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Abstract

We study the problem of human body configuration anal-
ysis, more specifically, human parsing and human pose es-
timation. These two tasks, i.e. identifying the semantic re-
gions and body joints respectively over the human body
image, are intrinsically highly correlated. However, pre-
vious works generally solve these two problems separately
or iteratively. In this work, we propose a unified frame-
work for simultaneous human parsing and pose estima-
tion based on semantic parts. By utilizing Parselets and
Mixture of Joint-Group Templates as the representations
for these semantic parts, we seamlessly formulate the hu-
man parsing and pose estimation problem jointly within a
unified framework via a tailored And-Or graph. A novel
Grid Layout Feature is then designed to effectively cap-
ture the spatial co-occurrence/occlusion information be-
tween/within the Parselets and MJGTs. Thus the mutually
complementary nature of these two tasks can be harnessed
to boost the performance of each other. The resultant uni-
fied model can be solved using the structure learning frame-
work in a principled way. Comprehensive evaluations on
two benchmark datasets for both tasks demonstrate the ef-
fectiveness of the proposed framework when compared with
the state-of-the-art methods.

1. Introduction
Human parsing (partitioning the human body into se-

mantic regions) and pose estimation (predicting the joint

positions) are two main topics of human body configura-

tion analysis. They have drawn much attention in the re-

cent years and serve as the basis for many high-level ap-

plications [1, 24, 5]. Despite their different focuses, these

two tasks are highly correlated and complementary. On

one hand, most works on pose estimation usually divide the

body into parts based on joint structure [24]. However, such

joint-based decomposition ignores the influence of clothes,

which may significantly change the appearance/shape of a

person. For example, it is hard for joint-based models to ac-

curately locate the knee positions of a person wearing long

dress as shown in Figure 1. In this case, the human parsing
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Figure 1. Motivations for unified human parsing and pose es-

timation. The images in top row show the scenario where pose

estimation [24] fails due to joints occluded by clothing (e.g., knee

covered by dress) while the human parsing works fine. The images

in bottom row show the scenario where human parsing [5] is not

accurate when body regions are crossed together (e.g., the inter-

section of the legs). Thus, the human parsing and pose estimation

may benefit each other, and more satisfactory results (the right col-

umn) can be achieved for both tasks using our unified framework.

results can provide valuable context information for locat-

ing the missing joints. On the other hand, human parsing

can be formulated as inference in a conditional random field

(CRF) [17, 5]. However, without top-down information

such as human pose, it is often intractable for CRF to dis-

tinguish ambiguous regions (e.g., the left shoe v.s. the right

shoe) using local cues as illustrated in Figure 1. Despite

the strong connection of these two tasks, the intrinsic con-

sistency between them has not been fully explored, which

hinders the two tasks from benefiting each other. Only very

recently, some works [23, 18] began to link these two tasks

with the strategy of performing parsing and pose estimation

sequentially or iteratively. While effective, this paradigm is

suboptimal, as errors in one task will propagate to the other.

In this work, we aim to seamlessly integrate human pars-

ing and pose estimation under a unified framework. To

this end, we first unify the basic elements for both tasks by

proposing the concept of “semantic part”. A semantic part

is either a region with contour (e.g., hair, face and skirt) re-
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lated to the parsing task, or a joint group (e.g., right arm

with wrist, elbow and shoulder joints) serving for pose es-

timation. For the representation of semantic regions, we

adopt the recently proposed Parselets [5]. Parselets are de-

fined as a group of segments which can be generally ob-

tained by low-level over-segmentation algorithms and bear

strong semantic meaning. Unlike the raw pixels used by tra-

ditional parsing methods [17], which are not directly com-

patible with the template based representation for pose esti-

mation, Parselets allow us to easily convert the human pars-

ing task into the structure learning problem as in pose es-

timation. For pose estimation, we employ joint groups in-

stead of single joints as basic elements since joints them-

selves are too fine-grained for effective interaction with

Parselets. We then represent each joint group as one Mix-

ture of Joint-Group Templates (MJGT), which can be re-

garded as a mixture of pictorial structure models defined on

the joints and their interpolated keypoints. This design en-

sures that the semantic region and joint group representation

of the semantic parts are at the similar level and thus can be

seamlessly connected together.

