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Abstract 
 

Most pedestrian detection approaches that achieve high 

accuracy and precision rate and that can be used for real-

time applications are based on histograms of gradient 

orientations. Usually multiscale detection is attained by 

resizing the image several times and by recomputing the 

image features or using multiple classifiers for different 

scales. 

In this paper we present a pedestrian detection 

approach that uses the same classifier for all pedestrian 

scales based on image features computed for a single 

scale. We go beyond the low level pixel-wise gradient 

orientation bins and use higher level visual words 

organized into Word Channels. Boosting is used to learn 

classification features from the integral Word Channels. 

The proposed approach is evaluated on multiple 

datasets and achieves outstanding results on the INRIA 

and Caltech-USA benchmarks. By using a GPU 

implementation we achieve a classification rate of over 10 

million bounding boxes per second and a 16 FPS rate for 

multiscale detection in a 640×480 image. 
 

1. Introduction 

Pedestrian detection represents a key problem in 

computer vision due to its wide range of applications: 

automotive industry, robotics, surveillance, semantic 

image annotation. The main challenge is to find an 

approach that is highly accurate and fast at the same time.  

Detecting pedestrians in real life scenarios, such as 

traffic scenes, can be difficult. Pedestrians wear clothes or 

accessories with complex textures, have different attitudes 

and postures, and can be occluded by obstacles or other 

pedestrians. The size of pedestrians in an image depends 

on their distance from the camera. Current best performing 

approaches still struggle to detect far pedestrians. 

Sliding window based pedestrian detection appears to 

be the most promising for low to medium resolution 

settings, in comparison to segmentation or keypoint based 

methods [12]. The sliding windows are classified into 

pedestrian or non-pedestrian based on image features. The 

image features should capture the required information for 

classification, while allowing fast computation.  

Previous object detection approaches use a fixed size 

sliding window and resize the image [8] or use a fixed size 

image and resize the sliding window [29]. When using 

multiple sliding window scales, individual classifiers are 

trained for different scales. In this paper we propose a 

solution to pedestrian detection that does not require image 

resizing and uses only one classifier for all sliding window 

scales. The proposed approach introduces the use of word 

channels, inspired from codebook based semantic image 

annotation techniques for extracting classification features. 

2. Related work 

The literature on pedestrian detection is extensive. 

Valuable surveys exist, such as [12, 14, 17], presenting 

and comparing the most relevant approaches of the last 

decade. These approaches are evaluated on pedestrian 

benchmarks. The most frequently used benchmark is the 

INRIA dataset, currently dominated by methods based on 

the Integral Channel Features approach proposed by 

Dollar et al. [10]. Ten integral images are constructed: six 

for gradient orientations at different angles, one for the 

gradient magnitude and three for the LUV color channels. 

These channels are used to learn classification features for 

a boosting based classifier. A classification feature is 

defined by a rectangle having a specific size and position 

in the detection window and it is represented by the sum of 

responses on one of the channels inside that rectangle. The 

classification features are learned by the boosting 

algorithm from a total of 30000 random features. 

Benenson et al. [4] obtained better classification results 

using all 718 080 possible rectangles for a 64×128 pixel 

model. Pedestrians are detected at multiple scales by 

learning a single classifier for pedestrians with heights of 

96 pixels. The input image is then repeatedly resized to 

correctly detect all pedestrians with one sliding window.  

Computing the image features at each scale can be time 

consuming due to the high number of potential image 

scales (around 50). Dollar et al. compute in [11] the image 
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features only once every half octaves (five in an image) 

and approximate for the rest of the scales. 

An innovative idea was the transfer of resize operations 

to training time, proposed by Benenson et al. in [3]. 

Instead of using one classifier and multiple image octaves, 

a single image scale is used with multiple classifiers for 

each octave. By using a GPU implementation the approach 

achieved a detection rate of 50 FPS. An even higher 

detection rate is achieved using stereo information due to 

the reduction of search space. 

Another popular pedestrian detection benchmark is the 

Caltech dataset [9]. It consists of approximately 10 hours 

of video taken from a vehicle in an urban environment. 

