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Abstract

In this paper, we cast the problem of point cloud match-
ing as a shape matching problem by transforming each of
the given point clouds into a shape representation called
the Schrödinger distance transform (SDT) representation.
This is achieved by solving a static Schrödinger equation
instead of the corresponding static Hamilton-Jacobi equa-
tion in this setting. The SDT representation is an ana-
lytic expression and following the theoretical physics liter-
ature, can be normalized to have unit L2 norm—making it
a square-root density, which is identified with a point on a
unit Hilbert sphere, whose intrinsic geometry is fully known.
The Fisher-Rao metric, a natural metric for the space of
densities leads to analytic expressions for the geodesic dis-
tance between points on this sphere. In this paper, we use
the well known Riemannian framework never before used
for point cloud matching, and present a novel matching
algorithm. We pose point set matching under rigid and
non-rigid transformations in this framework and solve for
the transformations using standard nonlinear optimization
techniques. Finally, to evaluate the performance of our
algorithm—dubbed SDTM—we present several synthetic
and real data examples along with extensive comparisons
to state-of-the-art techniques. The experiments show that
our algorithm outperforms state-of-the-art point set regis-
tration algorithms on many quantitative metrics.

1. Introduction

With the advent of new sensing technologies such as the
Kinect, fast laser scanners etc., sensing 3D objects to build
models and print them is becoming popular. It is not impos-
sible to envision scanning faces in 3D using fast scanners
from vantage points, manipulating them in 3D and print-
ing them for possible display as mantle pieces in homes.
The problem of matching point clouds in 3D is an often
encountered problem in the aforementioned applications.

Similar scenerios arise in 2D when matching feature point
clouds sampled from 2D shapes. Within shape matching,
two dominant trends have emerged in the past decade—
the use of point-set density function representations on the
one hand and the deployment of distance transforms (and
level sets) for sets of curves embedded in Euclidean space
on the other. Recently, the two representations have seen
a rapprochement of a certain kind with the development of
the Schrödinger distance transform (SDT) [14] —a wave
function representation of a point-set with simultaneous
and strong relationships to both density functions and dis-
tance transforms. In this work, the SDT wave function is
a square-root density shape representation derived from the
given point-clouds since it has a unit norm, thereby enabling
the identification of the shape distance with the geodesic
length (shortest path) between two shapes situated on the
unit Hilbert sphere. This attractive and straightforward geo-
metric metaphor fuels our approach to non-rigid shape and
hence point cloud matching. Essentially, after placing both
the model and scene point sets represented by the respective
SDTs (with unit L2-norm) on the unit Hilbert sphere, we
perform shape matching by minimizing the geodesic dis-
tance between a scene and a model (known in closed form
on the unit Hilbert sphere) which is transformed via the ac-
tion of a regularized warp. Note that knowing the Rieman-
nian geometry of the unit Hilbert sphere fully affords sig-
nificant computational advantages, hitherto never realized
in the context of point cloud matching in published liter-
ature. Shape location “jitter” (due to noise etc.) is built
in through the use of an uncertainty parameter in the SDT.
The geodesic distance between two shapes placed on the
unit Hilbert sphere is computed in closed form as a func-
tion of the (warped) model and scene locations. Standard
nonlinear optimization approaches are then utilized to min-
imize this objective function. The result, as shown in this
paper, is a state of the art point cloud matching method—
dubbed SDTM—which outperforms competing methods in
matching metrics.