By utilizing Parselets and MJGTs as the semantic parts

representation, we propose a Hybrid Parsing Model (HPM)

for simultaneous human parsing and pose estimation. The

HPM is a tailored “And-Or” graph [25] built upon these

semantic parts, which encodes the hierarchical and re-

configurable composition of parts as well as the geo-

metric and compatibility constraints between parts. Fur-

thermore, we design a novel grid-based pairwise feature,

called Grid Layout Feature (GLF), to capture the spa-

tial co-occurrence/occlusion information between/within

the Parselets and MJGTs. The mutually complementary na-

ture of these two tasks can thus be harnessed to boost the

performance of each other. Joint learning and inference of

best configuration for both human parsing and pose related

parameters guarantee the overall performance. The major

contributions of this work include:
• We build a novel Hybrid Parsing Model for unified

human parsing and pose estimation. Unlike previous

works, we seamlessly integrate two tasks under a uni-

fied framework, which allows joint learning of human

parsing and pose estimation related parameters to guar-

antee the overall performance.
• We propose a novel Grid Layout Feature (GLF) to ef-

fectively model the geometry relation between seman-

tic parts in a unified way. The GLF not only models the

deformation as in the traditional framework but also

captures the spatial co-occurrence/occlusion informa-

tion of those semantic parts.
• HPM achieves the sate-of-the-art for both human pars-

ing and pose estimation on two public datasets, which

verifies the effectiveness of joint human parsing and

pose estimation, and thus well demonstrates the mutu-

ally complementary nature of both tasks.

2. Related Work

2.1. Human Pose Estimation
Human pose estimation has drawn much research atten-

tion during the past few years [1]. Due to the large variance

in viewpoint and body pose, most recent works utilize mix-

ture of models at a certain level [24, 14]. Similar to the

influential deformable part models [6], some methods [14]

treat the entire body as a mixture of templates. However,

since the number of plausible human poses is exponentially

large, the number of parameters that need to be estimated is

prohibitive without a large dataset or a part sharing mecha-

nism. Another approach [24] focuses on directly modeling

modes only at the part level. Although this approach has

combinatorial model richness, it usually lacks the ability to

reason about large pose structures at a time. To strike a bal-

ance between model richness and complexity, many works

begin to investigate the mixtures at the middle level in hi-

erarchical models, which have achieved promising perfor-

mance [4, 15, 16, 13]. As we aim to perform simultane-

ous human parsing and pose estimation, we tailor the above

techniques for the proposed HPM by utilizing the mixture

of joint-group templates as basic representation for body

joints.

2.2. Human Parsing
There exist several inconsistent definitions for human

parsing in literature. Some works [19, 21, 22] treat human

parsing as a synonym of human pose estimation. In this

paper, we follow the convention of scene parsing [12, 17]

and define human parsing as partitioning the human body

into semantic regions. Though human parsing plays an im-

portant role in many human-centric applications [3], it has

not been fully studied. Yamaguchi et al. [23] performed hu-

man pose estimation and attribute labeling sequentially for

clothing parsing. However, such sequential approaches may

fail to capture the correlations between human appearance

and structure, leading to unsatisfactory results. Dong et al.
proposed the concept of Parselets for direct human parsing

under the structure learning framework [5]. Recently, Torr

and Zisserman proposed an approach for joint human pose

estimation and body part labeling under the CRF frame-

work [18], which can be regarded as a continuation of the

theme of combining segmentation and human pose estima-

tion [11, 8, 20]. Due to the complexity of this model, the

optimization cannot be carried out directly and thus is con-

ducted by first generating a pool of pose candidates and then

determining the best pixel labeling within this restricted

set of candidates. Our method differs from previous ap-

proaches as we aim to solve human parsing and pose es-

timation simultaneously in a unified framework, which al-

lows joint learning of all parameters to guarantee the overall

performance.
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Figure 2. Illustration of the proposed Hybrid Parsing Model. The

hierarchical and reconfigurable composition of semantic parts are

encoded under the And-Or graph framework. The “P-Leaf” nodes

encode the region information for parsing while the “M-Leaf”

nodes capture the joint information for pose estimation. The pair-

wise connection between/within “P-Leaf”s and “M-Leaf” is mod-

elled through Grid Layout Feature (GLF). HPM can simultane-

ously perform parsing and pose estimation effectively.

3. Unified Human Parsing and Pose Estimation
In this section, we introduce the framework of the pro-

posed Hybrid Parsing Model and detail the key components.

3.1. Unified Framework
We first give some probabilistic motivations for our ap-

proach. Human parsing can be formally formulated as

a pixel labeling problem. Given an image I , the pars-

ing system should assign the label mask L ≡ {li} to

each pixel i, such as face or dress, from a pre-defined la-

bel set. Human pose estimation aims to predict the joint

positions X ≡ {xj}, which is a set of image coordi-

nates xj for body joints j. As human parsing and pose

estimation are intuitively strongly correlated, ideally one

would like to perform MAP estimation over joint distribu-

tion p(X,L|I). However, previous works either estimate

p(X|I) and p(L|I) separately [24] or estimate p(X|I) and

p(L|X, I) sequentially [23]. The first case obviously ig-

nores the strong correlation between joint positions X and

parsing label mask L. The second approach may also be

suboptimal, as errors in estimating X will propagate to L.

