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Abstract

A k-poselet is a deformable part model (DPM) with k
parts, where each of the parts is a poselet, aligned to a spe-
cific configuration of keypoints based on ground-truth anno-
tations. A separate template is used to learn the appearance
of each part. The parts are allowed to move with respect to
each other with a deformation cost that is learned at train-
ing time. This model is richer than both the traditional ver-
sion of poselets and DPMs. It enables a unified approach
to person detection and keypoint prediction which, barring
contemporaneous approaches based on CNN features [14],
achieves state-of-the-art keypoint prediction while main-
taining competitive detection performance.

1. Introduction

Our goal in this paper is to develop an effective compu-
tational approach to object recognition that supports detec-
tion and keypoint localization in a common framework. We
will show that this can be accomplished using a represen-
tation based on k-poselets. These are a proper generaliza-
tion of poselets (Bourdev & Malik [5]) in the same way that
in natural language processing bigrams and trigrams are a
generalization of unigrams. This generalization is based on
learned spatial relations between parts, as in the deformable
part models of Felzenszwalb et al. [10].

We start with some background. In the sliding window
paradigm for object detection, the deformable part model
(DPM) is the dominant method today, thanks to its consis-
tently impressive showing on the PASCAL VOC detection
challenge. Instead of training a single, monolithic HOG
detector [7], these models have a mixture of components,
and each component contains “parts” that can translate rela-
tive to the detection window at some deformation cost. The
flexibility introduced through these mechanisms enables the
detector to cope with changes in appearance due to intra-
category variation as well as pose. Both the part appear-
ance templates (which are HOG filters) and the deforma-
tion costs are jointly and discriminatively trained in the la-
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tent SVM formalism. The parts in the DPM framework are
discovered in an unsupervised manner, which is sufficient
for bounding box prediction, but does not lead to consistent
information for predicting keypoints. So for the stated ob-
jective of our paper—a common framework for object and
keypoint detection—DPMs fall short. Indeed, given that
DPM training does not make use of keypoint annotations,
it would be surprising if it could do a good job of keypoint
localization.

An alternative approach that does exploit keypoint an-
notations is based on poselets, where one uses similarity
in keypoint configurations to mine for semantically mean-
ingful discriminative parts. Random windows are sam-
pled from objects, and the keypoint configuration in each
sampled window is used to get similar windows. This
list of similar windows defines a training set for a sin-
gle HOG-based classifier, a poselet. A poselet’s training
set is associated with a consistent keypoint configuration
(unlike in DPM training), so by design when there is a
strong activation of a poselet in a test image, one can make
considerably tighter predictions that are useful for analyz-
ing attributes [4], segmenting objects [6], recognizing ac-
tions [19], and locating keypoints [17]. Results on vari-
ous benchmark tasks suggest that poselets are comparable
to DPMs for object detection (in spite of the extra supervi-
sion), though they perform better than DPMs for more fine-
grained tasks such as keypoint prediction. This suggests
that there must be room for improvement in the poselet-
based recognition pipeline.

One obvious location of sub-optimality in the poselet
pipeline is that each poselet is trained independently of the
others. Figure 1 illustrates this point. The images show ex-
amples of two different poselets indicated by blue and red
rectangles respectively. If we have a training set of posi-
tive examples corresponding to a visual pattern that is dis-
tinctive, and more or less rigid, like a front view of a face
(blue rectangles), then this approach works reasonably well.
However, suppose the training set of examples corresponds
to a part of a human arm (red rectangles), then the associ-
ated poselet will perform poorly. The local visual pattern is
just a pair of parallel lines, and we can find them all over
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Figure 1: Example of two different poselets shown in blue and
red, respectively. The blue (face) poselet would train well as a
single HOG template. The red (arm) poselet would fail to train
due to the non discriminative signal contained in it. Instead, us-
ing a 2-poselet will train both templates jointly and also learn the
deformation needed to capture the pose.

the background in natural images. But note that while the
arm poselet cannot be trained well as a single HOG tem-
plate, if we searched for it in the context of the face poselet,
the false positives would be considerably reduced. It is also
worth observing that the arm poselet is not in a fixed config-
uration with respect to the face poselet. If the relationship
was rigid we could train a monolithic HOG template that in-
cludes both the face and arm, but the relative shifts between
the face and arm preclude that.