Many previous approaches to shape matching formulate
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the problem as point pattern matching wherein one simulta-
neously solves for the correspondence and shape deforma-
tion. Of these methods, the venerable Iterative Closest Point
(ICP) method [2] by Besl et al. uses the nearest neighbor to
assign correspondence. Granger et al. [7] formulate point
set registration as a maximum likelihood problem by as-
suming that the posterior probability of the scene data con-
ditioned on the model data is uniformly distributed with the
correspondence information as the prior. Eschewing ICP,
Chui and Rangarajan’s Robust Point Matching (RPM) al-
gorithm in [5] sets up the correspondence problem as linear
assignment and solves for a soft correspondence and defor-
mation using an alternating algorithm. The Euclidean dis-
tance measure used in [2, 5, 7] is known to be vulnerable
to the outliers. Instead of using the Euclidean metric, Be-
longie et al. in [1] compute a histogram based on the local
structure information at each point called the ”shape con-
text”. This adds attribute information to the correspondence
engine—based on a linear assignment. Another popular ap-
proach to point set matching/registration involves formulat-
ing the registration problem as a graph matching problem.
In [4, 11], graph matching is used to find the point corre-
spondences and the performance depends on the structural
topology estimated from the point set. Glaunes et al. [6] re-
write the square integrable norm which is used to evaluate
the similarity between two point sets as a linear combina-
tion of kernel functions. This work was extended in [17]
using distribution field representations of surfaces, regis-
tered using diffeomorphic non-rigid transformations. The
Coherent Point Drift (CPD) method [13] assumes that the
warped model is sampled from a Gaussian mixture model
with the scene data as the mean vector. This method works
under the condition that the model data set is dense and the
scene data set is sparse; otherwise, it is prone to failure.
In [10, 18], the authors formulate the registration problem
as a graph matching problem solved using relaxation label-
ing. In the former, a binary compatibility coefficient is used
while the latter relaxes it to a “soft” non-binary compati-
bility. Jian and Vemuri [8] proposed a method wherein the
L2 distance between two Gaussian mixture representations
of the point sets being matched was used to obtain the de-
formation, without needing to solve for the correspondence.
The kernel correlation method of Tsin and Kanade [15] as
well as other methods described in [2, 13] are special cases
of the formulation in [8]. Recent work in [12] assumes a
normal distribution for the noise between the warped model
and the scene and uses the same L2E estimator as in [8] to
optimize the deformation parameters. The correspondence
between the model and the scene is calculated iteratively
from the shape context feature.

Prior to delving into the details, we now present the or-
ganization of the paper: in section 2, we recap the develop-
ment of the Schrödinger distance transform (SDT) applied

to point sets and obtain the closed form expression for the
SDT. The geodesic distance measure between two SDTs is
introduced and the matching problem is expressed as a non-
linear optimization problem. In section 3, an analytic ex-
pression of the geodesic distance measure is derived which
is crucial to the optimization. In Section 4, we provide im-
plementation details and validate our algorithm by compar-
ing its performance with three state-of-the-art algorithms.
We summarize the present work and discuss future plans in
Section 5.

2. A Riemannian framework for matching two
point clouds represented by SDTs

In this section, we first briefly recap the development
leading to the Schrödinger Distance Transform (SDT).
Then, we present closed-form expressions for the square-
root density representation of a point-cloud which leads to
the analytic expressions for the geodesic distance between
the SDTs of the two point clouds in the Riemannian frame-
work, in the following section. Subsequently, we present
the shape matching objective function.

2.1. The Schrödinger Distance Transform (SDT) for
point­sets

Given a point set {xi ∈ R2, i = 1, 2, . . . ,M}, the un-
signed Euclidean distance transform is defined as S(x) =
min{xi} ∥x−xi∥, x ∈ R2. In this (Voronoi) representation,
the zero level set of S(x) is the set of Voronoi cell centers,
while in general, the zero level-set represents the boundary
of the shape from which the point-set has been sampled.
The gradient of the distance transform S(x) satisfies the
following static Hamilton-Jacobi equation: ∥∇S(x)∥ = 1
every where (except at the Voronoi centers where S(x) = 0
and at the Voronoi boundaries). The static Schrödinger
equation

− τ2∇2ψ(x) + ψ(x) = ψ0(x) (1)

with an uncertainty parameter τ can approximate the above
static Hamilton-Jacobi equation producing the exact dis-
tance transform as τ → 0. The field ψ0(x) in (1) is highly
peaked at the point-set locations. For positive values of τ ,
the zero level-set obtained from (1) is no longer the set of
Voronoi cells and can more closely approximate the shape
boundaries (and this depends on the interplay between τ and
ψ0(x)). When we constrain ψ(x) to have unit L2 norm, the
mapping from the distance transform S(x) to a square root
density is complete.