To overcome the limitations of previous approaches, we

propose the Hybrid Parsing Model (HPM) for unified hu-

man parsing and pose estimation by directly estimating

MAP over P (X,L|I). The proposed HPM uses Parselets

and Mixture of Joint-Group Templates (MJGT) as the se-

mantic part representation (which will be detailed in Sec-

tion 3.2) under the “And-Or” graph framework. This in-

stantiated “And-Or” graph encodes the hierarchical and re-

configurable composition of semantic parts as well as the

geometric and compatibility constraints between them. For-

mally, an HPM is represented as a graph G = (V,E)
where V is the set of nodes and E is the set of edges. The

edges are defined according to the parent-child relation and

“kids(ν)” denotes the children of node ν. Unlike the tradi-

tional And-Or graph, we define four basic types of nodes,

namely, “And”,“Or”, “P-Leaf” and “M-Leaf” nodes as de-

picted in Figure 2. Each “P-Leaf” node corresponds to one

type of Parselets encoding pixel-wise labeling information,

while each “M-Leaf” node represents one type of MJGTs

for joint localization. The graph topology is specified by

the switch variable t at “Or” nodes, which indicates the set

of active nodes V (t). V O(t), V A(t), V LP (t) and V LM (t)
represent the active “Or”, “And”, “P-Leaf” and “M-Leaf”

nodes, respectively. Starting from the top level, an active

“Or” node ν ∈ V O(t) selects a child tν ∈ kids(ν). P
represents the set of Parselet hypotheses in an image and z
denotes the state variables for the whole graph. We then de-

fine zkids(ν) = {zμ : μ ∈ kids(ν)} as the states of all the

child nodes of an “And” node ν ∈ V A and let ztν denote the

state of the selected child node of an “Or” node ν ∈ V O.

Based on the above representation, the conditional dis-

tribution on the state variable z and the data can then be

formulated as the following energy function (Gibbs distri-

bution):

E(I, z) =
∑

μ∈V O(t)

EO(zμ) +
∑

μ∈V A(t)

EA(zμ, zkids(μ))

+
∑

μ∈V LP (t)

ELP (I, zμ) + λ
∑

μ∈V LM (t)

ELM (I, zμ).
(1)

The “P-Leaf” component ELP (.) links the model with the

pixel-wise semantic labeling, while the ‘M-Leaf” compo-

nent ELM (.) models the contribution of keypoints. The

“And” component EA(.) captures the geometry interaction

among nodes. The final “Or” component EO(.) encodes the

prior distribution/compatibility of different parts. It is worth

noting that there exists pairwise connection at the bottom

level in our “And-Or” graph as shown in Figure 2. This

ensures that more sophisticated pairwise modeling can be

utilized to model the connection between/within “P-Leaf”

and “M-Leaf” nodes. We approach this by designing the

Grid Layout Feature (GLF). The detailed introduction of

each component and GLF are given below.

3.2. Representation for Semantic Parts
In this subsection, we give details of the representation

for the semantic parts. More specifically, we utilize Parse-

lets and Mixture of Joint-Group Templates (MJGT) as the

representation for regions and joint groups.

3.2.1 Region Representation with Parselets

Traditional CRF-based approaches for human parsing [8,

13] are inconsistent with structure learning approaches

widely used for pose estimation. To overcome this dif-

ficulty, we employ the recently proposed Parselets [5] as
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Joint Groups Exemplar mixture components of MJGT for the left arm 

Figure 3. The left image shows our joint-group definition (marked

as ellipses). Each group consist of several joints (marked as blue

dots) and their interpolated points (marked as green dots). We

represent each group as one Mixture of Joint-Group Templates

(MJGT). Some exemplar mixture components of the MJGT for

the right arm are shown on the right side.

building blocks for human parsing. In a nutshell, Parselets

are a group of semantic image segments with the following

characteristics: (1) can generally be obtained by low-level

over-segmentation algorithms; and (2) bear strong and con-

sistent semantic meanings. With a pool of Parselets, we can

convert the human parsing task into the structure learning

problem, which can thus be unified with pose estimation

under the “And-Or” graph framework.