The dataset is challenging due to the small size of 

pedestrians and different occlusion cases. Even if the 

evaluation is performed only on pedestrians of 50 pixel 

heights or taller, and who have a maximum occlusion of 

35%, the best performing methods achieve a miss rate of 

around 40% at a precision of 1 false positive per 10 

frames. Best performing methods use pedestrian context 

[5, 32] or multiresolution deformable part models [32] for 

achieving the lowest miss rates. However, they have a slow 

execution time (around 1 second per frame, or even more). 

Our method is also related to the semantic image 

annotation and segmentation domain. Annotations refer to 

the context (scene) of the image or to the presence of 

several image concepts (objects, materials, action). The 

visual codebook or “bag of words” model is a powerful 

tool to construct global image descriptors. The visual 

codebook consists of visual words obtained through 

training. An image is regarded as a collection of these 

words and the histogram of words is used as a descriptor 

vector Multiple methods, such as [6, 26], achieved 

outstanding results on the Pascal VOC Challenge [15] on 

the classification task using visual codebooks. 

The Pascal VOC Challenge had also a semantic 

segmentation task. Top performing methods, like [18] and 

[19], used visual codebooks for multiple descriptor types. 

Using a trained classifier, individual pixels were classified 

as one of the semantic classes based on the surrounding 

visual words. A multiclass boosting classifier was trained 

with millions of pixel samples using visual word based 

classification features. Decision stumps were used as weak 

classifiers over visual word counts in learned rectangles. 

The results from individual pixel classifications were 

integrated as first order, unary potentials into a conditional 

random field which was then extended with multiple 

higher order potentials. 

The robustness of the visual codebook based features in 

semantic image annotation techniques inspired us to use 

them for pedestrian detection. The main disadvantage of 

these descriptors is the high computational time required, 

suggesting why visual codebooks are not so popular in real 

time applications. The most time consuming process is the 

matching of all individual local image descriptors to the 

most similar word from the codebook. In this paper we 

show that it is possible to achieve real time performances 

using codebooks with lower word counts for descriptor 

types having lower dimensionality.  

3. Image representation 

Prior to classifying any rectangular region as pedestrian 

or non-pedestrian, the raw image data have to be 

transformed into potential classification features. Inspired 

from semantic image annotation techniques we propose the 

use of visual codebooks, also known as dictionaries, for 

representing images as distributions of visual words. A 

different codebook is trained for each individual local 

descriptor type. 

3.1. Local descriptors 

In our approach we use three descriptor types that can 

be computed densely at each pixel position. The first one 

is based on Dalal’s and Triggs’s HOG descriptor [8], the 

second one on Local Binary Pattern (LBP) and the third 

one on the LUV color channels. Our main focus is 

achieving fast computational time and reduced descriptor 

dimensionality. 

Prior to computing the local descriptors, a Gaussian 

filter with σ=0.25 is used over the grayscale image for 

HOG and LBP and σ=1.0 over the color image in order to 

attenuate the image noise. 

The HOG descriptor consists of several histograms of 

oriented gradients computed for multiple overlapping 

blocks inside a bounding box. We use one HOG block as a 

local descriptor because of fast computational time and 

reduced feature vector dimensionality constraints. We 

divide the 16x16 pixel block into four 8x8 pixel cells and 

for each cell we compute a histogram of oriented gradients 

using 6 orientation bins in the 0°–180° angle range 

(contrast insensitive). By concatenating the four 

histograms we obtain a 24 dimensional feature vector. This 

configuration provided good results in [8]. 

The basic LBP transform assigns an 8 bit value for each 

pixel. The raw intensity value of a pixel is compared to the 

intensity values of the 8 neighbor pixels. If the neighbor 

pixel has a higher value the corresponding bit is assigned 

“1”, otherwise “0”. Instead of using only 8 neighbors we 

use a larger 5×5 pixel neighborhood and compare the 

center pixel to the 24 surrounding pixels. A 24 

dimensional descriptor vector consisting of ‘1’s and ‘0’s is 

then obtained. 