For the simple case where ψ0(x) behaves approximately
like a set of square-root “delta functions” centered on the
point-set locations, the static Schrödinger equation can be



solved in closed-form yielding (in 2D and in 3D)

ψ(x) ≈ c
M∑
k=1

exp

{
−∥x− xk∥

τ

}
(2)

where c is chosen to ensure that ψ(x) has unit norm. Note
that ψ(x) is not a Gaussian mixture model where the ex-
ponent is the square of L2 distance, instead, it is a square
root density with the Euclidean distance in the exponent.
As previously mentioned, the square root density ψ(x) is
a point located on a unit sphere in the Hilbert space. In
this representation, two different shapes become two dis-
tinct points on the unit sphere with the geodesic length be-
ing the shortest path between them. The cornerstone of the
shape matching work presented here is the assumption that
minimizing the geodesic length under a suitable (regular-
ized) non-rigid transformation brings the two shapes into
correspondence. Once this is established, we envisage ex-
tensions to the groupwise setting with applications in atlas-
guided segmentation.

2.2. The geodesic distance measure

The distance measure, a geodesic length, is (luckily for
us) conceptually simple, analytically elegant and straight-
forward to derive. The Riemannian geometry of the unit
Hilbert sphere is well known, the Log and Exp maps as
well as the geodesic distance between two points on the unit
Hilbert sphere are all in closed form. For the sake of space,
we simply provide the equations for the geodesic distance
on the sphere and refer the reader to [9] for other formulae
which are not used here. The geodesic distance between a
pair of SDT-derived square-root shape densities is the arc
length of the (shorter) segment of a great circle with the
two shapes as the end points of the segment. Formally, the
geodesic distance between two SDTs ψ1 and ψ2 can be ex-
pressed as

dist(ψ1, ψ2) = ∥ logψ1
(ψ2)∥ψ1 = cos−1⟨ψ1, ψ2⟩ (3)

where the Fisher-Rao metric ⟨ψ1, ψ2⟩ is defined as∫
Ω
ψ1(x)ψ2(x)dx. Note that this distance on the unit

Hilbert sphere for square root density representations has
been widely used in the past for various tasks including
shape matching but never for point cloud matching.

2.3. The SDTM objective function

Using the geodesic length given in the last section, the
point-set registration problem can be formulated as follow-
ing: given the model data set M and the scene data set S,
we seek optimal transformation parameters ŵ which mini-
mize the geodesic distance between the square root density
of the warped model T (M,w) and the square root density
of the scene data set. Thus, the cost function becomes

ŵ = argmin
w

dist(ψ(T (M,w)), ψ(S)) (4)

Despite the dependence of the warped point-set on the shape
deformation, the square root density of the warped data set
T (M,w) can be written such that ψ(T (M,w)) remains a
point on the unit Hilbert sphere. Since all normalized square
root densities of the warped model and scene are always sit-
uated on the unit Hilbert sphere, the optimization follows a
path on the sphere allowing us to find a close to optimal de-
formation ŵ (depending on the optimization details). In the
process, the geodesic distance between ψ(T (M,w)) and
ψ(S) is minimized while ensuring that the deformation is
appropriately regularized.

We use thin-plate splines (TPS) to model the underly-
ing non-rigid transformation and provide a brief description
of the same here. Given a control point set X = {xk ∈
RD}, k = 1, . . . ,K, the non-rigid mapping is defined as
T (X,w) = Xd+

∑K
k=1 ϕ(x− xk)uk, w = {d, u}, where

d is modeled as the affine part and u is a matrix with a D
dimensional vector uk as each row. The parameter ma-
trix u corresponds to the non-affine aspect of the defor-
mation (containing local bending and stretching). In ad-
dition to minimizing the geodesic length, we add the reg-
ularization (smoothness) term λ trace[uTΦu] to the origi-
nal cost function. In practice, the re-parametrization de-
scribed in [5] is required to guarantee that the smoothness
term is non-negative definite. In order to avoid non-physical
mappings caused by an inappropriate choice of λ, we mod-
ify the smoothness term to the Bregman divergence [3]
λ trace[(u − uo)