As Parselet categorization can be viewed as a region

classification problem, we follow [5] by utilizing the state-

of-the-art classification pipelines [9, 2] for feature extrac-

tion. The parsing node score can then be calculated by

ELP (I, zμ) = wLP
μ · ΦLP (I, zμ),

where ΦLP (.) is the concatenation of appearance features

for the corresponding Parselet of node μ.

3.2.2 Mixture of Joint-Group Templates

The HoG template based structure learning approaches have

shown to be effective for human pose estimation [24, 13,

14]. Most of these approaches treat keypoints (joints) as

basic elements. However, joints are too fine-grained for ef-

fective interaction with Parselets. Since joints and Parse-

lets have no apparent one-to-one correspondence (e.g., knee

joints may be visible or be covered by pants, dress or skirt),

direct interaction between all joints (plus additional inter-

polated keypoints) and the Parselets is almost intractable.

Hence, we divide the common 14 joints for pose estima-

tion [24, 13] into 5 groups (i.e. left/right arm, left/right leg

and head), as shown in Figure 3. Each joint group is mod-

eled by one Mixture of Joint-Group Templates (MJGT).

MJGT can be regarded as a mixture of pictorial structure

models [7, 24] defined on the joints and interpolated key-

points (blue points and green points in Figure 3). We

choose MJGT defined on joint groups as the building block

for modeling human pose mainly for three reasons: (1)

there are much fewer joint groups than keypoints, which al-

lows more complicated interaction with Parselets; (2) with

the reduced complexity in each component brought by the

mixture models, we can employ the linear HoG template

+ spring deformation representation for pictorial structure

modeling [24, 14] to ensure the effectiveness of pose esti-

mation; and (3) each component of an MJGT can easily em-

bed mid-level status information (e.g., the average mask).

In practice, we set the number of mixtures as 32/16/16

for MJGT to handle the arms/legs/head group variance re-

spectively. The training data are split into different compo-

nents based on the clusters of the joint configurations. In

addition, an average mask is attached to each component of

MJGTs to unify the interaction between Parselet and MJGT,

which will be discussed in Section 3.3. The state of the in-

stantiated mask for a component of an MJGT is fully spec-

ified by the scale and the position of the root node.

For an MJGT model μ, we can now write the score func-

tion associated with a configuration of component m and

positions c as in [24, 14]:

Sμ(I, c,m)=bm+
∑
i∈Vμ

wμ,m
i · fi(I, ci)+

∑
(i,j)∈Eμ

wμ,m
(i,j)· fi,j(ci, cj),

where Vμ and Eμ are the node and edge set, respectively.

fi(I, ci) is the HoG feature extracted from pixel loca-

tion ci in image I and fi,j(ci, cj) is the relative location

([dx, dy, dx2, dy2]) of joint i with respect to j. Each M-

Leaf node can be seen as the wrapper of an MJGT model.

Hence the score of M-Leaf is equal to that of the corre-

sponding MJGT model. As the state variable zμ contains

the component and position information for M-Leaf node

μ, the final score can be written more compactly as follows:

ELM (I, zμ) = wLM
μ · ΦLM (I, zμ),

where ΦLM (.) is the concatenation of the HoG features and

the relative geometric features for all the components within

the joint group.

3.3. Pairwise Geometry Modeling
According to our “And-Or” graph construction, there ex-

ist three types of pairwise geometry relations in the HPM:

(1) Parselet-Parselet, (2) Parselet-MJGT, and (3) parent-

child in “And” nodes. Articulated geometry relation, such

as relative displacement and scale, is widely used in the pic-

torial structure models to capture the pairwise connection.

We follow this tradition to model the parent-child interac-

tion (3) as in [24]. However, the pairwise relation of (1)

and (2) is much more complex. For example, as shown in

Figure 4, the “coat” Parselet has been split into two parts

and its relation with the “upper clothes” Parselet can hardly

be accurately modeled by using only their relative center

positions and scales. Furthermore, as Parselets and MJGTs

essentially model the same person by different representa-

tions, a more precise constraint than the articulated geome-

try should be employed to ensure their consistency.