This motivates the design of k-poselets. One can think of
a k-poselet as a DPM with k parts, where each of the parts
is aligned to a specific configuration of keypoints based on
ground-truth annotations. A separate HOG template will be
used to model the appearance model of each part (k HOG
templates total). The parts can move with respect to each
other with a deformation cost that is learned jointly with the
HOG templates. So this model is richer (if k > 1) than
traditional poselets because we now have more tolerance to
deformation than if we were using a single HOG template.
It is also richer than a single DPM component with multi-
ple parts because the extra supervisory information will en-
able a k-poselet to predict keypoint locations. Our parts are
aligned using keypoint annotations as done in the poselet
philosophy. The example in Figure 1 is a 2-poselet.

In this paper we will develop a k-poselet based frame-
work for person detection and keypoint prediction. As in
the standard poselet pipeline [3] we will train an ensemble
of k-poselet detectors. At test time, we cluster the activa-
tion of these detectors to generate people hypotheses. We
tie the activation of these different detectors using the hu-
man torso as a common reference—each detector can pro-
duce its best guess of the torso of the associated person, and
we can cluster all such activations whose torso predictions
are “close enough”. Given a person hypothesis (a cluster of
k-poselet activations), we can make multiple inferences: an
overall confidence score for the detection, a bounding box
that should encompass the visible extent of the person, and
a detailed keypoint pose estimate.

The experimental part of the paper seeks to compare
three models: DPMs, traditional poselets, and k-poselets.
This is a delicate task as both DPMs and poselets exist in
a “tweaked” form, and these tweaks can easily contribute
several percentage points in performance on benchmarks
(e.g., mean AP of DPM went up from 32.3 to 33.7 from
release 4 to release 5). In the case of poselets there is a
fair amount of complexity and the training code remains
unavailable. These factors have hindered the widespread
adoption of poselets as a tool for recognition.

We made two major changes to the poselet training pro-
cedure with respect to [3]. Instead of the Dalal-Triggs ver-
sion of HOG features used there, we use the HOG imple-
mentation from the DPM software release [10], thus mak-
ing the baseline template detector exactly the same. Sec-
ondly, [3] does context-specific rescoring of each poselet
score (from q to Q in their terminology). This is an O(n2)
step that adds considerably to the computational complex-
ity at runtime, for a relatively small gain, and therefore we
avoid doing it. There are also a few minor changes in-
spired by [9], which both clean up and simplify the train-
ing procedure. Code is available at http://www.cs.
berkeley.edu/˜bharath2/kposelets.html.

The paper is organized as follows. Section 2 describes
related work on person detection and keypoint prediction.
In Section 3 we describe how we collect and train k-
poselets. Section 4 describes how we use k-poselet detec-
tions to create and score person hypotheses. In Section 5
we state our results.

2. Related work
Person detection and keypoint localization are two tasks

that have progressed significantly the last few years. The
most relevant techniques from object detection, namely
poselets [3] and DPM [10], were discussed in Section 1.
In a related twist on DPMs, Azizpour and Laptev [2] pro-
pose to train them with manually specified part annotations,
but do not show results on person detection or pose esti-
mation. Until recently, techniques based on bottom-up re-
gion proposals [23] have not been competitive on the person
category. However, in contemporaneous work, Girshick et
al. [14] show large gains in person detection performance
by using CNNs to classify region proposals.