TΦ(u − uo)] where uo is typically iden-
tified with the non-affine TPS parameters from the previous
Bregman epoch and this goes to zero when w converges.
The final cost function used in our approach is

ŵ = argmin
w

{ dist(ψ(T (M,w)), ψ(S))+

λ trace[(u− uo)
TΦ(u− uo)]}

(5)

3. The geodesic distance expression

To optimize the cost function 5, a numerical approxima-
tion of the Fisher-Rao metric is not necessary. An analytic
expression for the geodesic can be obtained which is crucial
for gradient-based optimization. Before we can obtain the
closed form expression for the geodesic length, we have to
engage in some housekeeping. We first have to obtain the
normalization term for a square-root SDT density so that it
has unit norm:∫

Ω

(ψ(x))
2
dx = c

∫
Ω

(∑
k

exp

{
−∥x− xk∥

τ

})2

dx = 1

(6)
The normalization constant expression will depend on the
dimensionality of the point-sets. We first work this out in
2D using Parseval’s theorem and 2D circularly symmetric
Fourier transforms. The Fourier transform of the integrand



in (2) is

exp

{
−∥x− xk∥

τ

}
F−→

2π 1
τ

(4π2q2 + 1
τ2 )

3
2

exp {−i2π⟨ν, xk⟩}

(7)
where ν is the 2D spatial frequency with magnitude
q. Using Parseval’s theorem,

∫
Ω
ψ1(x)ψ

∗
2(x)dx =∫

Ω
Ψ1(ν)Ψ

∗
2(ν)dν, we can rewrite (6) as

c
∑
k

∑
l

∫
Ω

4π2 1
τ2

(4π2q2+ 1
τ2 )3

exp {−i2π⟨ν, xk − xl⟩} dν.
(8)

The integral in (8) can be identified as a Hankel transform.
Using standard Hankel transform pairs, we finally obtain
the normalization

c =
∑
k,l|k ̸=l

π

4
r2klK2(

rkl
τ
) +M

πh2

2
(9)

where rkl = ∥xk − xl∥2 and M is the cardinality of the
point-set.

While we seem to have spent an inordinate amount of
time deriving a constant c which makes ψ have unit norm,
the calculations above actually help set up the analytic
geodesic distance expression we seek. Using techniques
(Parseval’s theorem, Hankel transforms) similar to those
above, the inner product between two SDTs ψ1(x) and
ψ2(x) can be expressed as

⟨ψ1(x), ψ2(x)⟩ =
∫
Ω
ψ1(x)ψ2(x)dx

=
∫
Ω
Ψ1(ν)Ψ

∗
2(ν)dν = 1√

c1c2

∑
k

∑
l Φ2(rkl; τ)

(10)

where

Φ2(r; τ)
def
=

{ π
4 r

2K2(
r
τ ), r > 0

πh2

2 , r = 0.
(11)

In (10), Ψ1(2)(ν) is the 2D Fourier transform of the SDT
ψ1(2)(x) and c1, c2 are the normalization constants for
ψ1(x), ψ2(x). Given the inner product (in 2D) between two
SDTs, we obtain an analytic expression for the geodesic
length in (3).

The geodesic distance between two point-sets in 3D can
be derived in a similar manner. While some techniques such
as Parseval’s theorem remain the same, other methods such
as the Hankel transform have to be replaced by their 3D
counterparts. We omit the calculations which are somewhat
ponderous (but straightforward) and merely give the final
expression for the inner product between two SDTs ψ1(x)
and ψ2(x) in 3D:

⟨ψ1(x), ψ2(x)⟩ =
1

√
c1c2

∑
k

∑
l

Φ3(rkl; τ) (12)

where

Φ3(r; τ)
def
=

{ √
2πh
3 K 5

2
( rh )r

5
2 , r > 0

πh3

3 , r = 0.
(13)

The normalization constants c1, c2 here are derived in a
manner similar to their 2D siblings.