In the experiments of Dollar et al. with Integral 

Channel Features [10] the LUV color channels, were 

strong and consistent cues in the face region for the 

detection of pedestrians. We use the LUV color channel 

values as pixel level feature vectors. 
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3.2. Visual codebook 

A visual codebook is defined as a set of local image 

descriptors, representing the most frequent and most 

characteristic responses. Initially this model was used for 

text classification [1], where the text was considered a 

“bag of words”. The model was adapted to images, by 

considering them a set of visual words [7]. Applications 

include image classification and image segmentation. Any 

local descriptor in an image can be matched to one of the 

visual words from a learned codebook based on a 

similarity metric, such as the Manhattan or Euclidean 

distance. Only the codebook reference is therefore used in 

further processing rather than the whole descriptor vector. 

A visual codebook can be constructed using any 

clustering algorithm. The most frequently used approach is 

K-Means clustering. The codebook consists of the 

resulting centroids. A different codebook is trained for 

each local descriptor type using a set of training images. 

Local descriptors are densely sampled from each image in 

order to obtain a large set of responses for clustering. This 

process is illustrated in Figure 1(a). For each used 

descriptor type an individual codebook is built. The 

clustering of 500000 descriptor samples into 64 clusters 

takes around 5 minutes using a CPU implementation. 
 

3.3. Codebook maps and word channels 

In our approach the local image descriptors are sampled 

at each individual image pixel. By matching each of these 

local descriptors to the most similar codebook word, we 

obtain the codebook map (Figure 1(b)). Any image region 

can therefore be easily described by the distribution of 

words in the map. The map can be decomposed into 

channels for each individual word. We call these channels 

word channels which are similar to the texton maps for 

texture features [28]. The visual codebooks capture 

specific properties of descriptor types in the context they 

were trained on. For an input image the word channels 

represent the distribution of these particular codebooks’ 

words (Figure 1(c)). For computational efficiency we build 

integral images for each of the word channels. 

It is difficult to choose the ideal number of words for a 

visual codebook. For visual categorization approaches 

based on codebooks, a higher number of words provide 

better results, however at higher computational costs. 

Common choices are around 100 to 1000 words [18, 19, 

20, 26]. For a reduced context such as pedestrian detection 

(compared to general visual recognition) a lower word 

count can be used.  In our experiments we successfully 

used 64 words for each of the three descriptor types 

resulting in a total of 192 word channels. The number of 

words was chosen intuitively in order to reduce 

computational costs. The analysis of the ideal number of 

words for each individual descriptor type is left for future 

work. The GPU based implementation allows the 

computation of all the 192 word channels in 12 ms (83 

FPS). Each local descriptor is computed on an individual 

GPU thread and matched in the same thread with the 

codebook (the local descriptor is never saved on the GPU 

device memory). Because of the reduced size, the 

codebook can be cached in the shared memory of the 

GPU, making the access very fast. 

Figure 1: Generating word channels for an input image. (a) Training a visual codebook for one descriptor type; (b) Computation of 

word maps by matching dense local descriptors to visual codebooks for three different descriptor types; (c) A few examples of word 

channels extracted from the word map of each descriptor type. 
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4. Multiscale detection 

The main implementation choices for multiscale 

pedestrian detection were presented in the related work 

section and are summarized in Figure 2. We propose an 

approach that uses image features computed at a single 

scale. The pedestrians are detected by scanning the fixed 

size image with sliding windows at different scales, but 

using a single classifier model for all scales. To our 

knowledge this is the first time when such an approach is 

used for multiscale detection. This is possible due to the 

scale independent classification features. 

Different code words would be activated for a near 

pedestrian compared to a far pedestrian. However, the 

features are invariant to smaller scale changes, because of 

the relatively small codebook size. 64 visual words are 

used to represent a very large range of possible visual 

responses for pedestrians, vehicles, buildings and different 

background textures. If the scale of the pedestrian changes 

from 60 pixels height to 70 pixels, there is a high 

probability that specific visual codes, representing 

pedestrian structures or textures, will remain unaltered. For 

larger scale changes, the visual codes would probably not 

match, even if a small number of codes is used, but this 

issue is solved by the inclusion of various pedestrian sizes 

in the training set. 