To overcome the above difficulties, we propose a Grid

Layout Feature (GLF) to model the pairwise geometry re-
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Figure 4. Grid Layout Feature (GLF): GLF measures the pixel spa-

tial distribution relation of two masks. To calculate GLF of mask

B with respect to mask A, the image is first divided into 12 spatial

bins based on the tight bounding box of A as shown in (b), which

includes 8 surrounding and 4 central bins. GLF consists of two

parts: (1) the ratio of pixels of mask B falling in the 12 bins , and

(2) the ratio of pixels of the interaction of mask A and B falling in

the 4 central bins as shown in (c).

lation between two nodes. More specially, as a region

mask can be derived from each Parselet or MJGT (the av-

erage mask is utilized for MJGTs), the relation between

two nodes can be measured by the pixel spatial distribu-

tion relation of their corresponding masks. As illustrated

in Figure 4, to measure the GLF of mask A with respect

to mask B, we first calculate the tight bounding box of A
and then divide the whole image into 12 spatial bins, de-

noted by Ri, i = 1, · · · , 12. The 12 spatial bins consist of

8 cells outside of the bounding box and 4 central bins in-

side it. We then count the pixels of mask B falling in each

bin (|B ∩ Ri|). Besides the spatial relation, we also model

the level of overlap between mask A and B, which has two

main functions, i.e. (1) to avoid the overlap between Parse-

lets and (2) to encourage the overlap between corresponding

Parselets and MJGTs. This is achieved by further counting

pixels of the insertion region between A and B in the four

central bins (|A∩B∩Ri|) as shown in Figure 4 (c). The re-

sultant 16 dimension feature is normalized by the total pixel

number of mask B (|B|). By swapping mask A and mask

B, we can get another complementary feature centered at

the mask B, which is then concatenated with the original

one to form the final 32 dimension sparse vector. Formally,

we define the Grid Layout Feature as follows:

PG(A,B) =

[ |B∩Ri|
|B| , i = 1, · · · , 12;

|A∩B∩Ri|
|B| , i = 9, · · · , 12

]
,

ψG(A,B) = [PG(A,B);PG(B,A)],

where ψG(A,B) is the GLF between mask A and B. With

GLF, the interaction between Parseles, such as “coat” and

“upper clothes”, can be effectively captured. Furthermore,

as each mixture component of an MJGT is attached with an

average mask, interaction (1) and (2) can be easily unified

with the help of GLF.

We can then write out the score of the “And” node,

whose child nodes consist of multiple Parselets/MJGTs, as

follows:

EA(zμ, zkids(μ))=
∑

ν∈kids(μ)

wA
μ,ν· ψ(μ, ν)+

∑
ω,υ∈kids(μ),(ω,υ)∈E

wA
ω,υ· ψG(ω, υ),

where ψG(ω, υ) is the GLF feature between Parselet/MJGT

ω and υ. ψ(μ, ν) = [dx dx2 dy dy2 ds]T is the articu-

lated geometry feature to measure the geometric difference

between part μ and ν, where dx = (xν − xμ)/
√
sν · sμ,

dy = (yν − yμ)/
√
sν · sμ and ds = sν/sμ are the relative

location and scale of part ν with respect to μ. As the hori-

zontal relations (Parselet-Parselet, Parselet-MJGT) only ex-

ist between the “Leaf” nodes under a common “And” node,

the GLF term will be removed for those “And” nodes not

connected to “Leaf” nodes. By concatenating all geometry

interaction features, the score can be written compactly as:

EA(zμ, zkids(μ)) = wA
μ · ΦA(zμ, zkids(μ)).

3.4. Summary
Finally, we summarize the proposed HPM model. For a

Parselet hypothesis with index i, its scale (the square root of

its area) and centroid can be directly calculated. The switch

variable t at “Or” nodes indicates the set of active nodes

V (t). The active “And”, “Or” and “M-Leaf” nodes have

the state variables gν = (sν , cν) which specify the (virtual)

scale and centroid of the nodes. The active “P-Leaf” nodes

ν ∈ V LP (t) have the state variables dν which specify the

index of the segments for Parselets, while the active “M-

Leaf” nodes ν ∈ V LM (t) have the state variables dν which

specify the active component index of the MJGTs. In sum-

mary, we specify the configuration of the graph by the states

z = {(tν , gν) : ν ∈ V O(t)}⋃{gν : ν ∈ V A(t)}⋃{dν :
ν ∈ V LP (t)}⋃{(dν , gν) : ν ∈ V LM (t)}. The full score

associated with a state variable z can now be written as:

S(I, z) =
∑

μ∈V O(t)

wO
μ,tμ+

∑
μ∈V A(t)

wA
μ · ΦA(zμ, zkids(μ))+

∑
μ∈V LP (t)

wLP
μ · ΦLP (I, zμ)+λ

∑
μ∈V LM (t)

wLM
μ · ΦLM (I, zμ),

(2)

where wO
μ,tμ measures priors of occurrence for different

parts and λ controls the relative weight of the pose and pars-

ing related terms.