The task of keypoint localization has a long history of
research. Fischler and Elschlager [13] introduced pictorial
structure models (PSM) in 1973. Felzenszwalb and Hut-
tenlocher [11] later rephrased PSM under a probabilistic
framework and gave an efficient matching algorithm. In
PSM, the body parts are represented as boxes and their spa-
tial relations are captured by tree-structured graphs. Ra-
manan [21], Andriluka et al. [1] and Eichner et al. [8] ex-
ploited appearance cues to parse the human body. Johnson
and Everingham [18] replaced a single PSM with a mixture
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of PSMs in order to capture more variety in pose. Yang and
Ramanan [25] improved on PSM mixtures by using a mix-
ture of templates for each part. Sapp et al. [22] enhanced
the appearance models, including contour and segmenta-
tion cues. Wang et al. [24] used a hierarchy of poselets
for human parsing. Pishchulin et al. [20] used PSM with
poselets as parts for the task of human body pose estima-
tion. Gkioxari et al. [17] trained arm specific detectors and
show state-of-the-art results on the PASCAL VOC dataset
for arm pose prediction, but did not propose an approach for
whole-body pose estimation.

3. Collection and training of k-poselets
3.1. Collecting k-poselets

Our algorithm for collecting k-poselets follows [3]. As
in [3], we first produce seed configurations by random sam-
pling, and then pick other windows from the training set
with similar keypoint configurations.

To sample a seed configuration for a k-poselet, we sam-
ple a training instance and sample k windows on the in-
stance. For each window, we pick an aspect ratio from a
predefined set, and place the window at a random position
on the instance. We reject windows if their area is less than
50% within the instance bounding box, or if they contain
fewer than four keypoints. To ensure each poselet in a k-
poselet is different from the others, we discard windows that
overlap highly with previously selected windows.

For each seed configuration, we pick similar instances
from the training set. As in [3], for every instance we place
the k windows on the instance so as to minimize the least
squares error between the keypoints in the instance and the
corresponding seed window. A high residual error indicates
poor alignment and we reject instances for which any of
the k windows yields an error higher than a threshold. This
ensures that each of the k windows are well aligned in pose
space, a modeling goal we share with poselets.

In addition, we reject instances for which the relative po-
sitions and scales of the k windows are very different from
the relative locations and scales in the seed. This is critical
since it ensures that the deformations of the k windows are
unimodal, a modeling assumption we inherit from DPM.

The list of instances passing these tests forms the “posi-
tive list” for that k-poselet. If the cardinality of the positive
list is small (less than 40), then that k-poselet is discarded.
Figures 2 and 3 show the positive lists of two example 2-
poselets and 1-poselets, respectively.

3.2. Training k-poselets

Detection models. Each k-poselet is described by a weight
vector

w =
(
M0, ...,Mk−1, d1, ..., dk−1, b

)
, (1)

Figure 2: Each row shows examples collected for a k-poselet (k =
2), whose seed patch is shown in the first column. Red depicts
examples of the first poselet, while blue examples of the second
poselet.

Figure 3: Each row shows examples collected for a k-poselet (k =
1), whose seed patch is shown in the first column.

where Mi is the appearance template and di is the spatial
deformation model for the i-th poselet of a k-poselet and b
is a bias.

As in DPM, we fix the relative scales at which the k tem-
plates will be applied, but they can move in space relative to
an anchor. We use ui to denote the fixed scale at which the
i-th poselet in a k-poselet occurs relative to the first pose-
let. Similarly we use vi to denote the anchor location of
the i-th poselet relative to the first poselet. A particular
placement of the k-poselet can then be written as the tu-
ple l = (p0, . . . , pk−1, σ0), with the first poselet at scale σ0,
and poselet locations pi = (xi, yi) and scales σi = σ0 · ui.

The score of a k-poselet placement can be decomposed
into the scores of the individual templates at their particular
locations, the deformation cost, and the bias. For a hypoth-
esis l = (p0, ..., pk−1, σ0), the score is given by

score(l) =
k−1∑
i=0

Mi ·F (pi)−
k−1∑
i=1

di · fd(δxi, δyi) + b, (2)

where F (p) are appearance features extracted at location p,

(δxi, δyi) =
(xi − x0

σ0
,
yi − y0
σ0

)
− vi (3)

is the scale-normalized spatial displacement from the an-
chor vi, and

fd(δxi, δyi) = (δxi, δyi, δx
2
i , δy

2
i ) (4)

are deformation features. For appearance features, we use
the HOG implementation from [10] to allow direct compar-
ison with DPMs.