4.1. Classification features 

The classification features are based on the integral 

images computed on word channels. The sum of the 

responses inside a rectangle for a specific word channel 

represents the count of that word. We choose to classify 

the bounding boxes based on the distribution of the 

codebook words which can be achieved by counting 

specific words in specific rectangles. In order to make the 

classification features independent of the bounding box 

size, we use normalized rectangles and normalized word 

counts. The rectangles are normalized to the bounding box 

size and the word counts are normalized to the rectangle 

size. Figure 3 illustrates a normalized classification feature 

and its use for different bounding boxes in an image. A 

similar normalization strategy was used by Wang et al. in 

[30] to handle scales and aspect ratios for object detection. 

We need to generate a pool of potential classification 

features from which a feature selection algorithm can 

select the relevant features for classification. For this we 

need to specify a set of rectangles. Benenson et al. trained 

a pedestrian detector in [4] based on channel features 

using all 718 080 possible rectangles for a 64x128 pixel 

model (with a shrinking factor of 4). The training process 

took 2.5 days on a GPU enabled, multi-core, large RAM 

work-station. The detector performed significantly better 

compared to a detector that was trained with 30000 

random rectangle features. We want to use fewer, but more 

relevant rectangles, considering the higher number of 

channels in the case of word channels. Benenson et al. 

provided informative statistics in [4] over the rectangles 

most frequently selected as classification features. Inspired 

from these statistics we also generate all possible 

rectangles for a detection window divided into 18 rows 

and 9 columns. However, we only use the rectangles that 

have an aspect ratio of 0.33 (vertical bars), 1 (squares) or 3 

(horizontal bars) and an area between 3 and 12 cells, 

resulting in 556 rectangles.  

The relevant classification features are learnt using 

boosting. Decision stumps over classification features are 

used as weak classifiers. A weak classifier can be learnt by 

evaluating all classification features using different values 

for decision stump thresholds and selecting the one that 

performed best on the training data. As in [28], in our 

experiments we evaluated only 1% of the classification 

features that were sampled randomly at each boosting 

round. This strategy reduces significantly the training time 

N/K models, 1 image scale 

VeryFast approach [3] 

 

1 model, N image scales 

Traditional approach [8, 10] 

 

Figure 2: Different approaches for multiscale detection 

1 model, 1 image scale 

Our approach 

 

1 model, N/K image scales 

FPDW approach [11] 

 

Figure 3: Left: Example of a classification feature defined by a   

word from the color codebook specific for pedestrian faces and a 

rectangle normalized to the detection window. Right: the 

corresponding regions in the color codebook map for different 

detection windows. 
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without affecting the classification performance if the 

number of boosting rounds is high (5000 boosting rounds 

were used for a sampling rate of 0.5% in [28]). 

Each boosting round learns a single weak classifier. 

Selecting the ideal number of boosting rounds is a delicate 

issue. Too many boosting rounds result in classifier 

overfitting, while too few boosting rounds result in 

underfitting. In our experiments we train new weak 

learners until the classification error on the training set 

reaches 0 and add 10% additional rounds. Even if the 

classification error over the training set reaches 0, the 

classification error over a validation set can still decrease 

with additional boosting rounds learnt using weighted 

training samples. 

4.2. Classification scheme 

Because the classification features do not depend on the 

bounding box size only one classifier is learnt. In order to 

obtain a robust classifier, it is important to have a training 

set that has many pedestrians at each scale. We train a 

cascade of multiple boosted classifiers. 

For each of the classifiers in the cascade the positive 

train samples consist of pedestrian bounding boxes 

extracted at their original scale and use four times as many 

negative samples. For the first classifier in the cascade the 

negative samples are generated randomly from images 

containing no pedestrians. The following classifiers use the 

false positives of the previous classifier. In our 

experiments after 4-5 classifiers in cascade there were no 

false positives detected on the training set. To avoid 

overfitting we used 3 classifiers trained on hard negatives 

from images without pedestrians for the final cascade. 