4. Inference
The inference corresponds to maximizing S(I, z) from

Eqn. (2) over z. As our model follows the summarization

principle [26], it naturally leads to a dynamic programming

type algorithm that computes optimal part configurations

from bottom to up. As the horizontal relation only exists

between the “Leaf” nodes under a common “And” node,

if we have already calculated the states of all nodes in the

second layer, the following inference can be performed ef-

fectively on a tree due to the Markov property of our model.

In other words, if we regard all cliques containing an “And”

in the second layer and all its child “Leaf” nodes as super

nodes, the original model can be converted to a tree model.
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Hence, the maximization over positions and scales for upper

level nodes can be computed very efficiently using distance

transforms with linear complexity as in [6].

Since the cycles only exist in the first and second lay-

ers, the main computation cost for the proposed model lies

in passing the message from “Leaf” nodes to their par-

ent “And” node. However, there are only a limited num-

ber of “Leaf” nodes under each “And” node. Further-

more, with the filtering through appearance and spatial con-

straints, there are usually less than 30 hypotheses for each

type of Parselets. Hence, though there are cycles at the bot-

tom level, the algorithm is still reasonably fast.

5. Learning
We solve the unified human parsing and pose estima-

tion under the structural learning framework. We follow

the setting of [5] to perform the Parselet selection and train-

ing. As pose annotation contains no information about mix-

ture component labeling of joint-groups, we derive these la-

bels using k-means algorithm based on joint locations as

in [24, 14]. Though such assignment is derived heuristi-

cally, it is usually found that treating these labels as latent

variables will not improve the performance as these labels

tend not to change over iterations [24, 14]. We thus directly

use the cluster membership as the supervised definition of

mixture component labels for training examples.

As the scoring function of Eqn. (2) is linear in model pa-

rameters w = (wLP , wLM , wO, wA), it can be written com-

pactly as S(I, z) = w ·Φ(I, z). Then both pose and parsing

related parameters can be learned in a unified framework.

Thus we learn all the parameters simultaneously rather than

learning local subsets of the parameters independently or

iteratively to guarantee the overall performance. Given the

labeled examples {(Ii, zi)}, the structured learning problem

can be formulated in a max-margin framework as in [6]:

min
w

‖w‖2 + C
∑
i

ξi

s.t. w · (Φ(Ii, zi)− Φ(Ii, z)) ≥ Δ(zi, z)− ξi, ∀z,
(3)

where Δ(zi, zj) is a loss function which penalizes the in-

correct estimate of z. This loss function should give partial

credit to states which differ from the ground truth slightly,

and thus is defined based on [13, 5] as follows:

Δ(zi, zj) =
∑

ν∈V LP (ti)
⋃

V LP (tj)

δ(zνi , z
ν
j )+λ

∑
ν∈V LM (ti)

min(2∗PCP(zνi , zνj ), 1),

where δ(zνi , z
ν
j ) = 1, if ν /∈ V L(ti)

⋂
V L(tj) or

sim(dνi , d
ν
j ) ≤ σ. sim(·, ·) is the intersection over union

ratio of two segments dνi and dνj , and σ is the threshold,

which is set as 0.8 in the experiments. This loss term pe-

nalizes both configurations with “wrong” topology and leaf

nodes with wrong segments. The second term penalizes the

derivation from the correct poses, where PCP(zνi , z
ν
j ) is

the average PCP score [8] of all points in the correspond-

ing MJGT. The optimization problem Eqn. (3) is known as

a structural SVM, which can be efficiently solved by the

cutting plane solver of SVMStruct [10] and the stochastic

gradient descent solver in [6].

6. Experiments
6.1. Experimental Settings

Dataset: Simultaneous human parsing and pose estima-

tion requires annotation for both body joint positions and

pixel-wise semantic labeling. Traditional pose estimation

datasets, such as the Parse [24] and Buffy [8], are of in-

sufficient resolution and lack the pixel-wise semantic label-

ing. Hence we conduct the experiments on two recently

proposed human parsing datasets. The first one is the Fash-

ionista (FS) dataset [23], which has 685 annotated samples

with clothing labels and joint annotation. This dataset is

originally designed for fine-grained clothing parsing. To

adapt this dataset for human parsing, we merge their labels

according to the Parselet definition as in [5]. The second

Daily Photos (DP) dataset [5] contains 2500 high resolution

images. Due to its lack of pose information, we label the

common 14 joint positions in the same manner as in [23].

Evaluation Criteria: There exist several competing

evaluation protocols for human pose estimation through-

out the literature. We adopt the probability of a correct

pose (PCP) method described in [24], which appears to be

the most common variant. Unlike pose estimation, human

parsing is rarely studied and with no common evaluation

protocols. Here, we utilize two complementary metrics as

in [23, 5] to allow direct comparison with previous works.