We compute {ui} and {vi} from the positive list col-
lected for the k-poselet. We take ui to be the mean scale
and vi to be the mean scale-normalized location (relative to
the first poselet) at which the i-th poselet occurs.

At detection time, we apply a k-poselet exactly like a
DPM, scoring each root poselet location by maximizing
Eq. 2 over the locations of the non-root poselets.

It remains to specify the set of positive and negative ex-
amples to train a k-poselet. We explained earlier the con-
struction of the aligned positive example lists. Note that
since the k windows are specified for each instance in the
positive list, we have no latent variables and training is a
convex problem similar to a linear SVM, unlike standard
weakly-supervised DPM training. Negatives are derived
from image patches that don’t contain people, and we fol-
low standard hard negative mining [10]. In order to ensure
that the deformation costs are convex functions, we use a
positivity constraint on all quadratic deformation weights.

Keypoint models. In the standard poselet framework, key-
point predictions are derived from the mean position of the
keypoints relative to the poselet location and scale on the
training data. The twist here is that we have multiple pose-
lets within a single k-poselet and their abilities to localize a
given keypoint might vary.

Denote by µ(i)
J the mean offset of keypoint J from the

position of the i-th poselet, in units of the scale of the i-th
poselet. We can compute these from a k-poselet’s positive
list. The i-th poselet in a k-poselet votes for each keypoint
with a learned weight α(i)

J . We then combine the predic-
tions:

xJ =

k−1∑
i=0

α
(i)
J (µ

(i)
J · σi + pi) (5)

where {pi, σi} are the locations and scales of each con-
stituent poselet in a k-poselet detection hypothesis.

The set of weights {α(i)
J } are learnt by optimizing a lin-

ear regression problem. For a k-poselet and keypoint J , we
minimize the sum of squared prediction errors across the
examples in S, the positive list for this k-poselet,

min
αJ

∑
s∈S
‖x(s)∗

J − x
(s)
J ‖

2 (6)

subject to
∑k−1
i=0 α

(i)
J = 1 and α(i)

J ≥ 0, where x
(s)
J is the

prediction of keypoint J for instance s (Eq. 5) and x
(s)∗
J is

the ground-truth location of J in positive example s.

Calibration of k-poselet scores. During detection, a k-
poselet scores a location l according to Eq. 2. Since differ-
ent k-poselets are trained independent of each other, their
scores are uncalibrated. We calibrate them by mapping the
score s to the precision of that k-poselet at score s. Pre-
cision at score s is an estimate of the probability that an
activation with score greater than s is true.

For each detector we compute and store a precision-
recall curve on a validation set. An activation is marked
as true if its predicted torso has a significant overlap with a
ground-truth torso, and false otherwise. Then for a score s
we can simply look up the precision at that score.

Model selection. Randomness in k-poselet sampling ne-
cessitates the collection of a large number of them in order
to cover the training instances with narrowly-tuned detec-
tors. Sampling a large number of k-poselets also means that
the pool will contain redundancy. Therefore, we want to se-
lect a small number of k-poselets such that each instance is
correctly detected by at least one of them at a high-precision
score. We use Average Max Precision (AMP) [9] to mea-
sure whether a set C of k-poselets achieves high precision
and high coverage:

AMP(C) = 1

N

N∑
n=1

max
c∈C

precc(sn,c), (7)

where N is the total number of instances, precc(s) is the
precision of detector c at threshold s and sn,c is the max-
imum true positive score of detector c on instance n (or
−∞ if no true detection exists). The precision-recall curves
computed for calibration are reused for AMP computation.
We use greedy forward selection to approximately maxi-
mize Eq. 7, starting from an empty C, until a fixed num-
ber of k-poselet detectors has been selected. In our exper-
iments, we select 200 1- and 2-poselets (the number 200
is also the number of poselets used by [3]). We find that
our procedure picks roughly thrice as many bigrams as uni-
grams (153 2-poselets and 47 1-poselets). In order to make
comparisons with traditional poselets [3], we also do this
selection on only the 1-poselets, again selecting 200.