Two frequent cases of false detection on images with 

pedestrians were small bounding boxes detected inside the 

pedestrian or too large bounding boxes around the 

pedestrian. To solve these issues the classifier cascade was 

extended with two more classifiers. The first one was 

trained with false detections obtained on training images 

with pedestrians, where the bounding boxes were much 

larger and the second one was for too small bounding 

boxes inside the pedestrian. 

Figure 5: Pedestrian detection: classification cascade, non-maximum suppression and rejection of detections with low confidences. 

Figure 4: Pedestrian detection flow 
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4.3. Detection process 

The main steps for detecting pedestrians in an input 

image are presented in Figure 4. The first step is to 

compute the local descriptors for the three descriptor 

types. The descriptor responses are computed densely at 

each pixel location. The responses are matched to the 

visual codebooks that were learnt from the training 

database. This results in three different visual word maps. 

These word maps are decomposed into word channels, 

with an individual channel for each word of each 

descriptor type. In order to allow efficient classification 

feature computation integral images are constructed for 

each word channel. 

Using the integral word channels and the trained 

classifier cascade any detection window from the image 

can be classified. We use an aspect ratio of 0.41 for 

detection windows as suggested in [9]. For multiscale 

detection the image is scanned with detection windows of 

multiple sizes using steps of 4 pixels. We use a minimum 

height of 50 pixels and a scale factor of 1.07. This results 

in 38 different detection window scales and a total number 

of around 400 000 bounding boxes for a 640×480 pixel 

image. For the Caltech dataset a pedestrian of 50 pixels 

height corresponds to a pedestrian at a distance of 

approximately 40 meters from the camera. The sum of the 

boosting classification costs from each classifier cascade is 

used as confidence for the classification of each bounding 

box. Usually there are multiple overlapping detections 

around pedestrians and therefore we apply non-maximum 

suppression to solve this issue. We use the greedy 

approach proposed in [10]. The main idea is that for any 

two bounding boxes that overlap each other significantly 

only the one with higher confidence is retained. We set 0.6 

as the overlap threshold which represents the ratio between 

the intersection and the union of the bounding box areas. 

Figure 5 illustrates the iterative outputs of the cascade 

classifiers for a test image from the INRIA dataset. 

5. Evaluation 

In order to evaluate the performance of the proposed 

approach we use the Caltech and INRIA pedestrian 

detection benchmarks. A different classifier model was 

trained for each benchmark using the provided 

corresponding training datasets. The two widely used 

metrics for detection quality are miss rate and precision 

rate measured in false positives per image. There is a 

tradeoff between miss rate and precision. This tradeoff can 

be controlled by applying higher or lower thresholds over 

the detection confidences. The easiest way to represent the 

detection performance of an approach is by using ROC 

curves. Dollar et al. made available on the Caltech 

Pedestrian Detection Benchmark webpage
1
 the detection 

results of each method evaluated in [12]. The set of 

 
1 http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/ 

Figure 6: Benchmark results for different test scenarios. 

(a) Caltech - reasonable (b) Caltech - large scale (c) Caltech – medium scale 

(d) Caltech - partial occlusion (e) Caltech - no occlusion (f) INRIA 
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approaches was updated with newer state of art methods 

that appeared since. We present a comparison between our 

method and the current top 12 approaches on both 

benchmarks that include VeryFast [3], Roerei [4], ChnFtr 

[10], FPDW [11], CrossTalk [13], MOCO [5], DBN [23], 

MultiRes [24], ACF+SDt [25], MultiFtr [31], FeatSynth 

[2], SketchTokens [21], ConvNet [27], LatSvm [16],  MLS 

[22] and MT-DPM [32]. We add also the HOG [8] and VJ 

[29] approaches which provided the basis for most of the 

current approaches. 

5.1. Detection performance 

Figure 6 compares our approach with the current state of 

the art on the Caltech benchmark for multiple test 

scenarios [12], with different scale and occlusion settings. 