The first one is Average Pixel Accuracy (APA) [23], which

is defined as the proportion of correctly labeled pixels in

the whole image. This metric mainly measures the over-

all performance over the entire image. Since most pixels

are background, APA is greatly affected by mislabeling a

large region of background pixels as body parts. The sec-

ond metric, Intersection over Union (IoU), is widely used

in evaluating segmentation and more suitable for measur-

ing the performance for each type of semantic regions. In

addition, the accuracy of labels for some parts, such as

“upper clothes” and “skirt” should be more important than

the accuracy for “scarf”, which seldom appears in images.

Hence, besides the “Average IoU” (aIoU), we also calculate

“Weighted IoU” (wIoU) which is calculated by accumulat-

ing each Parselet’s IoU score weighted by the ratio of its

pixels occupying the whole body.

Implementation Details: We use the same definition of

Parselets and settings for feature extraction as in [5]. The

dense SIFT, HoG and color moment are extracted as low-

level features for Parselets. The size of Gaussian Mixture

Model in FK is set to 128. For pose estimation, we fol-

low [24] by using the 5 × 5 HoG cells for each template.

The training : testing ratio is 2:1 for both datasets as in [5].

The penalty parameter C and relative weight λ are deter-
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Table 1. Comparison of human pose estimation PCP scores on FS and DP datasets.
method dataset torso ul leg ur leg ll leg lr leg ul arm ur arm ll arm lr arm head avg

[24] FS 100.0 94.2 93.0 90.9 90.1 86.5 85.2 62.3 61.9 99.2 86.3
[23] FS 99.6 94.1 95.1 89.6 91.9 85.8 86.9 62.1 63.6 99.3 86.8
raw MJGT FS 100.0 91.9 91.6 83.9 82.5 80.4 81.1 54.7 58.2 97.5 82.2
HPM FS 99.5 95.3 95.6 92.2 92.7 89.9 90.9 69.6 69.7 99.1 89.5
[24] DP 99.8 91.2 93.9 90.3 90.0 89.1 88.8 66.9 61.7 99.5 87.1
[23] DP 99.8 92.0 94.2 90.9 90.0 89.5 88.7 68.2 62.6 99.5 87.5
raw MJGT DP 99.8 90.0 92.3 89.0 88.7 85.6 85.7 60.4 48.0 99.6 83.9
HPM DP 99.8 95.5 96.4 93.3 92.7 92.4 91.7 72.8 69.3 99.7 90.4

mined by 3-fold cross validation over the training set.

6.2. Experimental Results
To the best of our knowledge, there are few works han-

dling human parsing and pose estimation simultaneously.

Hence, besides the recent representative approach [23],

which performs parsing and pose estimation iteratively, we

also compare the proposed method with the state-of-the-art

methods designed for each task separately.

Human Pose Estimation: For human pose estimation,

as the experiments are conducted on these two new datasets,

we only compare with several state-of-the-art methods with

publicly available codes for retraining [24, 23]. The com-

parison results are shown in Table 1. Method [23] utilizes

the results of [24] as initial estimation of pose for human

parsing. The parsing results are then fed back as additional

features to re-estimate the pose. However, the improve-

ment of [23] over [24] is marginal probably because of its

sequential optimization nature. As the error from initial

pose estimation results will propagate to parsing, it is dif-

ficult for the re-estimation step to rectify the initial pose re-

sults from error-propagated parsing results. On the contrary,

we perform human parsing and pose estimation simultane-

ously, which significantly improves the state-of-the-art per-

formance [24, 23]. We also evaluate the raw MJGT baseline

which only utilizes the MJGT representation and removes

the Parselet from the “And-Or” graph. The worse results

compared with the full HPM model verify the advantages

of joint parsing and pose estimation.

Figure 5 shows some qualitative comparison results. It

can be seen that all other methods fail in cases where joints

are occluded by clothing, e.g., wearing long dress or skirt.

By contrast, with the help of Parselets and the pairwise con-

straints brought by the GLF, the proposed method can still

obtain reasonable joint positions.

Human Parsing: For human parsing, we compare the

proposed framework with the works [23] and [5]. In terms

of APA, our method achieves 87% for FS dataset and 88%

for DP dataset, which are superior to 86% and 87% of the

current leading approach [5]. The improvement is not sig-

nificant as APA metric is dominated by the background.

Even naively assigning all segments as background results

in a reasonably good APA of 78% for DP and 77% for FS.

Therefore, the more discriminative IoU criterion is more

suitable to measure the real performance of each algorithm.