4. Producing person hypotheses

4.1. Clustering

Given k-poselet activations in an image, we cluster the
activations into person hypotheses. Similar to [3], we use
agglomerative clustering. This requires us to define a sim-
ilarity between activations, as well as a similarity between
clusters of activations.

Because the k-poselets are discriminatively trained to be
good predictors of the torso, we use intersection over union
of the predicted torso bounds as a measure of the similarity
between two activations.

For the similarity between clusters of activations, typi-
cally one uses the maximum similarity between two activa-
tions in the clusters (“single link”) or the minimum similar-
ity (“complete link”). However both of these would treat
each activation in the cluster on an equal footing, discard-
ing the activation scores. This is undesirable since higher



Figure 4: A visualization of the clusters on an image. For each
cluster, we also show the predicted torso keypoints from all the
activations in the cluster. The keypoints are color coded: magenta:
right shoulder, yellow: left shoulder, green: right hip, dark blue:
left hip. The torso predictions of all the activations of a cluster
agree with each other. Even so, the clustering is strict enough to
create two separate clusters for the woman and the child.

Figure 5: Visualizing recall after clustering. Each image shows
the predicted torsos from the clusters that overlap highly with
some ground truth instance. The clustering algorithm keeps highly
overlapping people separate. The predicted torso is also a lot more
invariant to pose variations, validating its use in clustering.

scoring activations are likely to make more reliable predic-
tions. Therefore we follow a different strategy: we take the
highest scoring activation in each cluster (the “leader”) and
measure the similarity between two clusters by the similar-
ity between their leaders. Leaders are determined by com-
paring the calibrated, precision-mapped scores described in
the previous section.

Figure 4 visualizes some of the clusters obtained in an
image. For each cluster, we also show the predicted torso,
and the predicted torso keypoints from all the activations in
the cluster. As is clear from the figure, our clustering is able
to resolve highly overlapping people, such as the woman
and her child. Figure 5 shows that our clustering algorithm
maintains recall, even when people are highly overlapping.

4.2. Scoring person hypotheses

For each cluster of activations we can also produce a
score. We train a linear SVM to classify clusters as true

or false detections using labels derived from ground-truth
torso overlap. We use as features:

1. The precision-mapped score of the highest scoring ac-
tivation of each k-poselet type.

2. The fraction of the highest scoring activation of each
k-poselet type that is inside the image. For 2-poselets,
we use the minimum of the two fractions. This allows
us to disregard activations that are mostly outside the
image.

3. The area of the highest scoring activation of each k-
poselet type. We include this feature because very
large or very small detections might be false positives.

5. Experiments
We train the k-poselets on the PASCAL VOC 2012 train

dataset. We then evaluate the performance of k-poselets on
two tasks: person detection and keypoint estimation. Below
we describe each task, how we use k-poselets to solve them,
and the results we achieve.

5.1. Detection task

We evaluate person detection using two metrics. The
first metric requires us to predict a bounding box around
the torso of each person in the image. Torso predictions
that overlap by more than 50% with ground-truth torsos are
considered true positives and others are false positives (du-
plicates are also false positives). This is exactly the PAS-
CAL VOC detection metric, but applied to torsos. We do
all tuning on the first half of VOC 2009 val and evaluate on
the people images of the second half of VOC 2009 val. At
test time, we use a simple torso predictor: the strongest ac-
tivation in each cluster makes the prediction. For the score
of the cluster, we can use the score of the highest scoring
activation in the cluster. Alternatively, we can rescore the
clusters using an SVM as described in section 4.2.

The second metric is the standard PASCAL VOC bound-
ing box detection metric. This requires us to predict a box
around the visible part of the person. We test on PASCAL
2007 and report the AP. Bounding box detection differs
from torso prediction, since predicting the visible bounds
requires us to reason about occlusions. We describe our
bounding box predictor below.