The approaches are ordered according to the log-average 

miss rate for the precision range of 10
-2

 to 10
0
 false 

positives per image. Our approach compares well with the 

current state of art. Using only the visual word based 

classification features inside the detection window, it 

outperformed multiple methods that used pedestrian 

context, part based models or motion information. The 

MT-DPM approach obtained better performances for 

reasonable pedestrians by using multiresolution 

deformable part models and similarly MT-DPM+context 

which is an extension that uses a car detector for 

eliminating false positives. For partially occluded 

pedestrians only one method performed better that was 

using also motion information. Figure 7 presents examples 

of detection results for Caltech evaluation images. 

 The INRIA benchmark is more challenging for our 

detector, because the context of pedestrians is more varied 

than for the Caltech benchmark with only urban traffic 

scenarios. Because of the heterogeneity of scenes captured 

in the INRIA dataset, in comparison to vehicle video 

sequences, it is difficult to guarantee that each pedestrian 

scale is sufficiently covered in the training database.  

The images have various sizes and therefore we resize 

them to a maximum dimension of 640 for width and height 

while maintaining the original aspect ratio. We used the 

same minimum sliding window size, scale factor and 

window step as for the Caltech benchmark (specified in 

Section 4.3). Figure 6 illustrates the performance of our 

detector when compared to other top performing methods 

on the INRIA benchmark. Our approach obtained good   

miss rate in comparison with the state of the art methods.  
 

5.2. Computational costs 

The average execution times for 640x480 images using 

a GPU implementation on an Nvidia 780 GTX graphics 

card are given below: 

 Pixel-wise local descriptor computation: 4 ms 

 Codebook matching: 8 ms 

 Integral image computation: 11 ms 

 Classification of each bounding box: 39 ms 

 Total detection time: 62 ms 

Over 400 000 bounding boxes are classified in 39 ms, i.e. 

a rate of over 10 million classifications per second. A 

bounding box is classified using up to a few thousand 

decision stumps over classification features that can be 

computed in O(1) from integral images. Each bounding 

box is classified on an individual GPU thread. 128 

decision stumps are evaluated at a time and this way the 

weak classifier models can be easily stored in the 48 KB 

fast shared GPU memory. 

The whole detection process achieves a rate of around 

16 FPS. From the current top performing approaches only 

the VeryFast and Crosstalk approaches achieve faster 

classification rates, but at lower detection accuracies. The 

speed of the detection process can be further optimized by: 

 reducing the dimensionality of the descriptors 

using principal component analysis 

 using soft cascades [33] for each of the boosting 

classifiers in the detection cascade 

 reducing the search space for pedestrians. 

 Training the classification cascade is also time efficient. 

The total training time for the Caltech dataset was around 

30 minutes. The time for training all of the boosting 

classifiers from the cascade for the Caltech dataset was 

around 5 minutes, using a multithreaded CPU 

implementation on an Intel Core i7-2770k processor. The 

most time consuming tasks are classification feature 

precomputation and reevaluation of the classifier cascade. 

Figure 7: Pedestrian detection results on images from the Caltech evaluation set. 
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6. Conclusions 

The main contribution of this paper is a new recognition 

approach based on single image size, single scale image 

features and a single classifier for all sliding window 

scales. This achievement was possible due to the higher 

discrimination power of the word channel based features 

and due to the scale independent behavior of the 

normalized features. The classifier was trained with images 

of pedestrians of various sizes using their original scale 

and with different types of hard negatives sets. 

The current processing performance is of 16 frames per 

second and it is achieved by a GPU based implementation. 

The achieved results of the proposed pedestrian 

classification method are on the same level with the state 

of the art methods. The performances in detection 

accuracies and processing time on different benchmarks, 

without using motion information, pedestrian context, 

multiple feature scales or multiple classifier models 

highlight the power of the WordChannel features and the 

great potential for further improvements of the proposed 

approach. 

Amongst future improvements are the design of more 

efficient codebooks with reduced, but more relevant words 

based on a better evaluation of each channel contribution, 

the inclusion of the pedestrian context information and the 

reduction of the search space. 
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