The detailed comparison results in terms of IoU are shown

in Table 2. It can be seen that our framework is consis-

tently better than other methods across different datasets

and metrics. This significant improvement mainly comes

from the complementary nature of two tasks and the strong

pairwise modeling, which verifies the effectiveness of our

unified parsing and pose estimation framework.

Some example human parsing results are shown in Fig-

ure 5. It can be observed that the sequential approach [23]

performs much worse than ours. This may be owing to the

errors propagated from the inaccurate pose estimation re-

sults as well as the lack of the ability to model the exclusive

relation of different labels, which usually leads to cluttered

results. Though this method can achieve much better per-

formance with the additional information about the type of

clothes in the target image as illustrated in [23], such in-

formation is usually difficult to obtain for real applications.

Our method also outperforms the baseline [5], which has

obvious artifacts for persons with joint crossed (e.g., legs

and foot). The lack of top-down information makes it dif-

ficult for the method [5] to distinguish the left shoe from

the right shoe. On the contrary, by jointly modeling hu-

man parsing and pose estimation, our model can achieve

reasonably good results for these cases. In addition, as the

method [5] does not explicitly model the overlap between

Parselets, the resultant Parselets may occlude each other se-

riously. For example, the “dress” Parselet is badly occluded

by the “coat” Parselet in the right-bottom image. With the

help of GLF, our unified model can effectively avoid the se-

vere overlap of Parselets and thus leads to more promising

results.

Finally, we want to emphasize that our goal is to explore

the intrinsic correlation between human parsing and pose

estimation. To achieve this, we propose the HPM which is

a unified model built upon the unified representation and the

novel pairwise geometry modeling. Separating our frame-

work into different components leads to inferior results as

demonstrated in Table 1 and 2. Though we use more an-

notations than methods for individual tasks, the promising

results of our framework verify that human parsing and pose

estimation are essentially complementary and thus perform-

ing two tasks simultaneously will boost the performance of

each other.

7. Conclusions and Future Work
In this paper, we present a unified framework for si-

multaneous human parsing and pose estimation, as well as

an effective feature to measure the pairwise geometric re-
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Table 2. Comparison of human parsing IoU scores on FS and DP datasets.
method dataset hat hair s-gls u-cloth coat f-cloth skirt pants belt l-shoe r-shoe face l-arm r-arm l-leg r-leg bag scarf aIoU wIoU

[23] FS 2.5 47.2 0.8 36.4 null 23.2 21.6 19.1 8.9 27.6 25.2 59.3 33.0 30.5 32.6 24.1 9.5 0.9 23.8 29.9
[5] FS 5.6 67.9 2.8 56.3 null 56.6 55.3 40.0 18.2 58.6 53.4 72.4 52.7 45.4 48.8 41.6 20.6 1.2 41.0 51.7

HPM FS 7.9 70.8 2.6 59.5 null 58.0 56.3 48.3 16.6 58.9 51.8 76.1 56.7 50.3 52.6 41.5 17.7 2.3 42.8 54.3
[23] DP 1.3 43.5 0.6 21.3 19.5 21.8 12.2 28.7 4.8 25.6 21.7 52.6 32.4 28.3 23.5 18.4 8.5 1.2 20.3 24.6
[5] DP 28.9 74.8 9.6 42.5 39.4 61.0 50.3 66.3 16.6 57.0 51.8 78.1 62.7 59.3 52.6 35.5 12.7 9.3 44.9 53.0

HPM DP 26.4 74.2 8.3 47.9 43.6 64.7 53.6 70.7 17.2 59.7 53.0 78.9 67.9 64.7 55.1 39.9 16.2 6.6 47.1 56.4

u-clothes 
background 

hat hair sunglasses 
face 

coat skirt pants dress belt l-shoe 
r-shoe l-leg r-leg l-arm r-arm bag scarf 

(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f) 

Figure 5. Comparison of human parsing and pose estimation results. (a) input image, (b) pose results from [24], (c) pose results from [23],

(d) parsing results from [23], (e) parsing results from [5], and (f) our HPM results are shown sequentially.

lation between two semantic parts. By utilizing Parselets

and Mixture of Deformable Templates as basic elements,

the proposed Hybrid Parsing Model allows joint learning

and inference of the best configuration for all parameters.

The proposed framework is evaluated on two benchmark

datasets with superior performance to the current state-of-

the-arts in both cases, which verifies the advantage of joint

human parsing and pose estimation. In the future, we plan

to further explore how to integrate the fine-grained attribute

analysis and extend the current framework to other object

categories with large pose variance.
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