Predicting the visible bounds. We find that the occlusion
patterns for people typically cluster into a few modes, and
so all we need to do is to predict these modes. We cluster
the height of the bounding box (in units of torso height)
into two clusters, and try to predict to which cluster a given
person hypothesis belongs.

One could use the k-poselet activations to make this de-
cision, but since the k-poselets haven’t been trained to dis-
tinguish occluded keypoints from unoccluded ones, they



Figure 6: Examples of bounding box prediction. The red box is
the torso, while the blue box is the predicted bounding box.

may not contain this information. Instead, we use the image
directly. We compute HOG features on a large window in
the image around the torso predicted by a person hypothe-
sis. This window has an aspect ratio of 2:1 and is thrice as
wide as the torso. To extract any information the k-poselets
might have, we let each k-poselet activation vote for the
height of the bounding box (in units of torso), and use the
average of these votes weighted by the activation score as an
additional feature. Using these features, we train a simple
linear classifier (logistic regression). Figure 6 shows some
examples where our bounding box predictor worked well.

The score of any given k-poselet might not be optimal
for scoring visible-bounds detections. So, we train an SVM
to rescore bounding boxes, as described for torsos in sec-
tion 4.2. However, here we use visible bounds overlap for
defining training labels. For training the SVM, predicted
boxes that overlap by more than 50% with ground truth are
considered positive and the others negative. We train the
bounding box predictor and the rescoring SVM on VOC
2009 val. Finally, we found that AMP selection on torsos
tends to choose poselets that may be sub-optimal for the
bounding box task. Therefore for bounding box detection
we use the AMP criterion applied to bounding boxes.

Tables 1 and 2 shows our results on bounding box de-
tection and torso detection respectively. In each case we
observe that without doing any rescoring, adding 2-poselets
to the pool provides a boost over just 1-poselets. The rescor-
ing improves all numbers. Interestingly, after rescoring the
AP of the 1-poselets and the {1, 2}-poselets are compara-
ble. This is likely because the rescoring SVM can use infor-
mation present in the ensemble of poselets and thus reduce
the performance gap. Moreover, the procedure for selecting
poselets is greedy and does not take into account the final
detection performance. A better selection procedure may
make better use of the gains provided by 2-poselets. Nev-
ertheless, as we show in Section 5.2, 2-poselets are more
informative about pose and provide a significant boost for
keypoint prediction.

Compared to previous approaches our final numbers on
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Figure 7: Precision-recall curves on PASCAL VOC 2007 test.
Note that we not only achieve greater precision but also higher
recall, compared to DPM [10].

method AP
1-poselets (no rescoring) 34.6
{1, 2}-poselets (no rescoring) 36.0
1-poselets (rescored, bbox AMP) 45.6
{1, 2}-poselets(rescored, bbox AMP) 45.4
DPM 43.2
DPM grammar [15] 46.7
Poselets [3] (q scores) 45.7
Poselets [3] (Q scores) 46.9

Table 1: Bounding box detection average precision (%) on PAS-
CAL VOC 2007 test.

method DPM 1-poselets {1, 2}-poselets 1-poselets {1, 2}-poselets
rescored rescored

AP 21.9 21.7 23.7 27.6 27.8

Table 2: Results on torso bounding box prediction on the second
half of PASCAL VOC 2009 val (VAL2).

bounding box detection (after rescoring) are significantly
better than DPMs, and match what [3] achieve without the
(computationally expensive) context rescoring. Figure 7
shows the precision-recall curve. We also significantly out-
perform DPMs in the task of torso prediction (Table 2).

It’s also notable that we trained each k-poselet detector
using a small set of only 200 negative images in order to
accelerate training, as suggested in [16].

5.2. Keypoint prediction task

For the keypoint prediction task, we use PASCAL VOC
2009 val where keypoint annotations were collected by [3].
We tune our parameters on the first half of that set (“VAL1”)
and evaluate on the second half (“VAL2”).



