condition is respected
(since two windows may lie above the same larger balcony).

Given a triplet of y-coordinates with y1 < y2 < y3, we
optimize

∑
Sk,1 + Sj,2 in linear time using an extension

of DP1 by adding more possible states. Instead of having
only two states (absence or presence of the element of in-
terest), we now have the following states: absence of both
window and balcony, presence of balcony and presence of
balcony and window. In order to ensure that no balcony
appears without a window above it, we have two balcony
states: the one that can appear before a window has been
detected (which cannot transition back to absence of bal-
cony), and the one that appears after a window has been
detected. We limit the possible transitions between states

such that these conditions are fulfilled. We refer to this al-
gorithm as DP2. Since we only deal with a constant number
of states (4 for this case), the complexity remains of O(N).

For the cubic amount of triplets that need to be inves-
tigated in order to find the best row of window/balcony
we obtain a quartic worst case complexity algorithm –
O(N4). For a more efficient expected case complexity,
an extension of Alg. 1 to 3 dimensions is required. In
spirit of the previous method, we again design a bound to
avoid running DP2 frequently. Taking into account the two
functions, we utilize two arrays of single row rectangles
θ1(y) =

∑
Sk,1(x

∗
k,1, x

∗
k,2, y, y + 1) with (x∗k,1, x

∗
k,2) =

DP1(S1, y, y+1) and θ2(y) =
∑
Sj,2(x

∗
j,1, x

∗
j,2, y, y + 1)

with (x∗j,1, x
∗
j,2) = DP1(S2, y, y+1) ∀y ∈ {1, . . . , N}. S1

and S2 represent the matrices of scores for window vs. wall
and balcony vs. wall respectively. Analogously to before,
we obtain the bound to determine whether to use DP2 via
the minimum of the two terms modified by the arrays θ1(y1)
and θ2(y3). Importantly, it is beneficial to add a third term
depending on y2. The bound reads:

b(y1, y2, y3) = min


b(y1 + 1, y2, y3) + θ1(y1),
b(y1, y2 − 1, y3) + θ1(y2 − 1)
−minS2

(y2 − 1),
b(y1, y2, y3 − 1) + θ2(y3 − 1)

,

where minS2
(y) is the minimum score found in row y for

matrix S2. Since we are looking for an upper bound, we
need to subtract the minimum loss that we get when we
replace a pixel-high row of the second element with a row
of the first element. Instead of a sparse upper-triangular
matrix we obtain a sparse “upper-pyramidal” tensor. We
refer to this 3D modification as Alg. 2. All rows of balcony-
windows can be found by recursively applying Alg. 2.

Shop floor detection: Let shopLine be the vertical
boundary for the shop floor. A variation of DP1 is used
in order to find the best horizontal boundaries for a line of
intermittent shops spanning from the bottom of the image
up to shopLine, as well as the best door rectangle lying
between the shop boundaries. Note that a door is not al-
lowed to lie in front of a shop. To this end, we extend the
set of possible states that need to be investigated for each
x-coordinate: absence of shop and door, presence of shop
(spanning the whole column between the bottom of the im-
age and shopLine) and presence of door. As we only de-
tect one door, there are two states representing the absence
of shop and door, as well as the presence of shop, indi-
cating whether a door has already appeared or not. Since
we don’t know in advance the vertical boundaries of the
door, there is one possible state for every possible pair of
vertical boundaries that lie between the bottom of the im-
age and shopLine. The possible transitions between states
are limited such that only one door can appear. The num-
ber of possible door boundaries depends on the height of
the shopLine, therefore, this dynamic programming has a



Class
No chimney Chimney

[31] [18](2) [18](3) Ours1 Ours2 Oursw Ours1 Ours2 Oursw

Window [%] 62 69 75 67 87 85 68 87 85
Wall [%] 82 93 88 92 88 90 92 88 90

Balcony [%] 58 71 70 82 92 91 82 92 91
Door [%] 47 60 67 42 82 79 42 82 79
Roof [%] 66 73 74 86 93 90 85 92 91
Sky [%] 95 91 97 97 96 97 93 93 94

Shop [%] 88 86 93 94 96 94 94 96 94
Chimney [%] - - - - - - 54 90 85

total acc. [%] 74.71 85.06 84.17 87.77 90.34 90.82 86.71 89.90 90.34

Table 1. Results on the ECP dataset. The last three columns show the results obtained by adding the chimney estimation.