Now we can use equations (10), (12) as the analytic ex-
pressions of the Fisher-Rao metric between two square root
densities and the geodesic is merely the inverse cosine of
the Fisher-Rao metric. The analytic gradient of the objec-
tive function can be easily derived using the relationship
∂xνKνx
∂(x) = −xνKν−1(x). We omit the turgid details here.

4. Optimization Approach
Since the objective function—the geodesic length be-

tween two SDTs with a deformation regularization—has
well specified analytic expressions, we may use any avail-
able gradient-based nonlinear optimization approach for de-
termining a suitable non-rigid shape deformation. After
examining available options, we selected the commercial
KNITRO R⃝ package [16] which is very suitable for this
problem. Within KNITRO R⃝, we selected the dense quasi-
Newton Broyden Fletcher Goldfarb Shanno (BFGS) ap-
proach and in all cases, we terminated the BFGS algorithm
after 2000 iterations.

We have not yet mentioned a principled approach to se-
lect the two free parameters—λ and τ—in SDTM. The
usual approach is cross-validation on a training set followed
by testing the generalization performance on a test set. We
plan to pursue this aspect of SDTM in the future.

5. Experimental Results
In this section, we present experimental results using

our approach—SDTM—on several synthetic and real data
sets. We conducted extensive validations against three state-
of-the-art point-cloud matching algorithms: Gaussian mix-
ture model-based registration (gmmreg) [8], coherent point
drift (CPD) [13], and robust point matching-local neigh-
borhood structures (RPM-LNS) [18]. We were unable to
get the code for the topology preserving relaxation label-
ing (TPRL) algorithm [10] and hence could not use it in
our comparisons. We used “Recall”, a widely used measure
in the point cloud matching field [8], to gauge the perfor-
mance. “Recall” is defined as the ratio of true-positive cor-
respondences to the cardinality of the model data within a
pre-specified tolerance.

5.1. Rigid Registration

Thirty different shapes from GatorBait 1001 are used as
models for rigid registration. For each model set, we gen-
erate the scene data by applying different rotations (to the
model set) in the range [−π

2 ,
π
2 ] and then use these data as

input to gmmreg, CPD and SDTM respectively. The re-
sults show that our algorithm and gmmreg recover 100%

1This dataset is available at
http://www.cise.ufl.edu/˜anand/GatorBait_100.tgz.
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Figure 1. “Recall” for the non-rigid registration algorithms on the
fish shape pairs with various degrees of deformation, noise, out-
liers and occlusion ratios. Legend in (b) is for all four sub-figures.
Note that higher the value of “Recall”, better is the method’s per-
formance.

correspondence while CPD converges only for rotations in
the range (in radians) [−1.25, 1.24].

5.2. Non­rigid Registration

5.2.1 Experiments on Synthetic Data

Next, we conducted experiments on a 2D fish shape dataset
subject to various degrees of deformation, noise, outliers,
and occlusion. Fifty fish shapes are used to generate the
test cases. The model data set contains 98 points. Twelve
points are used as control points for the thin-plate spline in
our method while 25 points are used in gmmreg as sug-
gested by the authors. As for CPD and RPM-LNS, the en-
tire model set is used as controls for the deformation exactly
as was recommended by the authors. Performance accu-
racy, in terms of the “Recall” measure defined earlier for a
tolerance threshold of 0.01, of each of the aforementioned
algorithms is depicted in Figure 1. Error bars are also de-
picted for each method for varying levels of deformation,
noise, outliers and occlusion. As evident, SDTM performs
either better or almost the same as the best among the com-
petitors.

For each fish dataset, five deformation levels are applied
to build the scene data. Our method—SDTM—recovers
more than 85% of the correspondences at all the deforma-
tion levels, as shown in Figure 1. SDTM clearly performs
the best (compared to the other methods) in this scenario
and outperforms gmmreg (the overall second best results)
by 18% in the largest deformation case.

Next, five levels of Gaussian noise with standard devia-
tion σ from 0.01 to 0.05 are used to create the noise cor-
rupted scene data. SDTM outperforms other methods at
low and medium noise levels (σ = 0.01, 0.02, 0.03) and
achieves a similar performance to the RPM-LNS method at
high noise levels (σ = 0.04, 0.05).