Evaluation metrics. For the keypoint prediction task, we
use the average precision of keypoints (APK) metric, pro-
posed in [25], because it combines detection and pose es-
timation into a single task (unlike PCP). This task matches
the stated goal of the paper, which is to provide a unified
framework that performs well on both sub-tasks. APK mea-
sures the correctness of predicted keypoints by computing
the precision-recall curve for each keypoint across all pre-
dictions. A keypoint prediction is considered correct if its
distance to the corresponding ground-truth keypoint is less
than α · h, where h is the height of the torso of the ground-
truth instance. Average precision is reported for each key-
point individually.

Predicting keypoint locations. By design, k-poselets can
be used to predict the bounds surrounding the person as well
the location of its keypoints. However, different k-poselets
should have different confidence levels for predicting a par-
ticular keypoint, e.g. a head & shoulder k-poselet should not
make predictions of the ankles. We measure this confidence
by mapping the k-poselet scores to keypoint detection pre-
cisions using the procedure described in Section 3. For each
keypoint, only the most confident k-poselet (for that specific
keypoint) predicts its location. The precision-recall curves
are computed on VAL1.

Results. We report numbers on the second half of PAS-
CAL VOC 2009 val (VAL2). We compare our performance
with two leading techniques in person detection and key-
point prediction, DPM [10] and Y&R [25]. For DPM, we
trained a person model on our training set as well as a linear
regressor from the deformed location of the part filters to the
location of the keypoints. For Y&R, we used their released
model, which was trained on the PARSE dataset. We did not
train a Y&R model on our training set, since it requires fully
visible training instances and only 6% of our training set in-
cludes such instances. We used the detections of the Y&R
model on our test set with NMS threshold of 0.5 to produce
candidate person hypotheses and keypoint predictions. We
also tried using our {1, 2}-poselets clusters to filter their de-
tections. To be more precise, from all the Y&R detections
that overlapped more than 0.4 with the torso prediction of
each cluster, we picked the detection that scored the high-
est to make keypoint predictions for that cluster. The Y&R
final detection inherits the score of the cluster.

Table 3 shows average precision using the APK criterion
for the different approaches. Note that Y&R do not have a
prediction for Nose directly. We compute the mean AP for
all keypoints (column mAP) and also for the arm and leg
keypoints for a comparison with Y&R (column mAP∗)

The task of keypoint prediction on VAL2 is challeng-
ing, especially compared to other pose estimation datasets,
such as Buffy Stickmen [12] or the PARSE dataset [21],
since it contains people under a wide variety of occlusion,

clutter and appearance patterns. A part or a keypoint of an
instance is evaluated as long as it has a valid keypoint anno-
tation. This protocol is different than the one used in [17],
where an instance was evaluated only if all its arm keypoints
had valid annotations. Our protocol makes the task much
harder, since heavily occluded instances are considered in
the evaluation. In addition, [17] did not report APK num-
bers, since armlets were not trained to detect people and
assumed knowledge of ground truth at test time. Figure 8
shows examples of keypoint predictions on some test in-
stances in VAL2 (we cropped the image around the instance
in question for display only). We depict the correct keypoint
predictions with green and the false predictions with black
dots. Predictions that correspond to keypoints that don’t
have ground-truth annotations (due to no consensus among
annotators) are marked with a black cross. For better visu-
alization we connect the keypoints with red colored lines.
We also show the strictness of the metric by placing a blue
circle of radius equal to the tolerance of the metric centered
on the ground truth Right Shoulder (blue square).

6. Conclusion
We have shown that an ensemble of k-poselets provides

a unified formalism for person detection and keypoint pre-
diction. In this work we also have simplified the poselet
training pipeline and provided source code, so that it can be
widely used. Applications such as attribute detection, ac-
tion recognition, semantic segmentation could be built in a
fairly straightforward way. Looking ahead, this machinery
can use features other than HOG, such as CNN-based fea-
tures which have been shown to perform well for the task of
object detection [14].
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