complexity of O(shopLine2 ·N).
Global optimality certificate: The parsing, i.e., succes-
sive application of our steps, guarantees a globally optimal
result if each step is optimal on its own and if steps are in-
dependent of each other.
Detection of window/balcony rows: Alg. 2 obtains the
best scoring row of balcony/windows respecting the set of
constraints. Since there are no constraints between rows
(each row can have a different height/number of windows,
etc.), we recursively look for the best rows above and be-
low the ones found so far. Even though this is a greedy
approach, we are able to verify global optimality as fol-
lows. We construct a function f(y) that is defined such that∑y3

y=y1
f(y) = DP2(y1, y2, y3) for all sets of (y1, y2, y3)

defining a detected window/balcony row, and f(y) = 0
elsewhere. If we are able to construct this function, it is easy
to see that the

∑N
y=0 f(y) yields the combined score for the

complete window/balcony layout detected on the facade. If
we can verify for each valid combination (y1, y2, y3) that∑y3

y=y1
f(y) is an upper-bound for DP2(y1, y2, y3), then

global optimality is established. We were able to verify this
for 85% of the images.
Shop and door detection: Since the door boundaries are
found by joint optimization of the horizontal boundaries of
the shop, and the shop vertical limit is found by exhaustive
search, this step is optimal if it doesn’t interfere with pre-
viously detected structures. If a combination of shop/door
completely overrides a set of window/balcony, or it doesn’t
touch any of them, they are independent and the algorithm
is optimal. If, on the contrary, it partially occludes a row of
windows, then the optimality is no longer guaranteed.
Joint optimization of roof, sky and chimney: Optimal-
ity is guaranteed as long as the roof line doesn’t partially
occlude a row of windows. This step has a worst case com-
plexity of O(N5) although in practice the search space for
window/balcony inside the roof is much smaller.

There are three cases where global optimality is not guar-
anteed. The detected window/balcony rows are not optimal
or the steps interact: shop floor touches windows or roof
touches windows. For the ECP dataset [30], the second case
appears only in 5% of the images while the third case ap-
pears in 6% of the images (with an overlap of 2%). The
first case is present on 15% of the images (with a full over-

lap with the other two cases). Global optimality is therefore
guaranteed in 85% of the images for this data set.

4. Experiments
Subsequently, we first evaluate our proposed approach

quantitatively on two different datasets, discuss some im-
plementation details, and provide qualitative results on mul-
tiple other datasets. For the quantitative evaluation we first
compare our method to current state-of-the-art approaches
w.r.t. both computational efficiency and pixel-wise labeling
accuracy. For the latter we utilize the “Ecole Centrale Paris
Facades Database” (ECP) [30] as well as the “eTRIMS Im-
age Database” [14]. To emphasize the generality of the
method and due to no publicly available annotations, we
additionally provide only qualitative results on a subset of
72 images from the “Zurich Building dataset” (ZuBud) [27]
rectified by detecting vanishing points as in [3]. We also
tested our method on a dataset of 122 images of rectified
façades from around the world available from [30]. No-
tice that since there is no ground-truth available for these
last two datasets, we obtained the scores for the images by
using the same classifiers that were trained using the ECP
dataset, yielding, in most cases, very inaccurate scores.
ECP dataset The ECP database consists of 104 rectified
images of façades. The annotations provided by [18] consist
of: {sky, chimney, roof, window, balcony, wall, door, shop}.

We report results for the quasi-optimal approach subse-
quently referred to as “Ours.” Tab. 1 shows class accura-
cies for all methods and compares the performance of our
proposed algorithm to related previous approaches, i.e., re-
inforcement learning presented in [31] and the accuracies
of the top two layers (2,3) presented in [18]. We improve
labeling accuracy by 6.6% w.r.t. the top layer of [18] and by
5.8% compared to the best accuracy reported till date [18].
Notice that chimneys were ignored in previous work. For
a fair comparison with existing methods, we provide re-
sults with and without chimney estimation. We observe our
method to yield a balanced performance across all classes.
Implementation details: To obtain the probability distri-
butions pi we use two different methods. The results of ap-
plying our parsing on top of each of these methods is illus-
trated in Tab. 1 and are referrred to as “Ours1” and “Ours2”



Method [32] [31] [18] Ours/Oursw

Time [s] 600 30 110 2.8

Table 2. Average run-time per image for different approaches.