To test the case of data with outliers, we added
0%, 50%, 100%, 150% and 200% outliers to the scene data
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Figure 2. Performance accuracy using the “Recall” measure for
non-rigid registration algorithms on the CMU House Sequence
(left) and the 3D swagger motion data (right). Legend in (a) is
for both sub-figures.

from the moderate deformation case to create the scene data
with outliers. The non-rigid registration results in the out-
lier setting are shown next at the bottom left of Figure 1. As
evident, SDTM has the best mean performance compared
with the other methods but does show more variability at
larger outlier ratios. SDTM outperforms the results from
the overall second best method (RPM-LNS) by 55% on the
average among cases with varying degree of outliers.

Next, we randomly remove 5%, 10%, 15% and 20%
points in the scene data to simulate the case of missing data.
The results from application of different algorithms to this
type of data are presented at bottom right of Figure 1. Note
that SDTM recovers almost 100% of the correspondence in
all the cases with lowest variability in comparison to the
competition.

5.2.2 Experiments on Real Data

We conducted further quantitative evaluation on SDTM us-
ing the CMU house sequence which contains 111 images of
a toy house captured from moving viewpoints. Thirty points
are chosen in each image with known correspondence. The
registration algorithms are applied on image pairs spaced by
20, 40, 60, 80, 100 frames respectively. The results shown
on the left of Figure 2 depict performance accuracy plot
for the 11 image pairs, using the “Recall” measure with
a threshold of 0.03. SDTM shows the best performance
in most scenarios excluding the case where the images are
spaced by 100 frames while another state of the art method
RPM-LNS fails to work on this data set.

We also tested SDTM on a 3D data set—the ”swagger”
motion capture data from the Advanced Computing Cen-
ter for the Arts and Design at Ohio State University. Forty
two markers are reported in 581 frames. The experiments
are conducted on 30 data pairs on frames separated by 50,
100, 150, and 200 frames respectively. The comparison re-
sults with gmmreg and CPD for which 3D code is available
are shown on the right of Figure 2. SDTM yields the best
mean value with large variability when the data is spaced by
100, 150, and 200 frames respectively, and gmmreg gives
similar mean value with small variability in the first case.
Overall, our algorithm outperforms the other state of art al-
gorithms in most scenarios. The results suggest that our
method can be applied to broad settings and achieves good



performance.

6. Summary and Discussion

We motivated this paper at the start with the observa-
tion that previous work in the theoretical physics literature
allows us to transition from Hamilton-Jacobi scalar fields
to Schrödinger distance transforms (SDTs) which have unit
L2 norm. This identification permits us to treat Schrödinger
distance transforms as square-root densities. Based on this
identification, we represented point-sets as square-root den-
sities with the geometry allowing us to place them at unique
locations on a unit Hilbert sphere. The problem of de-
formable shape matching requires us to construct a distance
measure between shapes which when minimized brings the
point-sets into correspondence. The unit Hilbert sphere ge-
ometry naturally leads to a geodesic length minimization
principle. Furthermore, the form of the Schrödinger wave
function enables the geodesic length to be expressed (using
Parseval’s theorem and the Fourier transform) as a compact
analytic expression. Nonlinear optimization of the geodesic
length under the action of regularized spline-based defor-
mations completes the picture. The result is SDTM, a novel
method which is a contender for the state of the art point-
set matching when evaluated against many quantitative met-
rics.

Possible directions for future work follow from the tech-
nical underpinnings of the present work and the empirical
studies conducted. We have used a real-valued Schrödinger
wave function—a fundamental limitation of the present
work. In physics, the phase of the wave function is con-
nected to the action whereas the magnitude is related to
a probability density function. This clearly suggests that
we can embed topology information in the phase of the
wave function while continuing to represent point-set lo-
cation information in the magnitude—an exciting direction
for future work. More mundane extensions—shape atlases
and dictionaries for example—represent low hanging fruit
which can be immediately procured. Finally, we can im-
pose constraints on the optimization path which may lead
to intermediate points retaining semantic content.
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