respectively. The first method obtains the probability distri-
butions by training a boosted decision tree classifier which
uses the same features as reported in [18], thus obtaining
very similar results as their first layer. We also tested a sec-
ond method in order to further push the state of the art. We
use the multi-feature extension [15] of the TextonBoost al-
gorithm [28]. First, we extract four dense features - SIFT,
textons, ternary patterns and self-similarity. For each pixel
each of these features is clustered into 512 clusters. The
context-based feature vector for each pixel is a concatena-
tion of bag-of-words representations over a fixed random
set of 200 rectangles. The most discriminative weak fea-
tures are found using multi-class boosting [33] as explained
in [28]. We follow [18] and perform 5-fold cross-validation
by dividing the dataset into five disjoint subsets, training an
eight class boosted classifier on four of those subsets of the
ECP dataset while testing on the fifth.

Rather than weighting the probability distributions pi
obtained by the second method equally across classes, we
learn eight linear weights and subsequently refer to this ex-
tension as “Oursw.” We learn those additional parameters
using the cutting plane algorithm for structured support vec-
tor machines [12] since our façade labeling retrieves op-
timal results frequently. To this end we use the parallel
implementation developed in [24]. Considering the results
presented in Tab. 1 we observe slight improvements in over-
all accuracy attributed mainly to a beter prediction of the
frequently occurring wall label.

So far we have not discussed the efficiency of our pro-
posed parsing algorithm which relies on a few sparse calls to
DP1, DP2 and their variants. For illustrations purposes, the
sparseness of the calls is shown for the 2D case of detecting
an interrupted row of roof (Alg. 1) as an upper-triangular
matrix in Fig. 1(c) and Fig. 3(c). We note that DP1 is only
called in 3.6% of the cases. This results in an overall aver-
age parsing time of 2.8 seconds per image on a i7-930 2.8
GHz desktop. This outperforms the 30 seconds per image
detailed in [31] and the 110 seconds given by the authors
of [18] in personal communication by more than one order
of magnitude. The average processing time of different al-
gorithms is summarized in Tab. 2.

eTRIMS database In order to show the versatility of
our approach, we also tested our method on the eTRIMS
dataset, which consists of 60 images of non-rectified
façades. For a fair comparison, we perform 5-fold cross-
validation as in [18]. The results are illustrated in Tab. 3.
The probability distributions pi were obtained by apply-
ing the first layer of [18]. We achieve a pixel accuracy of
83.84% , comparable to [18] 2nd layer results (83.16%) and
superior to the 3rd facade-structured layer (81.63%), while
adding structure to the labeling.

4.9% 5.5% 5.9% 6.7%

6.5% 6.4% 6.7% 6.7%
Figure 4. Results on the ECP dataset and classification errors.

14% 15.2% 13.5% 9.1%
Figure 5. Results on the eTRIMS dataset and classification errors.

Figure 6. Qualitative results on various datasets.
Qualitative Evaluation: Some of the results of the ap-
proximately optimal approach are presented in Fig. 4 to-
gether with their respective classification errors including
the chimney class. We also show some results for the
eTRIMS dataset in Fig. 5.

Some qualitative results for both the ZuBud dataset [27]
and the multiple façades dataset from [30] are provided in
Fig. 6. Our approach returns a visually appealing result for
most images. The errors encountered are due to the fact
that the scores are very inaccurate since the classifiers were
trained only for the ECP dataset. We refer the reader to our
website1 for results on the full datasets.

Class [18](1) [18](2) [18](3) Ours
Building [%] 88 91 87 91

Car [%] 69 69 69 70
Door [%] 25 18 19 18

Pavement [%] 34 33 34 33
Road [%] 56 55 56 57
Sky [%] 94 93 94 97

Vegetation [%] 89 89 88 90
Window [%] 71 74 79 71

total acc. [%] 81.87 83.16 81.63 83.84

Table 3. Results on the eTRIMS dataset.

1http://www.inf.ethz.ch/personal/acohen/papers/facadeParsing.php



5. Conclusions
We presented a method for parsing images of façades

based on a dynamic programming algorithm and bound
computations to improve efficiency. We showed its efficacy
on two standard benchmark datasets and provided results
outperforming existing state-of-the-art approaches, reveal-
ing increased accuracy and reducing computational cost by
an order of magnitude. We show qualitative results for two
additional datasets. We plan to extend our work to incor-
porate edge information for an improved parsing, as well
as learning of parameters to accommodate different façade
styles. The strong structure used in this work also shows
potential for semi-supervised or unsupervised learning.
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